TRIPLITE CRYSTALS from COLORADO1 C. W. Wor,Le2 and E
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1 CRYSTAL CHEMISTRY of SELECTED Sb, As and P MINERALS
Crystal Chemistry of Selected Sb, As, and P Minerals Item Type text; Electronic Dissertation Authors Origlieri, Marcus Jason Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 07/10/2021 10:49:41 Link to Item http://hdl.handle.net/10150/194240 1 CRYSTAL CHEMISTRY OF SELECTED Sb, As AND P MINERALS by Marcus Jason Origlieri ___________________________________________ A Dissertation Submitted to the Faculty of the DEPARTMENT OF GEOSCIENCES In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 2005 2 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Dissertation Committee, we certify that we have read the dissertation prepared by Marcus Jason Origlieri entitled Crystal Chemistry of Selected Sb, As, and P Minerals and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy _______________________________________________________________________ Date: November 15, 2005 Robert T. Downs _______________________________________________________________________ Date: November 15, 2005 M. Bonner Denton _______________________________________________________________________ Date: November 15, 2005 Mihai N. Ducea _______________________________________________________________________ Date: November 15, 2005 Charles T. Prewitt Final approval and acceptance of this dissertation is contingent upon the candidate’s submission of the final copies of the dissertation to the Graduate College. I hereby certify that I have read this dissertation prepared under my direction and recommend that it be accepted as fulfilling the dissertation requirement. -
Mineral Processing
Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19 -
Mineralogy and Geology of the \Vkgnerite Occurrence Co Santa Fe Mountain, Front Range, Cobrado
Mineralogy and Geology of the \Vkgnerite Occurrence co Santa Fe Mountain, Front Range, Cobrado GEOLOGICAL SURVEY PROFESSIONAL PAPER 955 Mineralogy and Geology of the Wignerite Occurance on Santa Fe Mountain, Front Range, Colorado By DOUGLAS M. SHERIDAN, SHERMAN P. MARSH, MARY E. MROSE, and RICHARD B. TAYLOR GEOLOGICAL SURVEY PROFESSIONAL PAPER 955 A detailed mineralogic study of wagnerite, a rare phosphate mineral occurring in the report area in Precambrian gneiss; this is the first recorded occurrence of wagnerite in the United States UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1976 UNITED STATES DEPARTMENT OF THE INTERIOR THOMAS S. KLEPPE, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress Cataloging in Publication Data Main entry under title: Mineralogy and geology of the wagnerite occurrence on Santa Fe Mountain, Front Range, Colorado. (Geological Survey Professional Paper 955) Includes bibliographical references. 1. Wagnerite Colorado Santa Fe Mountain. 2. Geology Colorado Santa Fe Mountain. I. Sheridan, Douglas M., 1921- II. Series: United States Geological Survey Professional Paper 955. QE391.W3M56 549'.72 76-10335 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, B.C. 20402 Stock Number 024-001-02844-1 CONTENTS Page Metric-English equivalents .............................. Descriptive mineralogy Continued Page Abstract............................................................ 1 Wagnerite............................................... 5 Introduction.................................................... -
Download the Scanned
164 THE AMERICAN MINERAI,OGIST TABLE 3 Tlaln ro ssow Mnrnoo or Cer,cur,rfioN oF Axer,ns (SeeWi,nkeltabellen, pp. 18, 19 & 19a). Mlneral Etggttrslte Elements Do:1.272 I€t, Symb, lg Po: 010449 pq qo: .7940 lcp lgq lc so:989982 o I 0 0 01044e oaoosz I p+I 969897 0 e80346 e8es82 I 2 017609 030103 028058nrF,osR I 020085O200R5 qqo :te lpo p lg@:lgtanp lgsin 9 lg cos 9 I sn @ owQ qqo :19 tan p lrom 8 lrom 8 trcm 5 lrom I 3-6:4-7 020467 992858 972381 5802', 017591 56018', 017601 990364 979605 989233 38 42 000741 45 30 000749 007973 988573 980595 50 14 039485 68 04 039490 LISTS OF THE ORTIIORIIOMBIC MINERALS INCLUDED IN GOLDSCIIMIDT'S WINKELTABELLEN. Eocen T. WEONNY. WASh. ington, D. C.-As the prism zone is on the whole most cha.racteristicof orthor- hombic crystals, it has seemeddesirable to arrange the minerals of this system in the order of increasins values of axis a, Onrsonsolmrc MTNERALS ac Page a c Page Uranophanite......0.311.01 355 Tooaz. .....0.53 0.95 346 Polycrasite (Poly- Puiherite..........0.53l.l7 274 kras)...........0.35 0.31 27r Phosohosiderite....0.53 0.88 266 Euxenite ...0.36 0.30 r37 .Iordinite ...0.54 l.oz 191 Molybdite....:....0.39 0,47 243 Yttrobantalite......0.54 1.13 371 Columbite ..0.40 0.36 101 Rammelsbergite....0.54 - 291 Oanneroedite (An- Samarskite.........0.550.52 309 ner<idit).........0.400.36 45 Struvite ....0.55 0.62 332 Flinkite . -
Mineral Index
Mineral Index Abhurite T.73, T.355 Anandite-Zlvl, T.116, T.455 Actinolite T.115, T.475 Anandite-20r T.116, T.45S Adamite T.73,T.405, T.60S Ancylite-(Ce) T.74,T.35S Adelite T.115, T.40S Andalusite (VoU, T.52,T.22S), T.27S, T.60S Aegirine T.73, T.30S Andesine (VoU, T.58, T.22S), T.41S Aenigmatite T.115, T.46S Andorite T.74, T.31S Aerugite (VoU, T.64, T.22S), T.34S Andradite T.74, T.36S Agrellite T.115, T.47S Andremeyerite T.116, T.41S Aikinite T.73,T.27S, T.60S Andrewsite T.116, T.465 Akatoreite T.73, T.54S, T.615 Angelellite T.74,T.59S Akermanite T.73, T.33S Ankerite T.74,T.305 Aktashite T.73, T.36S Annite T.146, T.44S Albite T.73,T.30S, T.60S Anorthite T.74,T.415 Aleksite T.73, T.35S Anorthoclase T.74,T.30S, T.60S Alforsite T.73, T.325 Anthoinite T.74, T.31S Allactite T.73, T.38S Anthophyllite T.74, T.47S, T.61S Allanite-(Ce) T.146, T.51S Antigorite T.74,T.375, 60S Allanite-(La) T.115, T.44S Antlerite T.74, T.32S, T.60S Allanite-(Y) T.146, T.51S Apatite T.75, T.32S, T.60S Alleghanyite T.73, T.36S Aphthitalite T.75,T.42S, T.60 Allophane T.115, T.59S Apuanite T.75,T.34S Alluaudite T.115, T.45S Archerite T.75,T.31S Almandine T.73, T.36S Arctite T.146, T.53S Alstonite T.73,T.315 Arcubisite T.75, T.31S Althausite T.73,T.40S Ardaite T.75,T.39S Alumino-barroisite T.166, T.57S Ardennite T.166, T.55S Alumino-ferra-hornblende T.166, T.57S Arfvedsonite T.146, T.55S, T.61S Alumino-katophorite T.166, T.57S Argentojarosite T.116, T.45S Alumino-magnesio-hornblende T.159,T.555 Argentotennantite T.75,T.47S Alumino-taramite T.166, T.57S Argyrodite (VoU, -
39015003286252.Pdf
raY a ... 3 4 _' J t+..,+1 /y s t O'C4 LOOM lescE NATUML- 010SIS OF THE TUNGSTEN EPOSITS OF THE UNITED STATES 4 Itoag tn February,. 1936 CONTENTS INTRODUCTION .. .. .............................. 1 LOCATION AND DISTRIBUTION ............................... 2 TYPES OF DEPOSITS OF COMMERCIAL TUNGSTEN ORE...........lO1 Pyrometasomatic deposits ................. ........ 10 Hypothermal deposits .................. S......0.12 Mesothermal deposits.......................... .12 Epithermal deposits...............................13 General features .... ............ .. .. .. 16 Non-Commercial Deposits .. .. ... .. ... ... .. .. .. ... .. 19 Segregation deposits .. .. ... .. .. ... .,.. .. .,.. .19 General features . ..... ....... .. .. .. 19 General features ......... ... .. .. .. .. .".". ."20 Associated minerals.. .. .". .. ."..".."""" 21 Commercial Deposits . .... * . .. .29.. Pyrometasomatic or contact-metamorphic deposits... .22 Location of deposits ............. "..... ... "". 23 Intrusive rocks. .. .23 CONTENTS (concluded) Sedimnrta~ry rocks. ... ......9" . 0 . .24 Process of contacte-metamorphism.0........ .... 24 Size and form of the deposits ................. 26 Zones of metamorphism.................. ".O".S" .26 Progression of the contact-metamorphism. ..... .27 General features and classification..g09.....28 Associated minerals............... "." " " ..... "29. Outcrop of tungsten veins.9......0.. 00"03 Downward extent of tungsten ve ins...........3 Gelaeenral.fatur.. .. .. ... .. .. ..... .. ........ 39 General features.......9. . -
A Mossbauer Effect Study of Triplite and Related
Anerican Mineralogist Vol. 57, pp. 1109-7114 (7972) A MOSSBAUEREFFECT STUDY OF TRIPLITE AND RELATED MINERALS EowennKosttnon,l Baher Laboratorg of ChemistryCornellUniuersitg Ithaca,New Yorlt14850 Arsrnaqr Mdssbauer parameters are reported for the phosphate minerals triplite, zwieselite, triploidite, and wolfeite. Analysis of the absorption data confirms the existence of non-equivalent ferrous ions. The broadening of the resonance peaks is rationalized on the basis of a microscopic disorder due to half-occupied fluorine sites in the fluoride minerals and to sets of closelv related metal sites in the hydroxy minerals. INrnonucrroN Recently the crystal structures of triplite (Waldrop, 1969) and triploidite (Waldrop,1970), two relatedphosphate minerals, have been determined.This paperreports the 5?FeMijssbauer effect spectroscopy of triplite and three relatedminerals-swieselite, wolfeiter, and triploi- dite. ExppntlrnNrar, The mineral samples were generously zupplied by L. Waldrop. A description of each follows. Triplite-(Mn,Ie)"PO.F, from Mica Lode pegmatite, Eight Mile Park, Fre- mont County, Colorado, Mno *Feo TCao1PO4F. Composition and "-Mgo mineralogy described by, Heinrich (1951). The crystal structure is mono- clinic with two equally populated metal sites M(1) and M(2), each octahedrally coordinated by four oxygen and two fluorine atoms. The occupancy of the two metal sites is (Waldrop, 1969) M(l): 0.717Mn, Fe + 0.231Mg f 0.052Ca M(2):0.a$ Mn, Fe + 0.469Mg * 0.048Ca Zwieselite-(Fe,Mn)fOnF, from Zwiesel,Bavaria. Describedin Palache et aI. (1944),p.851. The atomic ratio of iron to manganeseis 2.00; trace amounts of calcium and magnesium are present. Precession photographs show these specimensto be isotypic with triplite (Waldrop, 1970). -
The Occurrence of Li-Fe-Mn Phosphate Minerals in Granitic Pegmatites of Namibia
Communs geol. Surv. Namibia, 7 (1991) 21-35 The occurrence of Li-Fe-Mn phosphate minerals in granitic pegmatites of Namibia Paul Keller Institut für Mineralogie und Kristallchemie der Universität, Pfaffenwaldring 55, D- W7000 Stuttgart 80, Germany This is the first comprehensive account of Li-Fe-Mn phosphates (triphylite-lithiophilite and the topotactic alteration products ferrisick- lerite-sicklerite and heterosite-purpurite) from 46 granitic pegmatites of the Damara Sequence (Namibia). The Li-Fe-Mn phosphates display a wide range of Fe/(Fe+Mn) ratios. Preliminary ratios 0.125 ≤ Fe/(Fe+Mn) ≤ 0.845 have been determined by wet chemical and microprobe analyses. Relationships appear to be developed between the Fe/(Fe+Mn) ratios and the observed economic minerals, e.g. beryl, Ta-Nb oxides, petalite, and gem tourmaline. There is evidence for regional distribution patterns of Fe/(Fe+Mn) ratios regarding 8 portions and swarms of 4 pegmatite belts. There is fairly good accordance between the degree of fractionation, and differentiation, and the Fe/(Fe+Mn) ratio (hypothesis of Ginsburg) for a great number of pegmatites, although conspicuous deviations from that hypothesis were also noted. From the occurrence of arborescent Li-Fe-Mn phosphates, seen in 22 pegmatites, important arguments could be found for both the mode of the pegmatite evolution and for their economic mineralisation. Recent field observations prove that thermal under- cooling is predominantly responsible for the arborescent shape of Li-Fe-Mn phosphates in most of the Damaran pegmatites. Introduction erals (Keller, 1974, 1980, 1985, 1987, 1988; Keller & von Knorring, 1985, 1989; Fransolet, Keller & Fontan, The Precambrian Damara Sequence of Namibia is 1986). -
An Isotope Study of the Dzhida Mo–W Ore Field (Western Transbaikalia, Russia)
minerals Article An Isotope Study of the Dzhida Mo–W Ore Field (Western Transbaikalia, Russia) German S. Ripp, Olga K. Smirnova, Ivan A. Izbrodin, Eugeny I. Lastochkin, Mikhail O. Rampilov * and Viktor F. Posokhov Geological Institute, Siberian Branch of the Russian Academy of Sciences, Sakh’yanovoi st. 6a, 670047 Ulan Ude, Russia; [email protected] (G.S.R.); [email protected] (O.K.S.); [email protected] (I.A.I.); [email protected] (E.I.L.); [email protected] (V.F.P.) * Correspondence: [email protected]; Tel.: +7-301-2433955 Received: 27 September 2018; Accepted: 21 November 2018; Published: 24 November 2018 Abstract: The Dzhida ore field includes Pervomaika (Mo), Inkur (W) and Kholtoson (W) deposits. This article presents stable and radiogenic isotopic data (O, C, D, S, Sr and Nd) in an attempt to better understand the petrogenetic processes and the problem concerning the sources of ore-forming fluids. Granites from the Pervomaika deposit, which includes Mo-ores, as well as the syenite dikes that precede W-mineralization, have low δ18O values (about 5‰ and 4‰ respectively), and low initial ratios 87Sr/86Sr (0.704–0.705). The "Nd (T) values (+0.9–−1.1) in granites and syenites are close to the evolution trend of the mantle-derived source. It was determined that a mantle-derived source was involved in ore-forming processes. It was also confirmed that δ34S values in sulfide minerals (molybdenite, pyrite, sphalerite, galena, and chalcopyrite) were close to the meteoric standard (from −2‰ to +2‰). The δ13C and δ18O values in carbonate minerals (rhodochrosite and ankerite) of the Kholtoson deposit are located within the primary igneous carbonatite (PIC)-square, as a possible 18 juvenile source of CO2. -
Tungsten Minerals and Deposits
DEPARTMENT OF THE INTERIOR FRANKLIN K. LANE, Secretary UNITED STATES GEOLOGICAL SURVEY GEORGE OTIS SMITH, Director Bulletin 652 4"^ TUNGSTEN MINERALS AND DEPOSITS BY FRANK L. HESS WASHINGTON GOVERNMENT PRINTING OFFICE 1917 ADDITIONAL COPIES OF THIS PUBLICATION MAY BE PROCURED FROM THE SUPERINTENDENT OF DOCUMENTS GOVERNMENT PRINTING OFFICE WASHINGTON, D. C. AT 25 CENTS PER COPY CONTENTS. Page. Introduction.............................................................. , 7 Inquiries concerning tungsten......................................... 7 Survey publications on tungsten........................................ 7 Scope of this report.................................................... 9 Technical terms...................................................... 9 Tungsten................................................................. H Characteristics and properties........................................... n Uses................................................................. 15 Forms in which tungsten is found...................................... 18 Tungsten minerals........................................................ 19 Chemical and physical features......................................... 19 The wolframites...................................................... 21 Composition...................................................... 21 Ferberite......................................................... 22 Physical features.............................................. 22 Minerals of similar appearance................................. -
A Specific Gravity Index for Minerats
A SPECIFICGRAVITY INDEX FOR MINERATS c. A. MURSKyI ern R. M. THOMPSON, Un'fuersityof Bri.ti,sh Col,umb,in,Voncouver, Canad,a This work was undertaken in order to provide a practical, and as far as possible,a complete list of specific gravities of minerals. An accurate speciflc cravity determination can usually be made quickly and this information when combined with other physical properties commonly leads to rapid mineral identification. Early complete but now outdated specific gravity lists are those of Miers given in his mineralogy textbook (1902),and Spencer(M,i,n. Mag.,2!, pp. 382-865,I}ZZ). A more recent list by Hurlbut (Dana's Manuatr of M,i,neral,ogy,LgE2) is incomplete and others are limited to rock forming minerals,Trdger (Tabel,l,enntr-optischen Best'i,mmungd,er geste,i,nsb.ildend,en M,ineral,e, 1952) and Morey (Encycto- ped,iaof Cherni,cal,Technol,ogy, Vol. 12, 19b4). In his mineral identification tables, smith (rd,entifi,cati,onand. qual,itatioe cherai,cal,anal,ys'i,s of mineral,s,second edition, New york, 19bB) groups minerals on the basis of specificgravity but in each of the twelve groups the minerals are listed in order of decreasinghardness. The present work should not be regarded as an index of all known minerals as the specificgravities of many minerals are unknown or known only approximately and are omitted from the current list. The list, in order of increasing specific gravity, includes all minerals without regard to other physical properties or to chemical composition. The designation I or II after the name indicates that the mineral falls in the classesof minerals describedin Dana Systemof M'ineralogyEdition 7, volume I (Native elements, sulphides, oxides, etc.) or II (Halides, carbonates, etc.) (L944 and 1951). -
Triploidite (Mn2+,Fe2+)2(PO4)(OH)
2+ 2+ Triploidite (Mn , Fe )2(PO4)(OH) c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Monoclinic. Point Group: 2/m. As prismatic crystals, elongated and striated k [001], to 1 mm, columnar to parallel fibrous, may be spherulitic to divergent fibrous; rarely granular. Physical Properties: Cleavage: {100}, good; {120}, fair; {010}, poor. Fracture: Uneven to subconchoidal. Hardness = 4.5–5 D(meas.) = 3.70 D(calc.) = [3.80] Optical Properties: Transparent to translucent. Color: Pinkish brown, wine-yellow, yellowish brown, red-orange; pale pink in transmitted light. Streak: White, nearly. Luster: Vitreous, adamantine, greasy. Optical Class: Biaxial (+); abnormal interference colors due to strong dispersed extinction. Pleochroism: Faint in thick grains. Orientation: X = b; Z ∧ c =4◦–14◦. Dispersion: r> v, very strong. Absorption: Z > X = Y. α = 1.709–1.735 β = [1.710]–1.736 γ = 1.714–1.740 2V(meas.) = ∼50◦ ◦ Cell Data: Space Group: P 21/a. a = 12.366 b = 13.276 c = 9.943 β = 108.23 Z=16 X-ray Powder Pattern: Branchville, Connecticut, USA; close to wolfeite. 2.94 (10), 3.10 (9), 3.19 (8), 1.80 (6), 3.41 (5), 2.58 (5), 2.31 (5) Chemistry: (1) (2) (3) P2O5 32.11 28.54 31.86 As2O5 3.64 SiO2 0.68 FeO 14.88 0.03 32.25 MnO 48.45 59.16 31.85 CaO 0.33 0.34 H2O 4.08 [7.61] 4.04 Total 99.85 [100.00] 100.00 (1) Branchville, Connecticut, USA. (2) Wheal Owles, England; H2O by difference, corresponds • to (Mn1.95Ca0.01Si0.03)Σ=1.99[(P0.94As0.07)Σ=1.01O4](OH)1.00 0.49H2O.