SUPERSONIC ENERGY Business Report
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Systemic Criteria for the Evaluation of the Role of Monofunctional Towns in the Formation of Local Urban Agglomerations
ISSN 2007-9737 Systemic Criteria for the Evaluation of the Role of Monofunctional Towns in the Formation of Local Urban Agglomerations Pavel P. Makagonov1, Lyudmila V. Tokun2, Liliana Chanona Hernández3, Edith Adriana Jiménez Contreras4 1 Russian Presidential Academy of National Economy and Public Administration, Russia 2 State University of Management, Finance and Credit Department, Russia 3 Instituto Politécnico Nacional, Escuela Superior de Ingeniería Mecánica y Eléctrica, Mexico 4 Instituto Politécnico Nacional, Escuela Superior de Cómputo, Mexico [email protected], [email protected], [email protected] Abstract. There exist various federal and regional monotowns do not possess any distinguishing self- programs aimed at solving the problem of organization peculiarities in comparison to other monofunctional towns in the periods of economic small towns. stagnation and structural unemployment occurrence. Nevertheless, people living in such towns can find Keywords. Systemic analysis, labor migration, labor solutions to the existing problems with the help of self- market, agglomeration process criterion, self- organization including diurnal labor commuting migration organization of monotown population. to the nearest towns with a more stable economic situation. This accounts for the initial reason for agglomeration processes in regions with a large number 1 Introduction of monotowns. Experimental models of the rank distribution of towns in a system (region) and evolution In this paper, we discuss the problems of criteria of such systems from basic ones to agglomerations are explored in order to assess the monotown population using as an example several intensity of agglomeration processes in the systems of monotowns located in Siberia (Russia). In 2014 the towns in the Middle and Southern Urals (the Sverdlovsk Government of the Russian Federation issued two and Chelyabinsk regions of Russia). -
The Mineral Indutry of Russia in 1998
THE MINERAL INDUSTRY OF RUSSIA By Richard M. Levine Russia extends over more than 75% of the territory of the According to the Minister of Natural Resources, Russia will former Soviet Union (FSU) and accordingly possesses a large not begin to replenish diminishing reserves until the period from percentage of the FSU’s mineral resources. Russia was a major 2003 to 2005, at the earliest. Although some positive trends mineral producer, accounting for a large percentage of the were appearing during the 1996-97 period, the financial crisis in FSU’s production of a range of mineral products, including 1998 set the geological sector back several years as the minimal aluminum, bauxite, cobalt, coal, diamonds, mica, natural gas, funding that had been available for exploration decreased nickel, oil, platinum-group metals, tin, and a host of other further. In 1998, 74% of all geologic prospecting was for oil metals, industrial minerals, and mineral fuels. Still, Russia was and gas (Interfax Mining and Metals Report, 1999n; Novikov significantly import-dependent on a number of mineral products, and Yastrzhembskiy, 1999). including alumina, bauxite, chromite, manganese, and titanium Lack of funding caused a deterioration of capital stock at and zirconium ores. The most significant regions of the country mining enterprises. At the majority of mining enterprises, there for metal mining were East Siberia (cobalt, copper, lead, nickel, was a sharp decrease in production indicators. As a result, in the columbium, platinum-group metals, tungsten, and zinc), the last 7 years more than 20 million metric tons (Mt) of capacity Kola Peninsula (cobalt, copper, nickel, columbium, rare-earth has been decommissioned at iron ore mining enterprises. -
Sverdlovsk Region: Profile
Sverdlovsk Region: Profile Geography Sverdlovsk region is situated at the boarder of Europe and Asia, at the junction of two large physical-geographical complexes. Its area is 194,8 thousand sq. km (1,1% of the Russian Federation area, that is 20th place in RF). The western part of the region lies mainly on the eastern slopes of the low Ural Mountains, their heights range from 700-800 up to 1569 m (Konzhakovsky Kamen mountain). Extreme southwest of the region is situated on the hilly Foreurals, and the eastern part of the region borders with West-Siberian Plain. The region is mainly covered with taiga. In the mountain part of the area prevail coniferous trees and the plain is mostly covered with pine forests with birch and aspen forests and forest-steppes in the south. The soils of the region are typical for forest and forest-steppe zones. The southern part of the region is well-developed, while the northern part is poorly populated and barely changed. The biggest rivers of the region are Tura, Tchusovaya, Sosva, Iset. 173 fresh water springs were found which can provide 1 408 thousand m3 of potable water per day that significantly increases water resources. Forests and numerous water sources create favorable conditions for development of tourism. Furthermore, national parks Pripyshminskiye Bory, reserves Visimsky and Denezhkin Kamen’ are situated on the territory of the region. More than 1900 different kinds of plants grow within the bounds of the region and nearly 212 species of various animals and birds could be found here. The region borders with Tyumen, Kurgan, Tchelyabinsk, Perm Regions and Bashkir and Komi Republics. -
Chelyabinsk Airburst, Damage Assessment, Meteorite Recovery and Characterization
O. P. Popova, et al., Chelyabinsk Airburst, Damage Assessment, Meteorite Recovery and Characterization. Science 342 (2013). Chelyabinsk Airburst, Damage Assessment, Meteorite Recovery, and Characterization Olga P. Popova1, Peter Jenniskens2,3,*, Vacheslav Emel'yanenko4, Anna Kartashova4, Eugeny Biryukov5, Sergey Khaibrakhmanov6, Valery Shuvalov1, Yurij Rybnov1, Alexandr Dudorov6, Victor I. Grokhovsky7, Dmitry D. Badyukov8, Qing-Zhu Yin9, Peter S. Gural2, Jim Albers2, Mikael Granvik10, Läslo G. Evers11,12, Jacob Kuiper11, Vladimir Kharlamov1, Andrey Solovyov13, Yuri S. Rusakov14, Stanislav Korotkiy15, Ilya Serdyuk16, Alexander V. Korochantsev8, Michail Yu. Larionov7, Dmitry Glazachev1, Alexander E. Mayer6, Galen Gisler17, Sergei V. Gladkovsky18, Josh Wimpenny9, Matthew E. Sanborn9, Akane Yamakawa9, Kenneth L. Verosub9, Douglas J. Rowland19, Sarah Roeske9, Nicholas W. Botto9, Jon M. Friedrich20,21, Michael E. Zolensky22, Loan Le23,22, Daniel Ross23,22, Karen Ziegler24, Tomoki Nakamura25, Insu Ahn25, Jong Ik Lee26, Qin Zhou27, 28, Xian-Hua Li28, Qiu-Li Li28, Yu Liu28, Guo-Qiang Tang28, Takahiro Hiroi29, Derek Sears3, Ilya A. Weinstein7, Alexander S. Vokhmintsev7, Alexei V. Ishchenko7, Phillipe Schmitt-Kopplin30,31, Norbert Hertkorn30, Keisuke Nagao32, Makiko K. Haba32, Mutsumi Komatsu33, and Takashi Mikouchi34 (The Chelyabinsk Airburst Consortium). 1Institute for Dynamics of Geospheres of the Russian Academy of Sciences, Leninsky Prospect 38, Building 1, Moscow, 119334, Russia. 2SETI Institute, 189 Bernardo Avenue, Mountain View, CA 94043, USA. 3NASA Ames Research Center, Moffett Field, Mail Stop 245-1, CA 94035, USA. 4Institute of Astronomy of the Russian Academy of Sciences, Pyatnitskaya 48, Moscow, 119017, Russia. 5Department of Theoretical Mechanics, South Ural State University, Lenin Avenue 76, Chelyabinsk, 454080, Russia. 6Chelyabinsk State University, Bratyev Kashirinyh Street 129, Chelyabinsk, 454001, Russia. -
Great Siberian Highway and Process Urbanization on Southern Ural (1891-1914 Years)
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Siberian Federal University Digital Repository Journal of Siberian Federal University. Humanities & Social Sciences 2 (2009 2) 176-183 ~ ~ ~ УДК 908 Great Siberian Highway and Process Urbanization on Southern Ural (1891-1914 Years) Aleksandr A. Timofeev* South-Ural state university, 76 Lenin av., Chelyabinsk, 454080 Russia 1 Received 23.03.2009, received in revised form 30.03.2009, accepted 6.04.2009 There are considered urban population’s processes occurring on Southern Ural after construction of the Transsiberian railway (Transsib) at the end of XIX – the beginning of XX centuries in clause. The reasons of strengthening of the urbanization process , the increase of the urban population’s share on Southern Ural were growth of industry and trade, requirement for a cheap labour. Ufa, Zlatoust, Chelyabinsk cities, located along the Transsiberian railway, become the large railway stations. Keywords: Transsiberian railway, Southern Ural, urbanization, modernization. The considered period of 1891-1914 it is communication networks in the urbanized possible to characterize as an initial stage the territories. Modernization, «industrialization, urbanization’s transition of the Southern-Ural urbanization frequently proceed in interrelation». region. The essence of a urbanization consists In conditions of modernization of the end XIX – in territorial concentration of the human the beginnings XX centuries cities concentrated activity, conducting to the intensification and in themselves economic, administrative, differentiations down to allocation of new scientific, spiritual potential of all society. The city forms and spatial structures of population economic maintenance of modernization consists moving. Urban transition is qualitatively in development industrial, transport, trading, allocated, supreme stage of the urbanization’s financial-bank systems and other kinds of not process, which conducts to radical transformation agricultural branches. -
Seismic Characterization of the Chelyabinsk Meteords Terminal
○E Seismic Characterization of the Chelyabinsk Meteor’s Terminal Explosion by Sebastian Heimann, Álvaro González, Rongjiang Wang, Simone Cesca, and Torsten Dahm Online Material: Figures of waveform fit, apparent source time explosion (airburst) of the meteor southwest of Chelyabinsk functions, and video of impact of shock wave at factory. city, and had an equivalent moment magnitude of 3.60. This implies that this is the second largest meteor explosion ever INTRODUCTION seismically recorded, only surpassed by the 1908 Tunguska event (Ben-Menahem, 1975). Impacts with our planet cause seismic shaking by a variety of mechanisms. Catastrophic ground motion, even at antipodal DESCRIPTION OF THE GROUND SHAKING distances, can be generated by the extremely infrequent, hyper- sonic collisions with large asteroids or comets (Meschede et al., The seismic ground shaking caused by the Chelyabinsk meteor 2011). Fortunately, the atmosphere effectively shields the was exceptionally well registered at planetary scale. It can be smaller (and far more common) meteoroids, greatly reducing observed in more than 70 digital, broadband seismic recordings their initial kinetic energy at high altitude, causing them to from stations located at least up to 4000 km away, sampling slow down, break up, and even vaporize, producing a meteor most azimuths. At further distances, the identification of the (Ceplecha and Revelle, 2005). In most instances, the ground meteor signal is hampered by the coincidental interference shaking is triggered by the atmospheric shock wave of a meteor, with wave arrivals from a tectonic earthquake with magnitude M not by the impact of the surviving meteorites (Edwards w 5.7, originated in Tonga at 03:02:23 UTC. -
Guide to Investment Chelyabinsk Region Pwc Russia ( Provides Industry-Focused Assurance, Advisory, Tax and Legal Services
Guide to Investment Chelyabinsk Region PwC Russia (www.pwc.ru) provides industry-focused assurance, advisory, tax and legal services. Over 2,500 professionals working in PwC offices in Moscow, St Petersburg, Ekaterinburg, Kazan, Novosibirsk, Krasnodar, Yuzhno-Sakhalinsk and Vladikavkaz share their thinking, experience and solutions to develop fresh perspectives and practical advice for our clients. Global PwC network includes over 169,000 employees in 158 countries. PwC first appeared in Russia in 1913 and re-established its presence here in 1989. Since then, PwC has been a leader in providing professional services in Russia. According to the annual rating published in Expert magazine, PwC is the largest audit and consulting firm in Russia (see Expert, 2000-2011). This overview has been prepared in conjunction with and based on the materials provided by the Ministry of Economic Development of Chelyabinsk Region. This publication has been prepared for general guidance on matters of interest only, and does not constitute professional advice. You should not act upon the information contained in this publication without obtaining specific professional advice. No representation or warranty (express or implied) is given as to the accuracy or completeness of the information contained in this publication, and, to the extent permitted by law, PwC network, its members, employees and agents accept no liability, and disclaim all responsibility, for the consequences of you or anyone else acting, or refraining to act, in reliance on the information -
BR IFIC N° 2611 Index/Indice
BR IFIC N° 2611 Index/Indice International Frequency Information Circular (Terrestrial Services) ITU - Radiocommunication Bureau Circular Internacional de Información sobre Frecuencias (Servicios Terrenales) UIT - Oficina de Radiocomunicaciones Circulaire Internationale d'Information sur les Fréquences (Services de Terre) UIT - Bureau des Radiocommunications Part 1 / Partie 1 / Parte 1 Date/Fecha 22.01.2008 Description of Columns Description des colonnes Descripción de columnas No. Sequential number Numéro séquenciel Número sequencial BR Id. BR identification number Numéro d'identification du BR Número de identificación de la BR Adm Notifying Administration Administration notificatrice Administración notificante 1A [MHz] Assigned frequency [MHz] Fréquence assignée [MHz] Frecuencia asignada [MHz] Name of the location of Nom de l'emplacement de Nombre del emplazamiento de 4A/5A transmitting / receiving station la station d'émission / réception estación transmisora / receptora 4B/5B Geographical area Zone géographique Zona geográfica 4C/5C Geographical coordinates Coordonnées géographiques Coordenadas geográficas 6A Class of station Classe de station Clase de estación Purpose of the notification: Objet de la notification: Propósito de la notificación: Intent ADD-addition MOD-modify ADD-ajouter MOD-modifier ADD-añadir MOD-modificar SUP-suppress W/D-withdraw SUP-supprimer W/D-retirer SUP-suprimir W/D-retirar No. BR Id Adm 1A [MHz] 4A/5A 4B/5B 4C/5C 6A Part Intent 1 107125602 BLR 405.6125 BESHENKOVICHI BLR 29E28'13'' 55N02'57'' FB 1 ADD 2 107125603 -
RUSSIAN DISTRICTS AWARD LIST" (Last Update 01.07.2012)
"RUSSIAN DISTRICTS AWARD LIST" (Last update 01.07.2012) Republic of Adygeya (AD) UA6Y CITIES AD-01 MAIKOP AD-02 ADYGEJSK AREAS AD-03 GIAGINSKY AREA AD-04 KOSHEHABL'SKY AREA AD-05 KRASNOGVARDEJSKY AREA AD-06 MAJKOPSKY AREA AD-07 TAHTAMUKAJSKY AREA AD-08 TEUCHEZHSKY AREA AD-09 SHOVGENOVSKY AREA Altaysky Kraj (AL) UA9Y BARNAUL AREAS AL-01 ZHELEZNODOROZHNY AL-02 INDUSTRIALNY AL-03 LENINSKY AL-04 OKTJABR`SKY AL-05 CENTRALNY CITIES AL-06 deleted AL-07 deleted AL-08 RUBTSOVSK AL-09 SLAVGOROD AL-10 YAROVOE AREAS AL-11 ALEJSKY AREA AL-12 ALTAYSKY AREA AL-13 BAEVSKY AREA AL-14 BIJSKY AREA AL-15 BLAGOVESHCHENSKY AREA AL-16 BURLINSKY AREA AL-17 BYSTROISTOKSKY AREA AL-18 VOLCHIHINSKY AREA AL-19 EGOR'EVSKY AREA AL-20 EL'TSOVSKY AREA AL-21 ZAV'JALOVSKY AREA AL-22 ZALESOVSKY AREA AL-23 ZARINSKY AREA AL-24 ZMEINOGORSKY AREA AL-25 ZONALNY AREA AL-26 KALMANSKY AREA AL-27 KAMENSKY AREA AL-28 KLJUCHEVSKY AREA AL-29 KOSIHINSKY AREA AL-30 KRASNOGORSKY AREA AL-31 KRASNOSHCHEKOVSKY AREA AL-32 KRUTIHINSKY AREA AL-33 KULUNDINSKY AREA AL-34 KUR'INSKY AREA AL-35 KYTMANOVSKY AREA AL-36 LOKTEVSKY AREA AL-37 MAMONTOVSKY AREA AL-38 MIHAJLOVSKY AREA AL-39 NEMETSKY NATIONAL AREA AL-40 NOVICHIHINSKY AREA AL-41 PAVLOVSKY AREA AL-42 PANKRUSHIHINSKY AREA AL-43 PERVOMAJSKY AREA AL-44 PETROPAVLOVSKY AREA AL-45 POSPELIHINSKY AREA AL-46 REBRIHINSKY AREA AL-47 RODINSKY AREA AL-48 ROMANOVSKY AREA AL-49 RUBTSOVSKY AREA AL-50 SLAVGORODSKY AREA AL-51 SMOLENSKY AREA AL-52 SOVIETSKY AREA AL-53 SOLONESHENSKY AREA AL-54 SOLTONSKY AREA AL-55 SUETSKY AREA AL-56 TABUNSKY AREA AL-57 TAL'MENSKY -
The Implementation of the Competition Development Standard
The 12th International Days of Statistics and Economics, Prague, September 6-8, 2018 THE IMPLEMENTATION OF THE COMPETITION DEVELOPMENT STANDARD Ekaterina Ogorodnikova – Alexandr Kokovikhin – Andrey Plakhin Abstract The article contains data obtained as a result of research into the implementation methodology of The competition development standard in the subjects of the Russian Federation on the materials of Sverdlovsk region.The methods of introducing the Standard from the position of the general management methodology and from the position of evaluation of business entities are characterized. The basis for the study was the normative documents of state authorities and local self- government of the Sverdlovsk region, which ensure the implementation of the Standard, as well as the results of surveys of business entities. The method of conducting the survey was an online survey conducted on the website of the regional Investments and DevelopmentMinistry. The base of respondents includes more than 2000 subjects of entrepreneurial activity. The authors have revealed the methodological disproportions in the formation of the management tools for the implementation of the Standard, which consist in the prevalence of economic methods for the implementation of the competition development standard in the subjects of the Russian Federation on the territory of the Sverdlovsk Region. The results of the study allow to formulate recommendations on increasing the effectiveness of measures taken by state authorities and local self-government bodies in -
The Mineral Industry of Russia
THE MINERAL INDUSTRY OF RUSSIA By Richard M. Levine Russia, which extends over 11 time zones, is the largest budget (Novikov and Sazonov, 2000). According to Russian country in land area in the world and occupies more than 75% analysts, if a reevaluation were to occur on the basis of market of the territory of the former Soviet Union (FSU). Accordingly, economy costs of production, then actual reserves would it possesses a significant percentage of the world’s mineral diminish by 30% to 70% for ferrous and nonferrous metal resources. Russia, which was a major mineral producer, reserves. Such a reassessment, however, would provide the accounted for a large percentage of the FSU’s production of a country with a realistic base for knowing which deposits could range of mineral products, which included aluminum, bauxite, be economically developed and be competitive on world cobalt, coal, diamond, mica, natural gas, nickel, oil, platinum- markets (Novikov and Yastrzhembskiy, 1999; Novikov and group metals (PGM), tin, and many other metals, industrial Sazonov, 2000). minerals, and mineral fuels. Mineral consumption in Russia has fallen drastically since the The mineral industry was of great importance to the Russian dissolution of the Soviet Union because of the general downturn economy. Enterprises considered to be part of the mineral/raw in economic activity and the sharp fall in defense industry material contributed more than 70% of the budget revenues production, which was a major consumer of a range of metals. derived from exports (Malyshev, 2000). Low domestic demand coupled with worn out plant and The most significant regions of the country for metal mining equipment affected the quantity and quality of output were East Siberia (cobalt, copper, lead, nickel, columbium, (Malyshev, 2000; Yatskevich, 2000). -
Pr0blems of Municipal Entities
PR0BLEMS OF MUNICIPAL ENTITIES UDC 330.341.2 LBC 65.01 © Piankova S.G. Institutional development planning of non-diversified territories The article presents development trends of one-company towns, ways of the state support provided to such towns in Russia and abroad. It describes the results of monotown development, obtained with the state support, and presents the planning scheme of the institutional development of a company town. Non-diversified territories, planning, indicators, institutes for development. Svetlana G. PIANKOVA Ph.D. in Economics, Associate Professor at the Institute of Economics, Ural RAS Department [email protected] Each economic crisis (the 1990–1992 crisis As a rule, a distinctive feature of a monotown at the beginning of market reforms, 1998–1999 is the existence of one dominant company, crisis during the default period, 2008–2009 cri- employing more than a quarter of the town’s sis at the stage of the world economic crisis) has working population that is often reflected in been significantly disbalancing the economy defining such enterprise as “town-forming” of territories, especially non-diversified terri- and in the English meaning of the locality itself tories, having specific formation and develop- as a “one-company town”[1]. ment characteristics. They are most vulnerable A group of scientists under the guidance of to social and economic failures, therefore, they Ye.G. Animitsa states the following in the mono- require increased attention from scientists, graph: “monoorientation is always a risk both experts, public authorities. at the enterprise level and at the level of a According to the experts of the Ministry of city, region, country.