Mathematical Omnibus Thirty Lectures on Classic Mathematics

Total Page:16

File Type:pdf, Size:1020Kb

Mathematical Omnibus Thirty Lectures on Classic Mathematics Mathematical Omnibus Thirty Lectures on Classic Mathematics Dmitry Fuchs Serge Tabachnikov Mathematical Omnibus Thirty Lectures on Classic Mathematics http://dx.doi.org/10.1090/mbk/046 Mathematical Omnibus Thirty Lectures on Classic Mathematics Dmitry Fuchs Serge Tabachnikov 2000 Mathematics Subject Classification. Primary 00A05. For additional information and updates on this book, visit www.ams.org/bookpages/mbk-46 Library of Congress Cataloging-in-Publication Data Fuchs, Dmitry Mathematical omnibus : thirty lectures on classic mathematics / Dmitry Fuchs, Serge Tabach- nikov. p. cm. Includes bibliographical references and index. ISBN 978-0-8218-4316-1 (alk. paper) 1. Mathematics. I. Tabachnikov, Serge. II. Title. QA37.3.F83 2007 510—dc22 2007060824 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to [email protected]. c 2007 by the American Mathematical Society. All rights reserved. Reprinted with corrections by the American Mathematical Society, 2011. The American Mathematical Society retains all rights except those granted to the United States Government. Printed in the United States of America. ∞ The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability. Visit the AMS home page at http://www.ams.org/ 10 9 8 7 6 5 4 3 2 16 15 14 13 12 11 To Vladimir Arnold with admiration Contents Preface ix Art and Photo Credits xiii Algebra and Arithmetics Chapter 1. Arithmetic and Combinatorics Lecture 1. Can a Number be Approximately Rational? 5 Lecture 2. Arithmetical Properties of Binomial Coefficients 27 Lecture 3. On Collecting Like Terms, on Euler, Gauss, and MacDonald, and on Missed Opportunities 45 Chapter 2. Equations Lecture 4. Equations of Degree Three and Four 67 Lecture 5. Equations of Degree Five 79 Lecture 6. How Many Roots Does a Polynomial Have? 93 Lecture 7. Chebyshev Polynomials 101 Lecture 8. Geometry of Equations 109 Geometry and Topology Chapter 3. Envelopes and Singularities Lecture 9. Cusps 125 Lecture 10. Around Four Vertices 141 Lecture 11. Segments of Equal Areas 159 Lecture 12. On Plane Curves 171 Chapter 4. Developable Surfaces Lecture 13. Paper Sheet Geometry 189 Lecture 14. Paper M¨obiusBand 203 Lecture 15. More on Paper Folding 213 Chapter 5. Straight Lines Lecture 16. Straight Lines on Curved Surfaces 225 vii viii CONTENTS Lecture 17. Twenty-seven Lines 239 Lecture 18. Web Geometry 253 Lecture 19. The Crofton Formula 269 Chapter 6. Polyhedra Lecture 20. Curvature and Polyhedra 285 Lecture 21. Non-inscribable Polyhedra 301 Lecture 22. Can One Make a Tetrahedron out of a Cube? 307 Lecture 23. Impossible Tilings 319 Lecture 24. Rigidity of Polyhedra 335 Lecture 25. Flexible Polyhedra 345 Chapter 7. Two Surprising Topological Constructions Lecture 26. Alexander’s Horned Sphere 361 Lecture 27. Cone Eversion 373 Chapter 8. On Ellipses and Ellipsoids Lecture 28. Billiards in Ellipses and Geodesics on Ellipsoids 383 Lecture 29. The Poncelet Porism and Other Closure Theorems 403 Lecture 30. Gravitational Attraction of Ellipsoids 415 Solutions to Selected Exercises 425 Bibliography 457 Index 461 Preface For more than two thousand years some familiarity with mathe- matics has been regarded as an indispensable part of the intellec- tual equipment of every cultured person. Today the traditional place of mathematics in education is in grave danger. These opening sentences to the preface of the classical book What Is Mathematics? were written by Richard Courant in 1941. It is somewhat soothing to learn that the problems that we tend to associate with the current situation were equally acute sixty-five years ago (and, most probably, way earlier as well). This is not to say that there are no clouds on the horizon, and by this book we hope to make a modest contribution to the continuation of the mathematical culture. The first mathematical book that one of our mathematical heroes, Vladimir Arnold, read at the age of twelve was Von Zahlen und Figuren1 by Hans Rade- macher and Otto Toeplitz. In his interview given to the “Kvant” magazine, pub- lished in 1990, Arnold recalls that he worked on the book slowly, a few pages a day. We cannot help hoping that our book will play a similar role in the mathematical development of some prominent mathematician of the future. We hope that this book will be of interest to anyone who likes mathematics, from high school students to accomplished researchers. We do not promise an easy ride: the majority of results are proved, and it will take considerable effort from the reader to follow the details of the arguments. We hope that as a reward the reader, at least sometimes, will be filled with awe by the harmony of the subject (this feeling is what drives most mathematicians in their work!). To quote from A Mathematician’s Apology by G. H. Hardy, The mathematician’s patterns, like the painter’s or the poet’s, must be beautiful; the ideas, like the colors or the words, must fit together in a harmonious way. Beauty is the first test: there is no permanent place in the world for ugly mathematics. For us too, beauty is the first test in the choice of topics for our own research, as well as the subject for popular articles and lectures, and consequently, in the choice of material for this book. We did not restrict ourselves to any particular area (say, number theory or geometry); our emphasis is on the diversity and the unity of mathematics. If, after reading our book, the reader becomes interested in a more systematic exposition of any particular subject, (s)he can easily find good sources in the literature. About the subtitle: the dictionary definition of the word classic is “judged over a period of time to be of the highest quality and outstanding of its kind”. 1The Enjoyment of Mathematics, in the English translation; the Russian title was a literal translation of the German original. ix xPREFACE We tried to select mathematics satisfying this rigorous criterion. The reader will find here theorems of Isaac Newton and Leonhard Euler, Augustin Louis Cauchy and Carl Gustav Jacob Jacobi, Michel Chasles and Pafnuty Chebyshev, Max Dehn and James Alexander, and many other great mathematicians of the past. Quite often we include recent results of prominent contemporary mathematicians, such as Robert Connelly, John Conway and Vladimir Arnold. There are about four hundred figures in this book. We fully agree with the dictum that a picture is worth a thousand words. The figures are mathematically precise—so a cubic curve is drawn by a computer as a locus of points satisfying an equation of degree three. In particular, the figures illustrate the importance of accurate drawing as an experimental tool in geometrical research. Two examples are given in Lecture 29: the Money-Coutts Theorem, discovered by accurate drawing as late as in the 1970s, and a very recent theorem by Richard Schwartz on the Poncelet grid which he discovered by computer experimentation. Another example of using the computer as an experimental tool is given in Lecture 3 (see the discussion of “privileged exponents”). We did not try to make the lectures similar in length and level of difficulty: some are quite long and involved whereas others are considerably shorter and lighter. One lecture, “Cusps”, stands out: it contains no proofs but only numerous examples, richly illustrated by figures; many of these examples are rigorously treated in other lectures. The lectures are independent of each other, but the reader will notice some themes that reappear throughout the book. We do not assume much by way of preliminary knowledge: a standard calculus course will do in most cases, and quite often even calculus is not required (and this relatively low threshold does not leave out mathematically inclined high school students). We also believe that any reader, no matter how sophisticated, will find surprises in almost every lecture. There are about two hundred exercises in the book, many provided with so- lutions or answers. They further develop the topics discussed in the lectures; in many cases, they involve more advanced mathematics (then, instead of a solution, we give references to the literature). More difficult exercises are marked by a single or a double asterisk. This book stems from a good many articles we wrote for the Russian magazine “Kvant” over the years 1970–19902 and from numerous lectures that we gave over the years to various audiences in the Soviet Union and the United States (where we have lived since 1990). These include advanced high school students—the partici- pants of the Canada/USA Binational Mathematical Camp in 2001 and 2002, under- graduate students attending the Mathematics Advanced Study Semesters (MASS) program at Penn State over the years 2000–2006, high school students—along with their teachers and parents—attending the Bay Area Mathematical Circle at Berke- ley. The book may be used for an undergraduate Honors Mathematics Seminar (there is more than enough material for a full academic year), various topics courses, Mathematical Clubs at high school or college, or simply as a “coffee table book” to browse through, at one’s leisure.
Recommended publications
  • Institut Des Hautes Ét Udes Scientifiques
    InstItut des Hautes É t u d e s scIentIfIques A foundation in the public interest since 1981 2 | IHES IHES | 3 Contents A VISIONARY PROJECT, FOR EXCELLENCE IN SCIENCE P. 5 Editorial P. 6 Founder P. 7 Permanent professors A MODERN-DAY THELEMA FOR A GLOBAL SCIENTIFIC COMMUNITY P. 8 Research P. 9 Visitors P. 10 Events P. 11 International INDEPENDENCE AND FREEDOM, ­­ THE INSTITUTE’S TWO OPERATIONAL PILLARS P. 12 Finance P. 13 Governance P. 14 Members P. 15 Tax benefits The Marilyn and James Simons Conference Center The aim of the Foundation known as ‘Institut des Hautes Études Scientifiques’ is to enable and encourage theoretical scientific research (…). [Its] activity consists mainly in providing the Institute’s professors and researchers, both permanent and invited, with the resources required to undertake disinterested IHES February 2016 Content: IHES Communication Department – Translation: Hélène Wilkinson – Design: blossom-creation.com research. Photo Credits: Valérie Touchant-Landais / IHES, Marie-Claude Vergne / IHES – Cover: unigma All rights reserved Extract from the statutes of the Institut des Hautes Études Scientifiques, 1958. 4 | IHES IHES | 5 A visionary project, for excellence in science Editorial Emmanuel Ullmo, Mathematician, IHES Director A single scientific program: curiosity. A single selection criterion: excellence. The Institut des Hautes Études Scientifiques is an international mathematics and theoretical physics research center. Free of teaching duties and administrative tasks, its professors and visitors undertake research in complete independence and total freedom, at the highest international level. Ever since it was created, IHES has cultivated interdisciplinarity. The constant dialogue between mathematicians and theoretical physicists has led to particularly rich interactions.
    [Show full text]
  • All That Math Portraits of Mathematicians As Young Researchers
    Downloaded from orbit.dtu.dk on: Oct 06, 2021 All that Math Portraits of mathematicians as young researchers Hansen, Vagn Lundsgaard Published in: EMS Newsletter Publication date: 2012 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Hansen, V. L. (2012). All that Math: Portraits of mathematicians as young researchers. EMS Newsletter, (85), 61-62. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. NEWSLETTER OF THE EUROPEAN MATHEMATICAL SOCIETY Editorial Obituary Feature Interview 6ecm Marco Brunella Alan Turing’s Centenary Endre Szemerédi p. 4 p. 29 p. 32 p. 39 September 2012 Issue 85 ISSN 1027-488X S E European M M Mathematical E S Society Applied Mathematics Journals from Cambridge journals.cambridge.org/pem journals.cambridge.org/ejm journals.cambridge.org/psp journals.cambridge.org/flm journals.cambridge.org/anz journals.cambridge.org/pes journals.cambridge.org/prm journals.cambridge.org/anu journals.cambridge.org/mtk Receive a free trial to the latest issue of each of our mathematics journals at journals.cambridge.org/maths Cambridge Press Applied Maths Advert_AW.indd 1 30/07/2012 12:11 Contents Editorial Team Editors-in-Chief Jorge Buescu (2009–2012) European (Book Reviews) Vicente Muñoz (2005–2012) Dep.
    [Show full text]
  • Life and Work of Friedrich Hirzebruch
    Jahresber Dtsch Math-Ver (2015) 117:93–132 DOI 10.1365/s13291-015-0114-1 HISTORICAL ARTICLE Life and Work of Friedrich Hirzebruch Don Zagier1 Published online: 27 May 2015 © Deutsche Mathematiker-Vereinigung and Springer-Verlag Berlin Heidelberg 2015 Abstract Friedrich Hirzebruch, who died in 2012 at the age of 84, was one of the most important German mathematicians of the twentieth century. In this article we try to give a fairly detailed picture of his life and of his many mathematical achievements, as well as of his role in reshaping German mathematics after the Second World War. Mathematics Subject Classification (2010) 01A70 · 01A60 · 11-03 · 14-03 · 19-03 · 33-03 · 55-03 · 57-03 Friedrich Hirzebruch, who passed away on May 27, 2012, at the age of 84, was the outstanding German mathematician of the second half of the twentieth century, not only because of his beautiful and influential discoveries within mathematics itself, but also, and perhaps even more importantly, for his role in reshaping German math- ematics and restoring the country’s image after the devastations of the Nazi years. The field of his scientific work can best be summed up as “Topological methods in algebraic geometry,” this being both the title of his now classic book and the aptest de- scription of an activity that ranged from the signature and Hirzebruch-Riemann-Roch theorems to the creation of the modern theory of Hilbert modular varieties. Highlights of his activity as a leader and shaper of mathematics inside and outside Germany in- clude his creation of the Arbeitstagung,
    [Show full text]
  • Speech by Honorary Degree Recipient
    Speech by Honorary Degree Recipient Dear Colleagues and Friends, Ladies and Gentlemen: Today, I am so honored to present in this prestigious stage to receive the Honorary Doctorate of the Saint Petersburg State University. Since my childhood, I have known that Saint Petersburg University is a world-class university associated by many famous scientists, such as Ivan Pavlov, Dmitri Mendeleev, Mikhail Lomonosov, Lev Landau, Alexander Popov, to name just a few. In particular, many dedicated their glorious lives in the same field of scientific research and studies which I have been devoting to: Leonhard Euler, Andrey Markov, Pafnuty Chebyshev, Aleksandr Lyapunov, and recently Grigori Perelman, not to mention many others in different fields such as political sciences, literature, history, economics, arts, and so on. Being an Honorary Doctorate of the Saint Petersburg State University, I have become a member of the University, of which I am extremely proud. I have been to the beautiful and historical city of Saint Petersburg five times since 1997, to work with my respected Russian scientists and engineers in organizing international academic conferences and conducting joint scientific research. I sincerely appreciate the recognition of the Saint Petersburg State University for my scientific contributions and endeavors to developing scientific cooperations between Russia and the People’s Republic of China. I would like to take this opportunity to thank the University for the honor, and thank all professors, staff members and students for their support and encouragement. Being an Honorary Doctorate of the Saint Petersburg State University, I have become a member of the University, which made me anxious to contribute more to the University and to the already well-established relationship between Russia and China in the future.
    [Show full text]
  • Richard Von Mises's Philosophy of Probability and Mathematics
    “A terrible piece of bad metaphysics”? Towards a history of abstraction in nineteenth- and early twentieth-century probability theory, mathematics and logic Lukas M. Verburgt If the true is what is grounded, then the ground is neither true nor false LUDWIG WITTGENSTEIN Whether all grow black, or all grow bright, or all remain grey, it is grey we need, to begin with, because of what it is, and of what it can do, made of bright and black, able to shed the former , or the latter, and be the latter or the former alone. But perhaps I am the prey, on the subject of grey, in the grey, to delusions SAMUEL BECKETT “A terrible piece of bad metaphysics”? Towards a history of abstraction in nineteenth- and early twentieth-century probability theory, mathematics and logic ACADEMISCH PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Universiteit van Amsterdam op gezag van de Rector Magnificus prof. dr. D.C. van den Boom ten overstaan van een door het College voor Promoties ingestelde commissie in het openbaar te verdedigen in de Agnietenkapel op donderdag 1 oktober 2015, te 10:00 uur door Lukas Mauve Verburgt geboren te Amersfoort Promotiecommissie Promotor: Prof. dr. ir. G.H. de Vries Universiteit van Amsterdam Overige leden: Prof. dr. M. Fisch Universitat Tel Aviv Dr. C.L. Kwa Universiteit van Amsterdam Dr. F. Russo Universiteit van Amsterdam Prof. dr. M.J.B. Stokhof Universiteit van Amsterdam Prof. dr. A. Vogt Humboldt-Universität zu Berlin Faculteit der Geesteswetenschappen © 2015 Lukas M. Verburgt Graphic design Aad van Dommelen (Witvorm)
    [Show full text]
  • EMS Newsletter September 2012 1 EMS Agenda EMS Executive Committee EMS Agenda
    NEWSLETTER OF THE EUROPEAN MATHEMATICAL SOCIETY Editorial Obituary Feature Interview 6ecm Marco Brunella Alan Turing’s Centenary Endre Szemerédi p. 4 p. 29 p. 32 p. 39 September 2012 Issue 85 ISSN 1027-488X S E European M M Mathematical E S Society Applied Mathematics Journals from Cambridge journals.cambridge.org/pem journals.cambridge.org/ejm journals.cambridge.org/psp journals.cambridge.org/flm journals.cambridge.org/anz journals.cambridge.org/pes journals.cambridge.org/prm journals.cambridge.org/anu journals.cambridge.org/mtk Receive a free trial to the latest issue of each of our mathematics journals at journals.cambridge.org/maths Cambridge Press Applied Maths Advert_AW.indd 1 30/07/2012 12:11 Contents Editorial Team Editors-in-Chief Jorge Buescu (2009–2012) European (Book Reviews) Vicente Muñoz (2005–2012) Dep. Matemática, Faculdade Facultad de Matematicas de Ciências, Edifício C6, Universidad Complutense Piso 2 Campo Grande Mathematical de Madrid 1749-006 Lisboa, Portugal e-mail: [email protected] Plaza de Ciencias 3, 28040 Madrid, Spain Eva-Maria Feichtner e-mail: [email protected] (2012–2015) Society Department of Mathematics Lucia Di Vizio (2012–2016) Université de Versailles- University of Bremen St Quentin 28359 Bremen, Germany e-mail: [email protected] Laboratoire de Mathématiques Newsletter No. 85, September 2012 45 avenue des États-Unis Eva Miranda (2010–2013) 78035 Versailles cedex, France Departament de Matemàtica e-mail: [email protected] Aplicada I EMS Agenda .......................................................................................................................................................... 2 EPSEB, Edifici P Editorial – S. Jackowski ........................................................................................................................... 3 Associate Editors Universitat Politècnica de Catalunya Opening Ceremony of the 6ECM – M.
    [Show full text]
  • Hunting the Story of Moses Schönfinkel
    Where Did Combinators Come From? Hunting the Story of Moses Schönfinkel Stephen Wolfram* Combinators were a key idea in the development of mathematical logic and the emergence of the concept of universal computation. They were introduced on December 7, 1920, by Moses Schönfinkel. This is an exploration of the personal story and intellectual context of Moses Schönfinkel, including extensive new research based on primary sources. December 7, 1920 On Tuesday, December 7, 1920, the Göttingen Mathematics Society held its regular weekly meeting—at which a 32-year-old local mathematician named Moses Schönfinkel with no known previous mathematical publications gave a talk entitled “Elemente der Logik” (“Elements of Logic”). This piece is included in S. Wolfram (2021), Combinators: A Centennial View, Wolfram Media. (wolframmedia.com/products/combinators-a-centennial-view.html) and accompanies arXiv:2103.12811 and arXiv:2102.09658. Originally published December 7, 2020 *Email: [email protected] 2 | Stephen Wolfram A hundred years later what was presented in that talk still seems in many ways alien and futuristic—and for most people almost irreducibly abstract. But we now realize that that talk gave the first complete formalism for what is probably the single most important idea of this past century: the idea of universal computation. Sixteen years later would come Turing machines (and lambda calculus). But in 1920 Moses Schönfinkel presented what he called “building blocks of logic”—or what we now call “combinators”—and then proceeded to show that by appropriately combining them one could effectively define any function, or, in modern terms, that they could be used to do universal computation.
    [Show full text]
  • Remembering Nicolaas Kuiper
    Tight and Taut Submanifolds MSRI Publications Volume 32, 1997 Remembering Nicolaas Kuiper THOMAS F. BANCHOFF Tight and taut immersions are a living and growing part of contemporary mathematics largely due to the legacy of Nicolaas Kuiper. He made central contributions to many different areas of mathematics during his long and pro- ductive career, but it is in tight and taut immersions that his geometric style showed forth in a special way. In that subject, his personal enthusiasm and ex- traordinary geometric insight combined to bring forth examples and theorems of great conceptual and visual appeal. He delighted in discovering new phenomena, and in presenting his examples using sketches and in cardboard or wire-frame models. He found surprising connections among apparently unrelated areas of mathematics, creating entirely new methods for handling a range of geometric structures: analytic, differentiable, once-differentiable, combinatorial, and topo- logical. He was the first to appreciate the essentially geometric character of tightness, exploiting the relationship between the minimal total curvature con- dition for smooth submanifolds and critical point theory so that the notion could be extended to non-smooth objects. He guided generations of mathematicians who have followed his lead. In several other subjects his contributions were necessarily abstract, for exam- ple in the embedding theorems he produced with John Nash, or the surprising result that the unit sphere in Hilbert space is contractible. Often he would listen to lectures on a new subject, read about it and study it, and come up with a crucial insight that no one else was close to realizing. He would then leave the field to other mathematicians, encouraging their efforts.
    [Show full text]
  • [1] Tightly Embedded 2-Dimensional Polyhedral Manifolds, Amer. J. Math., 87 (1965), 462-472
    List of Publications of Thomas F. Banchoff [1] Tightly Embedded 2-dimensional Polyhedral Manifolds, Amer. J. Math., 87 (1965), 462-472. [2] Critical Points and Curvature for Embedded Polyhedra, J. Differential Geometry, 1 (1967), 257-268. [3] Total Central Curvature of Curves, Duke Math. J., 37 (1970), 281-289. [4] Periodic Points of Anosov Diffeomorphisms (with Michael I. Rosen), Proceedings of Symposia in Pure Mathematics, Vol. XIV, Global Analysis, Vol. XIV (1970), 17-21. [5] The Spherical Two piece Property and Tight Surfaces in Spheres, J. Differential Geometry, 4 (1970), 193-205. [6] Critical Points and Curvature for Embedded Polyhedral Surfaces, Amer. Math. Monthly, 77 (1970), 475-485. [7] Non-rigidity Theorems for Tight Polyhedral Tori, Archiv der Mathematik, 21 (1970), 416-423. [8] The Two-piece Property and Tight n-manifolds-with-boundary in En , Trans. Amer. Math. Soc. 161 (1971), 259-267. [9] On a Generalization of the Isoperimetric Inequality (with William Pohl), J. Differential Geometry, 6 (1971), 175-192. [10] High Codimensional 0-tight Mappings on Spheres, Proc. Amer. Math. Soc., 29 (1971), 133-137. [11] Applications of Elementary Calculus, Eight lectures in an NSF Sponsored Conference for College Teachers of Mathematics, Summer 1971, published in the Proceedings of the Conference, Reprinted by the MAA. [12] Polyhedral Catastrophe I: Maps of the Line to the Line, Dynamical Systems, Academic Press (1973), 7-22. [13] Global Geometry of Polygons I: The Theorem of Fabricius-Bjerre, Proc. A.M.S. 45 (1974), 237-241. [14] Foliations of Knot Complements in the Bicylinder Boundary, Separata do boletim da Sociedade Brasileira de Matematica, Vol.
    [Show full text]
  • A Biography of Cyrus Mccormick February 15, 1809 - May 13, 1884
    A Biography of Cyrus McCormick February 15, 1809 - May 13, 1884 Cyrus Hall McCormick was born in Rockbridge County, Virginia and was the eldest son to Rober McCormick - a farmer, blacksmith, and inventor. His father worked on a horse-drawn reaping machine that would harvest grains. However, he failed at producing a working model. McCormick was known as an American industrialist and inventor. He was very talented at inventing and had invented a lightweight cradle for collecting harvested grains at a very young age. In 1831, he took over his father’s abandoned project to build a mechanical reaper. Within 6 weeks, he built, tested, refined, and demonstrated a working model of his machine. This machine features a vibrating cutting blade, a reel to bgrin the grains to it, and a platform to collect the harvest. In 1834, he filed a patent for his invention. Despite his success, farmers were not eager to adopt his invention and sales were virtually zero for a long time. During the bank panic of 1837, the family’s iron foundry was on the verge of bankruptcy. McCormick turned to his invention and spent his time improving his designs. Starting in 1841, the sales of his machine grew exponentially. This growth drove him to move his manufacturing work from his father’s barn to Chicago where he, with the help of mayor William Ogden, opened a factory. He went on to sell 800 machines during the first year of operation. McCormick faced a lot of challenges from many competing manufacturers who fought in court to block the renewal of his patent that was set to expire in 1848.
    [Show full text]
  • Pafnuty Chebyshev English Version
    PAFNUTY LVOVICH CHEBYSHEV (May 16, 1821–December 8, 1894) by HEINZ KLAUS STRICK, Germany PAFNUTY LVOVICH CHEBYSHEV grew up together with eight brothers and sisters on an estate in the Kaluga Oblast, to the southwest of Moscow. His father, a nobleman and retired military officer, left the children’s education to their mother and a cousin. From an early age, the boy received intensive instruction in the French language, with the result that later in life, he drafted most of his scientific articles in French before translating them into Russian. Later, when CHEBYSHEV was active in St. Petersburg, hardly a year passed in which he did not undertake a trip to France for research and lecturing. When the boy was eleven years old, the family moved to Moscow, where an extremely competent private tutor was engaged for instruction in mathematics, and by the time he turned sixteen, he had been accepted for study in the Department of Mathematics at Moscow University. There he attended lectures given by NIKOLAI DMETRIEVICH BRASHMAN, whose particular interest in applied mathematics (for example, probability theory) was propagated, in the case of CHEBYSHEV, on fertile soil. CHEBYSHEV’s first scientific work (on multiple integrals) appeared – in French – in a journal published in Paris by JOSEPH LIOUVILLE. Other articles appeared in “CRELLE’s Journal” (Journal für die Reine und Angewandte Mathematik), published in Berlin, which included a proof of the weak law of large numbers (the theorem goes back to JACOB BERNOULLI, its name to SIMÉON DENIS POISSON). (drawing: © Andreas Strick) Since there was no suitable position for him in Moscow, he moved to St.
    [Show full text]
  • Georg Wilhelm Friedrich Hegel Martin Heidegger John Dewey Karl Marx
    T hales Xenophanes Heraclitus Donaldson Brown Leucippus Anaximander Parmenides Anaxagoras Peter Drucker Democritus Pythagoras Protagoras Zeno of Elea Socrates Isaiah Epicurus Plato Hippocrates Aeschylus Pericles Antisthenes Jeremiah Aristotle Zeno of Citium Herophilos Marsilio Ficino T hucydides Sophocles Zoroaster Jesus Gautama Buddha Roger Bacon Alexander the Great Ammonius Saccas Erasistratus Euripides Paul of T arsus Mani Nagarjuna Ashoka Plotinus Al-Farabi Origen Galen Aristophanes Asclepiades of Bithynia Constantine I Albertus Magnus Augustine of Hippo Lucretius Cleanthes Avicenna Muhammad Martin Luther Johannes Scotus Eriugena Anicius Manlius Severinus Boethius Chrysippus Virgil Averroes Fakhr al-Din al-Razi Lorenzo de' Medici Desiderius Erasmus Sextus Empiricus Porphyry Anselm of Canterbury Henry of Ghent T homas Aquinas Cicero Seneca the Younger Horace Ovid Ibn Khaldun Giovanni Pico della Mirandola Menander Donatello T homas More Duns Scotus Lorenzo Valla Michel de Montaigne Petrarch Geoffrey Chaucer Poliziano Plutarch T homas Kyd Christopher Marlowe Girolamo Benivieni T erence Girolamo Savonarola Plautus Pierre Corneille Jean Racine William of Ockham William Shakespeare Moliere Hugo Grotius Francis Bacon Rene Descartes Ptolemy Euclid Al-Karaji Ben Jonson Alfred T ennyson, 1st Baron T ennyson T homas Hardy Homer Karen Blixen Paul Scarron T homas Hobbes Robert Boyle Abd Al-Rahman Al Sufi Muhammad ibn Musa al-Khwarizmi Nicolaus Copernicus T itian Blaise Pascal Dante Alighieri Peter Hoeg Baruch Spinoza Galileo Galilei Marin Mersenne
    [Show full text]