Patterns of Molecular Evolution of an Avian Neo-Sex Chromosome

Total Page:16

File Type:pdf, Size:1020Kb

Patterns of Molecular Evolution of an Avian Neo-Sex Chromosome Patterns of Molecular Evolution of an Avian Neo-sex Chromosome Irene Pala,*,1 Dennis Hasselquist,1 Staffan Bensch,1 and Bengt Hansson*,1 1Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Lund, Sweden *Corresponding author: E-mail: [email protected]; [email protected]. Associate editor: Yoko Satta Abstract Newer parts of sex chromosomes, neo-sex chromosomes, offer unique possibilities for studying gene degeneration and sequence evolution in response to loss of recombination and population size decrease. We have recently described a neo-sex chromosome Downloaded from https://academic.oup.com/mbe/article/29/12/3741/1005710 by guest on 28 September 2021 system in Sylvioidea passerines that has resulted from a fusion between the first half (10 Mb) of chromosome 4a and the ancestral Research article sex chromosomes. In this study, we report the results of molecular analyses of neo-Z and neo-W gametologs and intronic parts of neo-Z and autosomal genes on the second half of chromosome 4a in three species within different Sylvioidea lineages (Acrocephalidea, Timaliidae, and Alaudidae). In line with hypotheses of neo-sex chromosome evolution, we observe 1) lower genetic diversity of neo-Z genes compared with autosomal genes, 2) moderate synonymous and weak nonsynonymous sequence divergence between neo-Z and neo-W gametologs, and 3) lower GC content on neo-W than neo-Z gametologs. Phylogenetic reconstruction of eight neo-Z and neo-W gametologs suggests that recombination continued after the split of Alaudidae from the rest of the Sylvioidea lineages (i.e., after 42.2 Ma) and with some exceptions also after the split of Acrocephalidea and Timaliidae (i.e., after 39.4 Ma). The Sylvioidea neo-sex chromosome shares classical evolutionary features with the ancestral sex chromosomes but, as expected from its more recent origin, shows weaker divergence between gametologs. Key words: neo-sex chromosome, ZW gametolog divergence, recombination cessation. Introduction The timing of recombination cessation may differ along the sex chromosome, from the initiation points to the regions Degeneration and Genetic Variation of Sex- where recombination still occurs, and this regional variation Linked Genes will be evident in the degree of sequence divergence of game- Sex chromosomes have evolved independently in many dif- tologous genes (i.e., homologous genes on the opposite sex ferent lineages and some common key features in the evolu- chromosomes; sensu Garcia-Moreno and Mindell 2000). By tion from an ancestral homologous pair have been analyzing divergence between gametologs, regions that have recognized. These include reduced recombination between ceased to recombine at different times, corresponding to the members of the sex chromosome and a progressive de- clusters of distinct divergence, evolutionary strata, were ini- generation of the sex-limited chromosome (i.e., Y in mam- tially identified in the human X chromosome (Lahn and Page mals and W in birds) (Bergero and Charlesworth 2009). 1999; Ross et al. 2005). More recently, such evolutionary According to the sexual antagonistic model, recombination strata, although not always in a linear fashion over the cessation is triggered by the presence of sexual antagonistic chromosome, have also been reported in other mammals alleles (beneficial to one sex and harmful to the other) asso- (Sandstedt and Tucker 2004;butseeMurtagh et al. 2012), ciated to a sex-determining factor at one of the sex chromo- plants (Nicolas et al. 2004; Bergero et al. 2007), and birds somes (Rice 1987). Once multiple loci are involved in the (Handley et al. 2004; Nam and Ellegren 2008), that is, in establishment and functionality of one of the sexes, reduced both male and female heterogametic systems. This suggests recombination between the two chromosomes will be that similar processes of chromosome evolution occur in selected for. As a consequence, the nonrecombining sex both types of sex chromosome systems (Charlesworth and chromosome is predicted to accumulate deleterious muta- Mank 2010). The presence of evolutionary strata has been tions, start degenerating, and progressively diverge relative to related to two main events in chromosome evolution: the the other member of the sex chromosome pair (Lahn and suppression of recombination as a means to resolve sexual Page 1999; Bachtrog 2005; Wilson and Makova 2009). The antagonism between clusters of genes located on sex degeneration of the nonrecombining sex chromosome is ex- chromosomes (van Doorn and Kirkpatrick 2007)andthe pected to be driven by multiple processes, including Muller’s occurrence of chromosomal rearrangements that can affect ratchet, background selection, and the Hill–Robertson effect the physical linearity of the blocks of reduced recombination with weak selection (Lahn and Page 1999; Charlesworth et al. (Lemaitre et al. 2009). 2005; Bergero and Charlesworth 2009; Wilson and Makova In birds, the evolution of gametologous genes and the oc- 2009). currence of evolutionary strata on sex chromosomes have ß The Author 2012. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: [email protected] Mol. Biol. Evol. 29(12):3741–3754 doi:10.1093/molbev/mss177 Advance Access publication July 23, 2012 3741 Pala et al. doi:10.1093/molbev/mss177 MBE been almost exclusively addressed in the chicken (Gallus stickleback (Gasterosteus aculeatus) where newly sex-linked gallus)(Ceplitis and Ellegren 2004; Handley et al. 2004; Nam genes on the neo-sex chromosome are involved in mate rec- and Ellegren 2008). In other bird groups, mainly in passerines ognition, reproductive isolation, and speciation (Kitano et al. (perching birds or song birds), studies have focused on the 2009, 2010). However, in birds, a very prominent group in the evolution of genes located on the Z chromosome (Borge et al. context of female heterogamety, the opportunity of using 2005), the putative role of this chromosome in reproductive neo-sex chromosomes as basis for the study of sex chromo- isolation (Storchova´ et al. 2010), and prominently in the com- some evolution has not yet been available. parative analysis of the organization of genes located on sex chromosomes between different species (Itoh et al. 2006; Neo-sex Chromosome in Sylvioidea Passerines Nanda et al. 2008; Vo¨lker et al. 2010). The general scarcity of information about gametologs in birds results mostly from We have recently detected a neo-sex chromosome in Sylvioi- a highly heterochromatic W chromosome, in which consid- dea passerine birds (Pala et al. 2011).Asignificantpart(ca. erable divergence in gene content and sequence variation 10 Mb) of chromosome 4a (in total 20.7 Mb), an autosome in Downloaded from https://academic.oup.com/mbe/article/29/12/3741/1005710 by guest on 28 September 2021 makes it difficult to isolate Z and W gene pairs within the zebra finch genome (Warren et al. 2010), has been trans- nonrecombining areas. To our knowledge, even in model located to the sex chromosomes in the Sylvioidea lineage speciessuchasthezebrafinch(Taeniopygia guttata), struc- (including, e.g., warblers and larks; fig. 1). The translocated ture and expression patterns of Z/W gametologs have only material is present in all Sylvioidea assayed so far but not in been investigated for the CHD1 gene pair (Fridolfsson and non-Sylvioidea species, which suggest that the translocation Ellegren 2000; Agate et al. 2004). In fact, the high divergence occurred at the base of the Sylvioidea branch of the avian between the sex chromosomes or more specifically the de- phylogeny, at approximately 42.2 Ma (Pala et al. 2011). Our generation of the sex-limited chromosome constitutes a previous results indicated the presence of both Z- and major drawback of using chromosomes with very deep diver- W-linked copies of the neo-sex chromosome in Sylvioidea gence times for assessing patterns of sex chromosome evolu- and show no indications of ongoing recombination (Pala tion. Very often in ancestral sex chromosome pairs, such as et al. 2011), which offers the possibility of isolating a the mammalian XY (approximately 150–170 Ma; Veyrunes number of these more recently formed gametologous genes. et al. 2008; Livernois et al. 2012) or the avian ZW (an at least The Sylvioidea neo-sex chromosome opens the unprece- 150-My-old sex chromosome pair; Nam and Ellegren 2008; dented possibility of studying the evolutionary trajectories of Livernois et al. 2012), direct comparisons of gametologous sex-linked genes and addressing the question of what initial genes are no longer possible. Even the 80–130-My-old X- factors affect sex chromosome evolution. In vertebrates, this and Y-added region in eutherian mammals has started to opportunity has seldom arisen (but see, e.g., Zhou et al. 2008; deteriorate (Waters et al. 2001; Livernois et al. 2012). Ross et al. 2009) and never before in a female heterogametic New sex chromosome elements, neo-sex chromosomes, system. Although with obvious differences, the two main sex can be formed either by translocations of autosomal parts chromosome systems (XY and ZW) have evolved from auto- to the sex chromosomes (Bachtrog 2003; Zhou et al. 2008; somes, with specific evolutionary processes modulating the Howell et al. 2009; Kitano et al. 2009)orthroughthetrans- progressive structural and functional divergence of each location of a master sex-determination locus (Tanaka et al. member of the pair (Fridolfsson et al. 1998; Graves 1998; 2007). Neo-sex chromosomes offer unique possibilities to Bergero and Charlesworth 2009). The Sylvioidea neo-sex studying the evolution of sex-linked genes because degener- chromosomes, with their autosomal origin and verified link- ation of the sex-limited chromosome is still limited. If, as age to ancestral Z, can be looked upon as an emergent sex hypothesized, reduced recombination and degeneration of chromosome pair, in which divergence might still be ongoing the sex-limited chromosome are key factors in the evolution (Pala et al.
Recommended publications
  • Doctoral Thesis Genetics of Male Infertility
    DOCTORAL THESIS GENETICS OF MALE INFERTILITY: MOLECULAR STUDY OF NON-SYNDROMIC CRYPTORCHIDISM AND SPERMATOGENIC IMPAIRMENT Deborah Grazia Lo Giacco November 2013 Genetics of male infertility: molecular study of non-syndromic cryptorchidism and spermatogenic impairment Thesis presented by Deborah Grazia Lo Giacco To fulfil the PhD degree at Universitat Autònoma de Barcelona Thesis realized under the direction of Dr. Elisabet Ars Criach and Prof. Csilla Krausz at the laboratory of Molecular Biology of Fundació Puigvert, Barcelona Thesis ascribed to the Department of Cellular Biology, Physiology and Immunology, Medicine School of Universitat Autònoma de Barcelona PhD in Cellular Biology Dr. Elisabet Ars Criach Prof. Csilla Krausz Dr. Carme Nogués Sanmiquel Director of the thesis Director of the thesis Tutor of the thesis Deborah Grazia Lo Giacco Ph.D Candidate A mis padres Agradecimientos Esta tesis es un esfuerzo en el cual, directa o indirectamente, han participado varias personas, leyendo, opinando, corrigiendo, teniéndo paciencia, dando ánimo, acompañando en los momentos de crisis y en los momentos de felicidad. Antes de todo quisiera agradecer a mis directoras de tesis, la Dra Csilla Krausz y la Dra Elisabet Ars, por su dedicación costante y continua a este trabajo de investigación y por sus observaciones y siempre acertados consejos. Gracias por haber sido mentores y amigas, gracias por transmitirme vuestro entusiasmo y por todo lo que he aprendido de vosotras. Mi más profundo agradecimiento a la Sra Esperança Marti por haber creído en el valor de nuestro trabajo y haber hecho que fuera posible. Quisiera agradecer al Dr. Eduard Ruiz-Castañé por su apoyo y ayuda constante, y a todos los médicos del Servicio de Andrología: Dr.
    [Show full text]
  • Exceptional Conservation of Horse–Human Gene Order on X Chromosome Revealed by High-Resolution Radiation Hybrid Mapping
    Exceptional conservation of horse–human gene order on X chromosome revealed by high-resolution radiation hybrid mapping Terje Raudsepp*†, Eun-Joon Lee*†, Srinivas R. Kata‡, Candice Brinkmeyer*, James R. Mickelson§, Loren C. Skow*, James E. Womack‡, and Bhanu P. Chowdhary*¶ʈ *Department of Veterinary Anatomy and Public Health, ‡Department of Veterinary Pathobiology, College of Veterinary Medicine, and ¶Department of Animal Science, College of Agriculture and Life Science, Texas A&M University, College Station, TX 77843; and §Department of Veterinary Pathobiology, University of Minnesota, 295f AS͞VM, St. Paul, MN 55108 Contributed by James E. Womack, December 30, 2003 Development of a dense map of the horse genome is key to efforts ciated with the traits, once they are mapped by genetic linkage aimed at identifying genes controlling health, reproduction, and analyses with highly polymorphic markers. performance. We herein report a high-resolution gene map of the The X chromosome is the most conserved mammalian chro- horse (Equus caballus) X chromosome (ECAX) generated by devel- mosome (18, 19). Extensive comparisons of structure, organi- oping and typing 116 gene-specific and 12 short tandem repeat zation, and gene content of this chromosome in evolutionarily -markers on the 5,000-rad horse ؋ hamster whole-genome radia- diverse mammals have revealed a remarkable degree of conser tion hybrid panel and mapping 29 gene loci by fluorescence in situ vation (20–22). Until now, the chromosome has been best hybridization. The human X chromosome sequence was used as a studied in humans and mice, where the focus of research has template to select genes at 1-Mb intervals to develop equine been the intriguing patterns of X inactivation and the involve- orthologs.
    [Show full text]
  • Snapshot: Formins Christian Baarlink, Dominique Brandt, and Robert Grosse University of Marburg, Marburg 35032, Germany
    SnapShot: Formins Christian Baarlink, Dominique Brandt, and Robert Grosse University of Marburg, Marburg 35032, Germany Formin Regulators Localization Cellular Function Disease Association DIAPH1/DIA1 RhoA, RhoC Cell cortex, Polarized cell migration, microtubule stabilization, Autosomal-dominant nonsyndromic deafness (DFNA1), myeloproliferative (mDia1) phagocytic cup, phagocytosis, axon elongation defects, defects in T lymphocyte traffi cking and proliferation, tumor cell mitotic spindle invasion, defects in natural killer lymphocyte function DIAPH2 Cdc42 Kinetochore Stable microtubule attachment to kinetochore for Premature ovarian failure (mDia3) chromosome alignment DIAPH3 Rif, Cdc42, Filopodia, Filopodia formation, removing the nucleus from Increased chromosomal deletion of gene locus in metastatic tumors (mDia2) Rac, RhoB, endosomes erythroblast, endosome motility, microtubule DIP* stabilization FMNL1 (FRLα) Cdc42 Cell cortex, Phagocytosis, T cell polarity Overexpression is linked to leukemia and non-Hodgkin lymphoma microtubule- organizing center FMNL2/FRL3/ RhoC ND Cell motility Upregulated in metastatic colorectal cancer, chromosomal deletion is FHOD2 associated with mental retardation FMNL3/FRL2 Constituently Stress fi bers ND ND active DAAM1 Dishevelled Cell cortex Planar cell polarity ND DAAM2 ND ND ND Overexpressed in schizophrenia patients Human (Mouse) FHOD1 ROCK Stress fi bers Cell motility FHOD3 ND Nestin, sarcomere Organizing sarcomeres in striated muscle cells Single-nucleotide polymorphisms associated with type 1 diabetes
    [Show full text]
  • Integrative Analysis Reveals RNA G-Quadruplexes in Utrs Are Selectively Constrained and Enriched for Functional Associations
    ARTICLE https://doi.org/10.1038/s41467-020-14404-y OPEN Integrative analysis reveals RNA G-quadruplexes in UTRs are selectively constrained and enriched for functional associations David S.M. Lee 1, Louis R. Ghanem 2* & Yoseph Barash 1,3* G-quadruplex (G4) sequences are abundant in untranslated regions (UTRs) of human messenger RNAs, but their functional importance remains unclear. By integrating multiple 1234567890():,; sources of genetic and genomic data, we show that putative G-quadruplex forming sequences (pG4) in 5’ and 3’ UTRs are selectively constrained, and enriched for cis-eQTLs and RNA-binding protein (RBP) interactions. Using over 15,000 whole-genome sequences, we find that negative selection acting on central guanines of UTR pG4s is comparable to that of missense variation in protein-coding sequences. At multiple GWAS-implicated SNPs within pG4 UTR sequences, we find robust allelic imbalance in gene expression across diverse tissue contexts in GTEx, suggesting that variants affecting G-quadruplex formation within UTRs may also contribute to phenotypic variation. Our results establish UTR G4s as important cis-regulatory elements and point to a link between disruption of UTR pG4 and disease. 1 Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. 2 Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The Children’s Hospital of Philadelphia and The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA. 3 Department
    [Show full text]
  • Effect of Chromosomal Copy Number Variations on Congenital Birth Defects and Human Developmental Disorders
    EFFECT OF CHROMOSOMAL COPY NUMBER VARIATIONS ON CONGENITAL BIRTH DEFECTS AND HUMAN DEVELOPMENTAL DISORDERS APPROVED BY SUPERVISORY COMMITTEE Andrew R. Zinn, M.D., Ph.D Christine K. Garcia, M.D., Ph.D Orson Moe, M.D., Ph.D Ralph DeBerardinis, M.D., Ph.D DEDICATION Many many people have given me love, support, advice, and caffeine over the course of my graduate research to which I am eternally grateful. To Andrew, my mentor for many years and scientific guide- if someday I become half the researcher you are, I will have turned out. There aren’t enough words- thank you, thank you, thank you. To my thesis committee- thank for your insightful comments, direction and criticism and most for your genuine desire to see me succeed. To my collaborators, Vidu Garg and Linda Baker- thank you for sharing your research with a lowly grad student. I would literally have nothing to research without your generosity. To the lab-thanks for listening to boring mitochondrial results each week. I will miss you terribly. To Miguel- No puedo poner a las palabras la profundidad de mi amor para usted. Usted es mi amigo, mi amor, mi corazón, mi amante, mi ayuda y mi ancla. Con usted por mi lado puedo lograr las cosas magníficas que no podría solamente. Te amo. To Justin- the talk of complex four late at night was worth it. Love you. To Kim, Kristen and Adriane- my absolute favorite people- thank you for believing even when I did not. Thank you for listening to me when I needed it most.
    [Show full text]
  • Defining Functional Interactions During Biogenesis of Epithelial Junctions
    ARTICLE Received 11 Dec 2015 | Accepted 13 Oct 2016 | Published 6 Dec 2016 | Updated 5 Jan 2017 DOI: 10.1038/ncomms13542 OPEN Defining functional interactions during biogenesis of epithelial junctions J.C. Erasmus1,*, S. Bruche1,*,w, L. Pizarro1,2,*, N. Maimari1,3,*, T. Poggioli1,w, C. Tomlinson4,J.Lees5, I. Zalivina1,w, A. Wheeler1,w, A. Alberts6, A. Russo2 & V.M.M. Braga1 In spite of extensive recent progress, a comprehensive understanding of how actin cytoskeleton remodelling supports stable junctions remains to be established. Here we design a platform that integrates actin functions with optimized phenotypic clustering and identify new cytoskeletal proteins, their functional hierarchy and pathways that modulate E-cadherin adhesion. Depletion of EEF1A, an actin bundling protein, increases E-cadherin levels at junctions without a corresponding reinforcement of cell–cell contacts. This unexpected result reflects a more dynamic and mobile junctional actin in EEF1A-depleted cells. A partner for EEF1A in cadherin contact maintenance is the formin DIAPH2, which interacts with EEF1A. In contrast, depletion of either the endocytic regulator TRIP10 or the Rho GTPase activator VAV2 reduces E-cadherin levels at junctions. TRIP10 binds to and requires VAV2 function for its junctional localization. Overall, we present new conceptual insights on junction stabilization, which integrate known and novel pathways with impact for epithelial morphogenesis, homeostasis and diseases. 1 National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK. 2 Computing Department, Imperial College London, London SW7 2AZ, UK. 3 Bioengineering Department, Faculty of Engineering, Imperial College London, London SW7 2AZ, UK. 4 Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Downloaded from [266]
    Patterns of DNA methylation on the human X chromosome and use in analyzing X-chromosome inactivation by Allison Marie Cotton B.Sc., The University of Guelph, 2005 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in The Faculty of Graduate Studies (Medical Genetics) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) January 2012 © Allison Marie Cotton, 2012 Abstract The process of X-chromosome inactivation achieves dosage compensation between mammalian males and females. In females one X chromosome is transcriptionally silenced through a variety of epigenetic modifications including DNA methylation. Most X-linked genes are subject to X-chromosome inactivation and only expressed from the active X chromosome. On the inactive X chromosome, the CpG island promoters of genes subject to X-chromosome inactivation are methylated in their promoter regions, while genes which escape from X- chromosome inactivation have unmethylated CpG island promoters on both the active and inactive X chromosomes. The first objective of this thesis was to determine if the DNA methylation of CpG island promoters could be used to accurately predict X chromosome inactivation status. The second objective was to use DNA methylation to predict X-chromosome inactivation status in a variety of tissues. A comparison of blood, muscle, kidney and neural tissues revealed tissue-specific X-chromosome inactivation, in which 12% of genes escaped from X-chromosome inactivation in some, but not all, tissues. X-linked DNA methylation analysis of placental tissues predicted four times higher escape from X-chromosome inactivation than in any other tissue. Despite the hypomethylation of repetitive elements on both the X chromosome and the autosomes, no changes were detected in the frequency or intensity of placental Cot-1 holes.
    [Show full text]
  • Epigenetic Mechanisms of Lncrnas Binding to Protein in Carcinogenesis
    cancers Review Epigenetic Mechanisms of LncRNAs Binding to Protein in Carcinogenesis Tae-Jin Shin, Kang-Hoon Lee and Je-Yoel Cho * Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; [email protected] (T.-J.S.); [email protected] (K.-H.L.) * Correspondence: [email protected]; Tel.: +82-02-800-1268 Received: 21 September 2020; Accepted: 9 October 2020; Published: 11 October 2020 Simple Summary: The functional analysis of lncRNA, which has recently been investigated in various fields of biological research, is critical to understanding the delicate control of cells and the occurrence of diseases. The interaction between proteins and lncRNA, which has been found to be a major mechanism, has been reported to play an important role in cancer development and progress. This review thus organized the lncRNAs and related proteins involved in the cancer process, from carcinogenesis to metastasis and resistance to chemotherapy, to better understand cancer and to further develop new treatments for it. This will provide a new perspective on clinical cancer diagnosis, prognosis, and treatment. Abstract: Epigenetic dysregulation is an important feature for cancer initiation and progression. Long non-coding RNAs (lncRNAs) are transcripts that stably present as RNA forms with no translated protein and have lengths larger than 200 nucleotides. LncRNA can epigenetically regulate either oncogenes or tumor suppressor genes. Nowadays, the combined research of lncRNA plus protein analysis is gaining more attention. LncRNA controls gene expression directly by binding to transcription factors of target genes and indirectly by complexing with other proteins to bind to target proteins and cause protein degradation, reduced protein stability, or interference with the binding of other proteins.
    [Show full text]
  • Mir‑128‑3P Serves As an Oncogenic Microrna in Osteosarcoma Cells by Downregulating ZC3H12D
    ONCOLOGY LETTERS 21: 152, 2021 miR‑128‑3p serves as an oncogenic microRNA in osteosarcoma cells by downregulating ZC3H12D MAOSHU ZHU1*, YULONG WU2*, ZHAOWEI WANG3, MINGHUA LIN4, BIN SU5, CHUNYANG LI6, FULONG LIANG7 and XINJIANG CHEN6 Departments of 1Central Laboratory, 2Urinary Surgery, 3Gynecology, 4Pathology, 5Pharmacy, 6Orthopedics and 7Neurology, The Fifth Hospital of Xiamen, Xiang'an, Xiamen, Fujian 361000, P.R. China Received August 30, 2019; Accepted November 24, 2020 DOI: 10.3892/ol.2020.12413 Abstract. Osteosarcoma is the second leading cause of miR‑128‑3p‑mediated molecular pathway and how it is associ‑ cancer‑associated mortality worldwide in children and ated with osteosarcoma development. adolescents. ZC3H12D has been shown to negatively regulate Toll‑like receptor signaling and serves as a possible tumor Introduction suppressor gene. MicroRNAs (miRNAs/miRs) are known to play an important role in the proliferation of human osteo‑ As the most commonly occurring primary malignant bone sarcoma cells. However, whether miRNAs can affect tumor tumor, osteosarcoma accounts for >10% of all solid tumors development by regulating the expression of ZC3H12D has worldwide (1‑3). Osteosarcoma is the second leading cause of not yet been investigated. The aim of the present study was cancer‑associated mortality worldwide and primarily affects to investigate the role of miR128‑3p in regulating ZC3H12D young individuals, including children and adolescents (4,5). expression, as well as its function in tumor cell proliferation, Owing to advancements in surgical technology and combined apoptosis, and metastasis. Reverse transcription‑quantitative therapeutic strategies, the 5‑year overall survival rate of osteo‑ PCR, western blotting and dual luciferase reporter assays were sarcoma has increased to 60‑70% (6).
    [Show full text]
  • Flexible, Unbiased Analysis of Biological Characteristics Associated with Genomic Regions
    bioRxiv preprint doi: https://doi.org/10.1101/279612; this version posted March 22, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. BioFeatureFinder: Flexible, unbiased analysis of biological characteristics associated with genomic regions Felipe E. Ciamponi 1,2,3; Michael T. Lovci 2; Pedro R. S. Cruz 1,2; Katlin B. Massirer *,1,2 1. Structural Genomics Consortium - SGC, University of Campinas, SP, Brazil. 2. Center for Molecular Biology and Genetic Engineering - CBMEG, University of Campinas, Campinas, SP, Brazil. 3. Graduate program in Genetics and Molecular Biology, PGGBM, University of Campinas, Campinas, SP, Brazil. *Corresponding author: [email protected] Mailing address: Center for Molecular Biology and Genetic Engineering - CBMEG, University of Campinas, Campinas, SP, Brazil. Av Candido Rondo, 400 Cidade Universitária CEP 13083-875, Campinas, SP Phone: 55-19-98121-937 bioRxiv preprint doi: https://doi.org/10.1101/279612; this version posted March 22, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Abstract BioFeatureFinder is a novel algorithm which allows analyses of many biological genomic landmarks (including alternatively spliced exons, DNA/RNA- binding protein binding sites, and gene/transcript functional elements, nucleotide content, conservation, k-mers, secondary structure) to identify distinguishing features.
    [Show full text]
  • Identification of Common Gene Networks Responsive To
    Cancer Gene Therapy (2014) 21, 542–548 © 2014 Nature America, Inc. All rights reserved 0929-1903/14 www.nature.com/cgt ORIGINAL ARTICLE Identification of common gene networks responsive to radiotherapy in human cancer cells D-L Hou1, L Chen2, B Liu1, L-N Song1 and T Fang1 Identification of the genes that are differentially expressed between radiosensitive and radioresistant cancers by global gene analysis may help to elucidate the mechanisms underlying tumor radioresistance and improve the efficacy of radiotherapy. An integrated analysis was conducted using publicly available GEO datasets to detect differentially expressed genes (DEGs) between cancer cells exhibiting radioresistance and cancer cells exhibiting radiosensitivity. Gene Ontology (GO) enrichment analyses, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and protein–protein interaction (PPI) networks analysis were also performed. Five GEO datasets including 16 samples of radiosensitive cancers and radioresistant cancers were obtained. A total of 688 DEGs across these studies were identified, of which 374 were upregulated and 314 were downregulated in radioresistant cancer cell. The most significantly enriched GO terms were regulation of transcription, DNA-dependent (GO: 0006355, P = 7.00E-09) for biological processes, while those for molecular functions was protein binding (GO: 0005515, P = 1.01E-28), and those for cellular component was cytoplasm (GO: 0005737, P = 2.81E-26). The most significantly enriched pathway in our KEGG analysis was Pathways in cancer (P = 4.20E-07). PPI network analysis showed that IFIH1 (Degree = 33) was selected as the most significant hub protein. This integrated analysis may help to predict responses to radiotherapy and may also provide insights into the development of individualized therapies and novel therapeutic targets.
    [Show full text]