Speech by Honorary Degree Recipient

Total Page:16

File Type:pdf, Size:1020Kb

Speech by Honorary Degree Recipient Speech by Honorary Degree Recipient Dear Colleagues and Friends, Ladies and Gentlemen: Today, I am so honored to present in this prestigious stage to receive the Honorary Doctorate of the Saint Petersburg State University. Since my childhood, I have known that Saint Petersburg University is a world-class university associated by many famous scientists, such as Ivan Pavlov, Dmitri Mendeleev, Mikhail Lomonosov, Lev Landau, Alexander Popov, to name just a few. In particular, many dedicated their glorious lives in the same field of scientific research and studies which I have been devoting to: Leonhard Euler, Andrey Markov, Pafnuty Chebyshev, Aleksandr Lyapunov, and recently Grigori Perelman, not to mention many others in different fields such as political sciences, literature, history, economics, arts, and so on. Being an Honorary Doctorate of the Saint Petersburg State University, I have become a member of the University, of which I am extremely proud. I have been to the beautiful and historical city of Saint Petersburg five times since 1997, to work with my respected Russian scientists and engineers in organizing international academic conferences and conducting joint scientific research. I sincerely appreciate the recognition of the Saint Petersburg State University for my scientific contributions and endeavors to developing scientific cooperations between Russia and the People’s Republic of China. I would like to take this opportunity to thank the University for the honor, and thank all professors, staff members and students for their support and encouragement. Being an Honorary Doctorate of the Saint Petersburg State University, I have become a member of the University, which made me anxious to contribute more to the University and to the already well-established relationship between Russia and China in the future. Thank you very much, I remain. Guanrong Chen, Chair Professor City University of Hong Kong, China 3 June 2011 .
Recommended publications
  • Richard Von Mises's Philosophy of Probability and Mathematics
    “A terrible piece of bad metaphysics”? Towards a history of abstraction in nineteenth- and early twentieth-century probability theory, mathematics and logic Lukas M. Verburgt If the true is what is grounded, then the ground is neither true nor false LUDWIG WITTGENSTEIN Whether all grow black, or all grow bright, or all remain grey, it is grey we need, to begin with, because of what it is, and of what it can do, made of bright and black, able to shed the former , or the latter, and be the latter or the former alone. But perhaps I am the prey, on the subject of grey, in the grey, to delusions SAMUEL BECKETT “A terrible piece of bad metaphysics”? Towards a history of abstraction in nineteenth- and early twentieth-century probability theory, mathematics and logic ACADEMISCH PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Universiteit van Amsterdam op gezag van de Rector Magnificus prof. dr. D.C. van den Boom ten overstaan van een door het College voor Promoties ingestelde commissie in het openbaar te verdedigen in de Agnietenkapel op donderdag 1 oktober 2015, te 10:00 uur door Lukas Mauve Verburgt geboren te Amersfoort Promotiecommissie Promotor: Prof. dr. ir. G.H. de Vries Universiteit van Amsterdam Overige leden: Prof. dr. M. Fisch Universitat Tel Aviv Dr. C.L. Kwa Universiteit van Amsterdam Dr. F. Russo Universiteit van Amsterdam Prof. dr. M.J.B. Stokhof Universiteit van Amsterdam Prof. dr. A. Vogt Humboldt-Universität zu Berlin Faculteit der Geesteswetenschappen © 2015 Lukas M. Verburgt Graphic design Aad van Dommelen (Witvorm)
    [Show full text]
  • CS70: Jean Walrand: Lecture 30
    CS70: Jean Walrand: Lecture 30. Bounds: An Overview Andrey Markov Markov & Chebyshev; A brief review Andrey Markov is best known for his work on stochastic processes. A primary subject of his research later became known as Markov I Bounds: chains and Markov processes. 1. Markov Pafnuty Chebyshev was one of his teachers. 2. Chebyshev Markov was an atheist. In 1912 he protested Leo Tolstoy’s excommunication from the I A brief review Russian Orthodox Church by requesting his I A mini-quizz own excommunication. The Church complied with his request. Monotonicity Markov’s inequality A picture The inequality is named after Andrey Markov, although it appeared earlier in Let X be a RV. We write X 0 if all the possible values of X are the work of Pafnuty Chebyshev. It should be (and is sometimes) called ≥ Chebyshev’s first inequality. nonnegative. That is, Pr[X 0] = 1. ≥ Theorem Markov’s Inequality It is obvious that X 0 E[X] 0. Assume f : ℜ [0,∞) is nondecreasing. Then, ≥ ⇒ ≥ → We write X Y if X Y 0. E[f (X)] ≥ − ≥ Pr[X a] , for all a such that f (a) > 0. Then, ≥ ≤ f (a) Proof: X Y X Y 0 E[X] E[Y ] = E[X Y ] 0. ≥ ⇒ − ≥ ⇒ − − ≥ Observe that f (X) Hence, 1 X a . { ≥ } ≤ f (a) X Y E[X] E[Y ]. ≥ ⇒ ≥ Indeed, if X < a, the inequality reads 0 f (X)/f (a), which ≤ We say that expectation is monotone. holds since f ( ) 0. Also, if X a, it reads 1 f (X)/f (a), which · ≥ ≥ ≤ (Which means monotonic, but not monotonous!) holds since f ( ) is nondecreasing.
    [Show full text]
  • Calculations on Randomness Effects on the Business Cycle Of
    Calculations on Randomness Effects on the Business Cycle of Corporations through Markov Chains Christian Holm [email protected] under the direction of Mr. Gaultier Lambert Department of Mathematics Royal Institute of Technology Research Academy for Young Scientists Juli 10, 2013 Abstract Markov chains are used to describe random processes and can be represented by both a matrix and a graph. Markov chains are commonly used to describe economical correlations. In this study we create a Markov chain model in order to describe the competition between two hypothetical corporations. We use observations of this model in order to discuss how market randomness affects the corporations financial health. This is done by testing the model for different market parameters and analysing the effect of these on our model. Furthermore we analyse how our model can be applied on the real market, as to further understand the market. Contents 1 Introduction 1 2 Notations and Definitions 2 2.1 Introduction to Probability Theory . 2 2.2 Introduction to Graph and Matrix Representation . 3 2.3 Discrete Time Markov Chain on V ..................... 6 3 General Theory and Examples 7 3.1 Hidden Markov Models in Financial Systems . 7 4 Application of Markov Chains on two Corporations in Competition 9 4.1 Model . 9 4.2 Simulations . 12 4.3 Results . 13 4.4 Discussion . 16 Acknowledgements 18 A Equation 10 20 B Matlab Code 20 C Matlab Code, Different β:s 21 1 Introduction The study of Markov chains began in the early 1900s, when Russian mathematician Andrey Markov first formalised the theory of Markov processes [1].
    [Show full text]
  • Hunting the Story of Moses Schönfinkel
    Where Did Combinators Come From? Hunting the Story of Moses Schönfinkel Stephen Wolfram* Combinators were a key idea in the development of mathematical logic and the emergence of the concept of universal computation. They were introduced on December 7, 1920, by Moses Schönfinkel. This is an exploration of the personal story and intellectual context of Moses Schönfinkel, including extensive new research based on primary sources. December 7, 1920 On Tuesday, December 7, 1920, the Göttingen Mathematics Society held its regular weekly meeting—at which a 32-year-old local mathematician named Moses Schönfinkel with no known previous mathematical publications gave a talk entitled “Elemente der Logik” (“Elements of Logic”). This piece is included in S. Wolfram (2021), Combinators: A Centennial View, Wolfram Media. (wolframmedia.com/products/combinators-a-centennial-view.html) and accompanies arXiv:2103.12811 and arXiv:2102.09658. Originally published December 7, 2020 *Email: [email protected] 2 | Stephen Wolfram A hundred years later what was presented in that talk still seems in many ways alien and futuristic—and for most people almost irreducibly abstract. But we now realize that that talk gave the first complete formalism for what is probably the single most important idea of this past century: the idea of universal computation. Sixteen years later would come Turing machines (and lambda calculus). But in 1920 Moses Schönfinkel presented what he called “building blocks of logic”—or what we now call “combinators”—and then proceeded to show that by appropriately combining them one could effectively define any function, or, in modern terms, that they could be used to do universal computation.
    [Show full text]
  • Mathematical Omnibus Thirty Lectures on Classic Mathematics
    Mathematical Omnibus Thirty Lectures on Classic Mathematics Dmitry Fuchs Serge Tabachnikov Mathematical Omnibus Thirty Lectures on Classic Mathematics http://dx.doi.org/10.1090/mbk/046 Mathematical Omnibus Thirty Lectures on Classic Mathematics Dmitry Fuchs Serge Tabachnikov 2000 Mathematics Subject Classification. Primary 00A05. For additional information and updates on this book, visit www.ams.org/bookpages/mbk-46 Library of Congress Cataloging-in-Publication Data Fuchs, Dmitry Mathematical omnibus : thirty lectures on classic mathematics / Dmitry Fuchs, Serge Tabach- nikov. p. cm. Includes bibliographical references and index. ISBN 978-0-8218-4316-1 (alk. paper) 1. Mathematics. I. Tabachnikov, Serge. II. Title. QA37.3.F83 2007 510—dc22 2007060824 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to [email protected]. c 2007 by the American Mathematical Society. All rights reserved. Reprinted with corrections by the American Mathematical Society, 2011. The American Mathematical Society retains all rights except those granted to the United States Government. Printed in the United States of America.
    [Show full text]
  • Markov Chain 1 Markov Chain
    Markov chain 1 Markov chain A Markov chain, named after Andrey Markov, is a mathematical system that undergoes transitions from one state to another, between a finite or countable number of possible states. It is a random process characterized as memoryless: the next state depends only on the current state and not on the sequence of events that preceded it. This specific kind of "memorylessness" is called the Markov property. Markov chains have many applications as statistical models of real-world processes. A simple two-state Markov chain Introduction Formally, a Markov chain is a random process with the Markov property. Often, the term "Markov chain" is used to mean a Markov process which has a discrete (finite or countable) state-space. Usually a Markov chain is defined for a discrete set of times (i.e., a discrete-time Markov chain)[1] although some authors use the same terminology where "time" can take continuous values.[2][3] The use of the term in Markov chain Monte Carlo methodology covers cases where the process is in discrete time (discrete algorithm steps) with a continuous state space. The following concentrates on the discrete-time discrete-state-space case. A discrete-time random process involves a system which is in a certain state at each step, with the state changing randomly between steps. The steps are often thought of as moments in time, but they can equally well refer to physical distance or any other discrete measurement; formally, the steps are the integers or natural numbers, and the random process is a mapping of these to states.
    [Show full text]
  • Stochastic Processes and Markov Chains (Part I)
    Stochastic processes and Markov chains (part I) Wessel van Wieringen w. n. van. wieringen@vu. nl Department of Epidemiology and Biostatistics, VUmc & Department of Mathematics , VU University Amsterdam, The Netherlands Stochastic processes Stochastic processes ExExampleample 1 • The intensity of the sun. • Measured every day by the KNMI. • Stochastic variable Xt represents the sun’s intensity at day t, 0 ≤ t ≤ T. Hence, Xt assumes values in R+ (positive values only). Stochastic processes ExExampleample 2 • DNA sequence of 11 bases long. • At each base position there is an A, C, G or T. • Stochastic variable Xi is the base at position i, i = 1,…,11. • In case the sequence has been observed, say: (x1, x2, …, x11) = ACCCGATAGCT, then A is the realization of X1, C that of X2, et cetera. Stochastic processes position … t t+1 t+2 t+3 … base … A A T C … … A A A A … … G G G G … … C C C C … … T T T T … position position position position t t+1 t+2 t+3 Stochastic processes ExExampleample 3 • A patient’s heart pulse during surgery. • Measured continuously during interval [0, T]. • Stochastic variable Xt represents the occurrence of a heartbeat at time t, 0 ≤ t ≤ T. Hence, Xt assumes only the values 0 (no heartbeat) and 1 (heartbeat). Stochastic processes Example 4 • Brain activity of a human under experimental conditions. • Measured continuously during interval [0, T]. • Stochastic variable Xt represents the magnetic field at time t, 0 ≤ t ≤ T. Hence, Xt assumes values on R. Stochastic processes Differences between examples Xt Discrete Continuous e tt Example 2 Example 1 iscre DD Time s Example 3 Example 4 tinuou nn Co Stochastic processes The state space S is the collection of all possible values that the random variables of the stochastic process may assume.
    [Show full text]
  • A Biography of Cyrus Mccormick February 15, 1809 - May 13, 1884
    A Biography of Cyrus McCormick February 15, 1809 - May 13, 1884 Cyrus Hall McCormick was born in Rockbridge County, Virginia and was the eldest son to Rober McCormick - a farmer, blacksmith, and inventor. His father worked on a horse-drawn reaping machine that would harvest grains. However, he failed at producing a working model. McCormick was known as an American industrialist and inventor. He was very talented at inventing and had invented a lightweight cradle for collecting harvested grains at a very young age. In 1831, he took over his father’s abandoned project to build a mechanical reaper. Within 6 weeks, he built, tested, refined, and demonstrated a working model of his machine. This machine features a vibrating cutting blade, a reel to bgrin the grains to it, and a platform to collect the harvest. In 1834, he filed a patent for his invention. Despite his success, farmers were not eager to adopt his invention and sales were virtually zero for a long time. During the bank panic of 1837, the family’s iron foundry was on the verge of bankruptcy. McCormick turned to his invention and spent his time improving his designs. Starting in 1841, the sales of his machine grew exponentially. This growth drove him to move his manufacturing work from his father’s barn to Chicago where he, with the help of mayor William Ogden, opened a factory. He went on to sell 800 machines during the first year of operation. McCormick faced a lot of challenges from many competing manufacturers who fought in court to block the renewal of his patent that was set to expire in 1848.
    [Show full text]
  • Pafnuty Chebyshev English Version
    PAFNUTY LVOVICH CHEBYSHEV (May 16, 1821–December 8, 1894) by HEINZ KLAUS STRICK, Germany PAFNUTY LVOVICH CHEBYSHEV grew up together with eight brothers and sisters on an estate in the Kaluga Oblast, to the southwest of Moscow. His father, a nobleman and retired military officer, left the children’s education to their mother and a cousin. From an early age, the boy received intensive instruction in the French language, with the result that later in life, he drafted most of his scientific articles in French before translating them into Russian. Later, when CHEBYSHEV was active in St. Petersburg, hardly a year passed in which he did not undertake a trip to France for research and lecturing. When the boy was eleven years old, the family moved to Moscow, where an extremely competent private tutor was engaged for instruction in mathematics, and by the time he turned sixteen, he had been accepted for study in the Department of Mathematics at Moscow University. There he attended lectures given by NIKOLAI DMETRIEVICH BRASHMAN, whose particular interest in applied mathematics (for example, probability theory) was propagated, in the case of CHEBYSHEV, on fertile soil. CHEBYSHEV’s first scientific work (on multiple integrals) appeared – in French – in a journal published in Paris by JOSEPH LIOUVILLE. Other articles appeared in “CRELLE’s Journal” (Journal für die Reine und Angewandte Mathematik), published in Berlin, which included a proof of the weak law of large numbers (the theorem goes back to JACOB BERNOULLI, its name to SIMÉON DENIS POISSON). (drawing: © Andreas Strick) Since there was no suitable position for him in Moscow, he moved to St.
    [Show full text]
  • Georg Wilhelm Friedrich Hegel Martin Heidegger John Dewey Karl Marx
    T hales Xenophanes Heraclitus Donaldson Brown Leucippus Anaximander Parmenides Anaxagoras Peter Drucker Democritus Pythagoras Protagoras Zeno of Elea Socrates Isaiah Epicurus Plato Hippocrates Aeschylus Pericles Antisthenes Jeremiah Aristotle Zeno of Citium Herophilos Marsilio Ficino T hucydides Sophocles Zoroaster Jesus Gautama Buddha Roger Bacon Alexander the Great Ammonius Saccas Erasistratus Euripides Paul of T arsus Mani Nagarjuna Ashoka Plotinus Al-Farabi Origen Galen Aristophanes Asclepiades of Bithynia Constantine I Albertus Magnus Augustine of Hippo Lucretius Cleanthes Avicenna Muhammad Martin Luther Johannes Scotus Eriugena Anicius Manlius Severinus Boethius Chrysippus Virgil Averroes Fakhr al-Din al-Razi Lorenzo de' Medici Desiderius Erasmus Sextus Empiricus Porphyry Anselm of Canterbury Henry of Ghent T homas Aquinas Cicero Seneca the Younger Horace Ovid Ibn Khaldun Giovanni Pico della Mirandola Menander Donatello T homas More Duns Scotus Lorenzo Valla Michel de Montaigne Petrarch Geoffrey Chaucer Poliziano Plutarch T homas Kyd Christopher Marlowe Girolamo Benivieni T erence Girolamo Savonarola Plautus Pierre Corneille Jean Racine William of Ockham William Shakespeare Moliere Hugo Grotius Francis Bacon Rene Descartes Ptolemy Euclid Al-Karaji Ben Jonson Alfred T ennyson, 1st Baron T ennyson T homas Hardy Homer Karen Blixen Paul Scarron T homas Hobbes Robert Boyle Abd Al-Rahman Al Sufi Muhammad ibn Musa al-Khwarizmi Nicolaus Copernicus T itian Blaise Pascal Dante Alighieri Peter Hoeg Baruch Spinoza Galileo Galilei Marin Mersenne
    [Show full text]
  • A Toast to Three Russians
    A Toast to Three Russians Derrick Stolee October 14, 2009 Pafnuty Chebyshev May 16, 1821 December 8, 1894 Pafnuty Chebyshev Andrey Markov May 16, 1821 December 8, 1894 June 14, 1856 July 20, 1922 Pafnuty Chebyshev Andrey Markov Andrey Kolmogorov May 16, 1821 December 8, 1894 June 14, 1856 July 20, 1922 April 25, 1903 October 20, 1987 Chebyshev Markov Kolmogorov Pafnuty Chebyshev Father was a military officer. Studied at Moskow University Worked on probability, statistics, number theory. Worked with Bienaym´e,Lebesgue, Cayley, Sylvester, Dirichlet... May 16, 1821 Died 1894. { December 8, 1894 Chebyshev Markov Kolmogorov Pafnuty Chebyshev Fun Facts Considered to be father of Russian mathematics. Proved: for all n, there is a prime p with n ≤ p ≤ 2n. Contributed substantially to the Prime Number Theorem. May 16, 1821 { December 8, 1894 Chebyshev Markov Kolmogorov Chebyshev's Inequality Measure-Theoretic Statement Theorem Let (X ; M; µ) be a measure space and f : X ! R [ {±∞} be a measurable function. Then, for any t > 0, Z 1 2 µfx 2 X : jf (x)j ≥ tg ≤ 2 f dµ. t X Chebyshev Markov Kolmogorov Chebyshev's Inequality Probabilistic Statement Theorem Let X be a random variable with expected value E[X ] and variance Var[X ]. Then, for any k > 0, Var[X ] Pr[jX − E[X ]j > k] < k2 . Var[X ] Pr [jX − [X ]j > k [X ]] < 2 2 . E E k E[X ] Var[X ] If X ≥ 0 and [X ] > 0, Pr [X = 0] < 2 . E E[X ] Chebyshev Markov Kolmogorov Chebyshev's Inequality Combinatorial Uses Actually due to Ir´en´ee-JulesBienaym´e.
    [Show full text]
  • COT 3100 Spring 2021 Homework #9 Solutions
    COT 3100 Spring 2021 Homework #9 Solutions 1) (5 pts) Two dice are rolled. Both have six sides labeled 1 through 6, inclusive, but the second die is not fair. (The first one is.) The probability of the second die landing on the side with k dots is 푘 . What is the probability of rolling a sum of 9 when these two dice are rolled? 21 Solution Let a dice roll be represented as (a, b), where a is the value shown on the first (fair) die, and b is the value shown on the biased die. The four outcomes that lead to a sum of 9 are: (6, 3), probability = 1 × 3 = 3 6 21 126 (5, 4), probability = 1 × 4 = 4 6 21 126 (4, 5), probability = 1 × 5 = 5 6 21 126 (3, 6), probability = 1 × 6 = 6 6 21 126 The probabilities of rolling each particular ordered pair is shown above. The sum of these probabilities is 18 = ퟏ. 126 ퟕ 2) (8 pts) Let X be a continuous random variable described below: p(X) = x/4, for all x in the range 0 ≤ x ≤ 2 = x2/8, for all x in the range 2 < x ≤ k (a) What is the value of k? (b) What is E(X)? Solution (a) The area under the curve described by p(X) must equal 1. The first portion of the function from x = 0 to x = 2 represents a right triangle with base 2 and height 1/2, which has an area of 1/2. Thus, in order for the function to be valid, the area under the other portion of the function must also equal 1/2.
    [Show full text]