Toxorhynchites Species: a Review of Current Knowledge
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Spatiotemporal Pattern of Phenology Across Geographic Gradients in Insects
Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2017 Spatiotemporal pattern of phenology across geographic gradients in insects Khelifa, Rassim Abstract: Phenology – the timing of recurrent biological events – influences nearly all aspects of ecology and evolution. Phenological shifts have been recorded in a wide range of animals and plants worldwide during the past few decades. Although the phenological responses differ between taxa, they may also vary geographically, especially along gradients such as latitude or elevation. Since changes in phenology have been shown to affect ecology, evolution, human health and the economy, understanding pheno- logical shifts has become a priority. Although phenological shifts have been associated with changes in temperature, there is still little comprehension of the phenology-temperature relationship, particularly the mechanisms influencing its strength and the extent to which it varies geographically. Such ques- tions would ideally be addressed by combining controlled laboratory experiments on thermal response with long-term observational datasets and historical temperature records. Here, I used odonates (drag- onflies and damselflies) and Sepsid scavenger flies to unravel how temperature affects development and phenology at different latitudes and elevations. The main purpose of this thesis is to provide essential knowledge on the factors driving the spatiotemporal phenological dynamics by (1) investigating how phenology changed in time and space across latitude and elevation in northcentral Europe during the past three decades, (2) assessing potential temporal changes in thermal sensitivity of phenology and (3) describing the geographic pattern and usefulness of thermal performance curves in predicting natural responses. -
Assessment and an Updated List of the Mosquitoes of Saudi Arabia Azzam M
Alahmed et al. Parasites Vectors (2019) 12:356 https://doi.org/10.1186/s13071-019-3579-4 Parasites & Vectors RESEARCH Open Access Assessment and an updated list of the mosquitoes of Saudi Arabia Azzam M. Alahmed1, Kashif Munawar1*, Sayed M. S. Khalil1,2 and Ralph E. Harbach3 Abstract Background: Mosquito-borne pathogens are important causes of diseases in the Kingdom of Saudi Arabia. Knowl- edge of the mosquito fauna is needed for the appropriate control of the vectors that transmit the pathogens and prevent the diseases they cause. An important frst step is to have an up-to-date list of the species known to be present in the country. Original occurrence records were obtained from published literature and critically scrutinized to compile a list of the mosquito species that occur within the borders of the Kingdom. Results: Fifty-one species have been recorded in the Kingdom; however, the occurrence of two of these species is unlikely. Thus, the mosquito fauna of the Kingdom comprises 49 species that include 18 anophelines and 31 culicines. Published records are provided for each species. Problematic records based on misidentifcations and inappropriate sources are discussed and annotated for clarity. Conclusion: Integrated morphological and molecular methods of identifcation are needed to refne the list of spe- cies and accurately document their distributions in the Kingdom. Keywords: Culicidae, Mosquitoes, Saudi Arabia, Vectors Background Mosquito-borne pathogens, including Plasmodium Te Arabian Peninsula (c.3 million km2) includes the species, dengue virus, Rift Valley fever virus and micro- Kingdom of Saudi Arabia (KSA), Oman, Qatar, United flariae, cause diseases in the KSA [9–11]. -
Zika Virus Outside Africa Edward B
Zika Virus Outside Africa Edward B. Hayes Zika virus (ZIKV) is a flavivirus related to yellow fever, est (4). Serologic studies indicated that humans could also dengue, West Nile, and Japanese encephalitis viruses. In be infected (5). Transmission of ZIKV by artificially fed 2007 ZIKV caused an outbreak of relatively mild disease Ae. aegypti mosquitoes to mice and a monkey in a labora- characterized by rash, arthralgia, and conjunctivitis on Yap tory was reported in 1956 (6). Island in the southwestern Pacific Ocean. This was the first ZIKV was isolated from humans in Nigeria during time that ZIKV was detected outside of Africa and Asia. The studies conducted in 1968 and during 1971–1975; in 1 history, transmission dynamics, virology, and clinical mani- festations of ZIKV disease are discussed, along with the study, 40% of the persons tested had neutralizing antibody possibility for diagnostic confusion between ZIKV illness to ZIKV (7–9). Human isolates were obtained from febrile and dengue. The emergence of ZIKV outside of its previ- children 10 months, 2 years (2 cases), and 3 years of age, ously known geographic range should prompt awareness of all without other clinical details described, and from a 10 the potential for ZIKV to spread to other Pacific islands and year-old boy with fever, headache, and body pains (7,8). the Americas. From 1951 through 1981, serologic evidence of human ZIKV infection was reported from other African coun- tries such as Uganda, Tanzania, Egypt, Central African n April 2007, an outbreak of illness characterized by rash, Republic, Sierra Leone (10), and Gabon, and in parts of arthralgia, and conjunctivitis was reported on Yap Island I Asia including India, Malaysia, the Philippines, Thailand, in the Federated States of Micronesia. -
Wild Species 2010 the GENERAL STATUS of SPECIES in CANADA
Wild Species 2010 THE GENERAL STATUS OF SPECIES IN CANADA Canadian Endangered Species Conservation Council National General Status Working Group This report is a product from the collaboration of all provincial and territorial governments in Canada, and of the federal government. Canadian Endangered Species Conservation Council (CESCC). 2011. Wild Species 2010: The General Status of Species in Canada. National General Status Working Group: 302 pp. Available in French under title: Espèces sauvages 2010: La situation générale des espèces au Canada. ii Abstract Wild Species 2010 is the third report of the series after 2000 and 2005. The aim of the Wild Species series is to provide an overview on which species occur in Canada, in which provinces, territories or ocean regions they occur, and what is their status. Each species assessed in this report received a rank among the following categories: Extinct (0.2), Extirpated (0.1), At Risk (1), May Be At Risk (2), Sensitive (3), Secure (4), Undetermined (5), Not Assessed (6), Exotic (7) or Accidental (8). In the 2010 report, 11 950 species were assessed. Many taxonomic groups that were first assessed in the previous Wild Species reports were reassessed, such as vascular plants, freshwater mussels, odonates, butterflies, crayfishes, amphibians, reptiles, birds and mammals. Other taxonomic groups are assessed for the first time in the Wild Species 2010 report, namely lichens, mosses, spiders, predaceous diving beetles, ground beetles (including the reassessment of tiger beetles), lady beetles, bumblebees, black flies, horse flies, mosquitoes, and some selected macromoths. The overall results of this report show that the majority of Canada’s wild species are ranked Secure. -
Comparative Assessment of An. Gambiae and An. Stephensi Mosquitoes to Determine Transmission-Reducing Activity of Antibodies Against P
Eldering et al. Parasites & Vectors (2017) 10:489 DOI 10.1186/s13071-017-2414-z RESEARCH Open Access Comparative assessment of An. gambiae and An. stephensi mosquitoes to determine transmission-reducing activity of antibodies against P. falciparum sexual stage antigens Maarten Eldering1†, Anaïs Bompard2†, Kazutoyo Miura3, Will Stone1, Isabelle Morlais4, Anna Cohuet4, Geert-Jan van Gemert1, Patrick M. Brock2,6, Sanna R. Rijpma1, Marga van de Vegte-Bolmer1, Wouter Graumans1, Rianne Siebelink-Stoter1, Dari F. Da5, Carole A. Long3, Merribeth J. Morin7, Robert W. Sauerwein1, Thomas S. Churcher2 and Teun Bousema1,8* Abstract Background: With the increasing interest in vaccines to interrupt malaria transmission, there is a demand for harmonization of current methods to assess Plasmodium transmission in laboratory settings. Potential vaccine candidates are currently tested in the standard membrane feeding assay (SMFA) that commonly relies on Anopheles stephensi mosquitoes. Other mosquito species including Anopheles gambiae are the dominant malaria vectors for Plasmodium falciparum in sub-Saharan Africa. Methods: Using human serum and monoclonal pre-fertilization (anti-Pfs48/45) and post-fertilization (anti-Pfs25) antibodies known to effectively inhibit sporogony, we directly compared SMFA based estimates of transmission- reducing activity (TRA) for An. stephensi and An. gambiae mosquitoes. Results: In the absence of transmission-reducing antibodies, average numbers of oocysts were similar between An. gambiae and An. stephensi. Antibody-mediated TRA was strongly correlated between both mosquito species, and absolute TRA estimates for pre-fertilisation monoclonal antibodies (mAb) showed no significant difference between the two species. TRA estimates for IgG of naturally exposed individuals and partially effective concentrations of anti-Pfs25 mAb were higher for An. -
Data-Driven Identification of Potential Zika Virus Vectors Michelle V Evans1,2*, Tad a Dallas1,3, Barbara a Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8
RESEARCH ARTICLE Data-driven identification of potential Zika virus vectors Michelle V Evans1,2*, Tad A Dallas1,3, Barbara A Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8 1Odum School of Ecology, University of Georgia, Athens, United States; 2Center for the Ecology of Infectious Diseases, University of Georgia, Athens, United States; 3Department of Environmental Science and Policy, University of California-Davis, Davis, United States; 4Cary Institute of Ecosystem Studies, Millbrook, United States; 5Department of Infectious Disease, University of Georgia, Athens, United States; 6Center for Tropical Emerging Global Diseases, University of Georgia, Athens, United States; 7Center for Vaccines and Immunology, University of Georgia, Athens, United States; 8River Basin Center, University of Georgia, Athens, United States Abstract Zika is an emerging virus whose rapid spread is of great public health concern. Knowledge about transmission remains incomplete, especially concerning potential transmission in geographic areas in which it has not yet been introduced. To identify unknown vectors of Zika, we developed a data-driven model linking vector species and the Zika virus via vector-virus trait combinations that confer a propensity toward associations in an ecological network connecting flaviviruses and their mosquito vectors. Our model predicts that thirty-five species may be able to transmit the virus, seven of which are found in the continental United States, including Culex quinquefasciatus and Cx. pipiens. We suggest that empirical studies prioritize these species to confirm predictions of vector competence, enabling the correct identification of populations at risk for transmission within the United States. *For correspondence: mvevans@ DOI: 10.7554/eLife.22053.001 uga.edu Competing interests: The authors declare that no competing interests exist. -
2016 Book Reviews
Animal Behavior Society Outstanding Children’s Book Award 2016 Reviews of Winner and Finalist Books WINNER: The Queen’s Shadow: A Story About How Animals See, by Cybèle Young Published by Kids Can Press, 2015 Review by Dr. Jennifer Mather, University of Lethbridge The Queen’s Shadow is an enjoyable way to learn about the many aspect of vision in different animals, through a story. The queen has played host to a diverse group of animals in the palace, but during a thunderstorm she has lost her shadow. She accuses them of stealing it and, one by one, they explain why their particular perceptual abilities eliminate them from her accusation. Well, the squid say all his arms were busy…. On each double page, we hear how they perception of each animal actually works. In the end the sea urchins reveal that she ‘left her show in the loo’ and they all go home, with us much the wiser. Children liked the story, and learning about how animal see. FINALIST: Bite Into Bloodsuckers, by Kari-Lynn Winters and Ishta Mercurio Published by Fitzhenry & Whiteside, 2015 Review by Dr. Michelle Solensky, University of Jamestown Bite into bloodsuckers, by Kari-Lynn Winters and Ishta Mercurio (Fitzhenry & Whiteside) describes the benefits and challenges of hematophagy, or using blood as a food source, and features vivid behavioral accounts of the usual suspects (ticks, leeches, mosquitos and vampire bats) and some less familiar bloodsuckers (torpedo snail, catfish, kissing bugs). Vivid graphics pull the reader into the fascinating world of blood sucking, while the text provides an interesting and scientifically accurate and thorough description of the pros and cons of using blood as a primary or only food source. -
The Introduction of Toxorhynchites Brevipalpis Theobald Into the Purpose of This Brief Paper Is to Place on Record an Account Of
Vol. XIV, No. 2, March, 1951 237 The Introduction of Toxorhynchites brevipalpis Theobald into the Territory of Hawaii By DAVID D. BONNET MEDICAL ENTOMOLOGIST, DEPARTMENT OF HEALTH, HONOLULU and STEPHEN M. K. HU CHIEF, BUREAU OF MOSQUITO CONTROL, HONOLULU The purpose of this brief paper is to place on record an account of the introduction of the South African mosquito Toxorhynchites (= Megarhinus) * brevipalpis Theobald into the Territory of Hawaii. The importation of this insect and its establishment would, it is believed, aid in the control of the forest day mosquito, Aedes albopictus Skuse. Any type of container, whether it be a natural container such as a tree hole, bamboo stump, pineapple lily (Bilbergia sp.) or rock hole; or an artificial container such as a vine bowl, tin can, tub, auto tire or bottle, when filled with water, can serve as a breeding location for Aedes albopictus. This varied breeding habit complicates control as it neces sitates the treatment or elimination of a multitude of large and small water-holding containers. Adequate control has been obtained in the urban areas of Hawaii by premises-to-premises inspection, and house holder cooperation, following usual Aedes aegypti (L.) control pro cedures. There are, however, large areas outside the cities where such control measures are not feasible. These areas are principally mountain forest regions which contain a sufficient number of natural breeding situations to maintain a large mosquito population. This population of Aedes albopictus serves not only as a health menace and as a reservoir for reinvasion, but also discourages extensive use of many fine recreation areas. -
Spongeweed-Synthesized Silver Nanoparticles Are Highly Effective
Environ Sci Pollut Res (2016) 23:16671–16685 DOI 10.1007/s11356-016-6832-9 RESEARCH ARTICLE Eco-friendly drugs from the marine environment: spongeweed-synthesized silver nanoparticles are highly effective on Plasmodium falciparum and its vector Anopheles stephensi, with little non-target effects on predatory copepods Kadarkarai Murugan1,2 & Chellasamy Panneerselvam3 & Jayapal Subramaniam1 & Pari Madhiyazhagan1 & Jiang-Shiou Hwang4 & Lan Wang5 & Devakumar Dinesh1 & Udaiyan Suresh1 & Mathath Roni1 & Akon Higuchi6 & Marcello Nicoletti7 & Giovanni Benelli8,9 Received: 13 April 2016 /Accepted: 4 May 2016 /Published online: 16 May 2016 # Springer-Verlag Berlin Heidelberg 2016 Abstract Mosquitoes act as vectors of devastating pathogens (EDX), and X-ray diffraction (XRD). In mosquitocidal assays, and parasites, representing a key threat for millions of humans the 50 % lethal concentration (LC50)ofC. tomentosum extract and animals worldwide. The control of mosquito-borne dis- against Anopheles stephensi ranged from 255.1 (larva I) to eases is facing a number of crucial challenges, including the 487.1 ppm (pupa). LC50 of C. tomentosum-synthesized emergence of artemisinin and chloroquine resistance in AgNP ranged from 18.1 (larva I) to 40.7 ppm (pupa). In lab- Plasmodium parasites, as well as the presence of mosquito oratory, the predation efficiency of Mesocyclops aspericornis vectors resistant to synthetic and microbial pesticides. copepods against A. stephensi larvae was 81, 65, 17, and 9 % Therefore, eco-friendly tools are urgently required. Here, a (I, II, III, and IV instar, respectively). In AgNP contaminated synergic approach relying to nanotechnologies and biological environment, predation was not affected; 83, 66, 19, and 11 % control strategies is proposed. -
Microrna Mir-275 Is Indispensable for Blood Digestion and Egg
microRNA miR-275 is indispensable for blood digestion INAUGURAL ARTICLE and egg development in the mosquito Aedes aegypti Bart Bryant, Warren Macdonald, and Alexander S. Raikhel1 Department of Entomology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521 This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected in 2009. Contributed by Alexander S. Raikhel, November 4, 2010 (sent for review October 1, 2010) The mosquito Aedes aegypti is the major vector of arboviral dis- Drosha to form the premiRNAs, which are then exported into eases, particularly of Dengue fever, of which there are more than the cytoplasm by Exportin-5. premiRNAs are cleaved by Dicer1 100 million cases annually. Mosquitoes, such as A. aegypti, serve (Dcr1), resulting in a miRNA/miRNA duplex. The mature as vectors for disease pathogens because they require vertebrate miRNA molecule is then loaded into an Argonaute (Ago) com- blood for their egg production. Pathogen transmission is tightly plex, which targets multiple mRNAs for either destruction or in- linked to repeated cycles of obligatory blood feeding and egg hibition of translation (9). In addition, some miRNAs are found in maturation. Thus, the understanding of mechanisms governing introns of genes and bypass Drosha processing (9). Since the egg production is necessary to develop approaches that limit the discovery of miRNAs in Caenorhabditis elegans (10, 11), numerous spread of mosquito-borne diseases. Previous studies have identi- studies have demonstrated their essential role in regulating de- fied critical roles of hormonal- and nutrition-based target of rapa- velopment, cell differentiation, apoptosis, and other critical bi- mycin (TOR) pathways in controlling blood-meal–mediated egg ological events in both animals and plants (12, 13). -
Table of Contents
Table of Contents Oral Presentation Abstracts ............................................................................................................................... 3 Plenary Session ............................................................................................................................................ 3 Adult Control I ............................................................................................................................................ 3 Mosquito Lightning Symposium ...................................................................................................................... 5 Student Paper Competition I .......................................................................................................................... 9 Post Regulatory approval SIT adoption ......................................................................................................... 10 16th Arthropod Vector Highlights Symposium ................................................................................................ 11 Adult Control II .......................................................................................................................................... 11 Management .............................................................................................................................................. 14 Student Paper Competition II ...................................................................................................................... 17 Trustee/Commissioner -
A New Malaria Vector in Africa: Predicting the Expansion Range of Anopheles Stephensi and Identifying the Urban Populations at Risk
A new malaria vector in Africa: Predicting the expansion range of Anopheles stephensi and identifying the urban populations at risk M. E. Sinkaa,1, S. Pirononb, N. C. Masseyc, J. Longbottomd, J. Hemingwayd,1, C. L. Moyesc,2, and K. J. Willisa,b,2 aDepartment of Zoology, University of Oxford, Oxford, United Kingdom, OX1 3SZ; bBiodiversity Informatics and Spatial Analysis Department, Royal Botanic Gardens Kew, Richmond, Surrey, United Kingdom, TW9 3DS; cBig Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom, OX3 7LF; and dDepartment of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom, L3 5QA Edited by Nils Chr. Stenseth, University of Oslo, Norway, and approved July 27, 2020 (received for review March 26, 2020) In 2012, an unusual outbreak of urban malaria was reported from vector species in the published literature and found an equal Djibouti City in the Horn of Africa and increasingly severe out- number of studies (5:5) reported An. arabiensis in polluted, turbid breaks have been reported annually ever since. Subsequent inves- water as were found in clear, clean habitats, with a similar result tigations discovered the presence of an Asian mosquito species; for An. gambiae (4:4). Nonetheless, urban Plasmodium falciparum Anopheles stephensi, a species known to thrive in urban environ- transmission rates are repeatedly reported as significantly lower ments. Since that first report, An. stephensi has been identified in than those in peri-urban or rural areas (7, 10). Hay et al. (10) Ethiopia and Sudan, and this worrying development has prompted conducted a meta-analysis in cities from 22 African countries and the World Health Organization (WHO) to publish a vector alert reported a mean urban annual P.