bioRxiv preprint doi: https://doi.org/10.1101/405571; this version posted August 31, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. A sex-stratified genome-wide association study of tuberculosis using a multi-ethnic genotyping array Haiko Schurz 1,2*, Craig J Kinnear 1, Chris Gignoux 3, Genevieve Wojcik 4, Paul D van Helden 1, Gerard Tromp 1,2,5, Brenna Henn 6, Eileen G Hoal 1, Marlo Möller 1 1 DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa. 2 South African Tuberculosis Bioinformatics Initiative (SATBBI), Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa. 3 Colorado Center for Personalized Medicine and Department of Biostatistics and Informatics, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045. 4 Department of Genetics, Stanford University, Stanford, CA, 94305. 5 Centre for Bioinformatics and Computational Biology, Stellenbosch University, Cape Town, South Africa. 6 Department of Anthropology, and the UC Davis Genome Center, University of California, Davis, CA, 95616. * Corresponding author:
[email protected] Page 1 of 22 bioRxiv preprint doi: https://doi.org/10.1101/405571; this version posted August 31, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Tuberculosis (TB), caused by Mycobacterium tuberculosis, is a complex disease with a known human genetic component.