CSU E-Brochure

Total Page:16

File Type:pdf, Size:1020Kb

CSU E-Brochure RectoR educational activity Dear friends! I’m glad to welcome highly qualified specialists Federation Government you at Chelyabinsk State competitive in Russia and grant for the development of University. You, who are abroad. Here the world-class the international laboratory interested in education and educational, scientific and of quantum topology at the science, you, who are not innovative activity is being Faculty of Mathematics. indifferent to where and implemented, creating the I believe that our what children will learn, you, solid basis for the future of achievements will confirm who care about possibilities our country. the CSU’s status of leading open for people wanting to The evidence of university, and we will improve their skills and get a success is the recognition keep the high standards higher education. of the university by the of the large scientific and Chelyabinsk State international scientificeducational center all over University is the firstcommunity. Thus, in 2014 Russia, bringing up highly classic university in the CSU became the only professional generation. South Urals. Over several university in Chelyabinsk I invite you on a tour of decades it has been training oblast, winning the Russian our alma-mater! Diana TSIRING Rector of Chelyabinsk State University, Doctor of Psychological Sciences, Professor 2 educational activity Today the University Kostanay (Republic of historical research, modeling year. Traditionally popular conducts educational Kazakhstan). of historical processes, specialties are Economics, activities on 13 faculties CSU offers a widecomputer methods of Management and Legal and in 5 teaching and range of professions, the historical sources analysis, Support of National Security. research institutes. demand of which will only information technologies At the same time, the results Specialist, Bachelor, Master, increase during the training in functioning of archives, of admission campaign Postgraduate and Doctoral time. For example, CSU museums and libraries, as well 2015 demonstrated the Studies are available. started recruiting people as web-design and computer high demand of natural- Full-time, part-time and for Historical Informatics. graphics for historians, the science specialties (Biology, distance learning, including Students of this specialty will computer technologies Fundamental and Applied the use of distance learning study digital history, historical of history training and Chemistry, Information technologies, are widely 3-D reconstructions, historical geoinformation Security of Automated used. The University has the basics of network systems. Moreover, the Systems), as well as Computer three successful branches technology for historians, specialty of Iranian Studies Security and Informatics and - in Miass, Troitsk and mathematical methods in is going to be opened this Computer Engineering. 3 tRaining aReas and specialties tRaining aReas and specialties Bachelor DEGREE Bachelor DEGREE Mathematics and Computer Sciences Physics Applied Mathematics and Informatics Radiophysics Fundamental Informatics and Information Materials Science Technologies and Material Technologies Dean: Dean: Nanoengineering Elena A. SBRODOVA, SPECIALIST DEGREE Sergey V. TASKAEV, Candidate of Physical and Computer Security Doctor of Physical and SPECIALIST DEGREE Mathematical Sciences Mathematical Sciences, Professor Information Security MASTER DEGREE of Automated Systems Contacts: Mathematics tel.: +7 (351) 799-71-18, Applied Mathematics and Informatics Contacts: MASTER DEGREE e-mail: [email protected] Fundamental Informatics and Information tel.: +7 (351) 799-71-19, Physics Faculty website: Technologies e-mail: [email protected] Radiophysics www.math.csu.ru Postgraduate Postgraduate Mathematics and Mechanics Physics and Astronomy Computer Science and Engineering Information Security about the FACULTY about the FACULTY It was opened in 1976. The staff of the faculty comprises of 15 Doctors of It was founded in 1978 and for now it is the leading Physical and Mathematical Sciences, Professors; 27 Candidates of Physical physics faculty in the South Urals. and Mathematical Sciences, Assistant Professors. S.V. Matveev and V.N. Ushakov, Corresponding Members of the Russian Academy of Sciences, are among them. There are also a lot of invited lecturers, Doctors of Physical and Mathematical Sciences, Professors of the Institute of Mathematics and Mechanics of the Russian Academy of Sciences Ural Branch, and from Russian Federal Nuclear Center. 4 tRaining aReas and specialties tRaining aReas and specialties Bachelor DEGREE Bachelor DEGREE Microbiology Chemistry Physiology Genetics SPECIALIST DEGREE Biophysics Fundamental and Applied Chemistry Bioecology Dean: Dean: Vladimir A. BURMISTROV, MASTER DEGREE Aleksandra L. BURMISTROVA, MASTER DEGREE Doctor of Physical and Mathematical Chemistry Doctor of Medical Science, Sciences, Professor, Honored Worker Professor, Head of the Medical and Life Science Microbiology and Virology of the Higher Education of the Postgraduate Department of Microbiology, Russian Federation Immunology and General Genetics Chemical Sciences Biology Radiation Biology Contacts: Ecology The faculty trains postgraduate students Contacts: tel.: +7 (351) 799-70-63, tel.: +7 (351) 799-71-76, Developmental Biology e-mail: [email protected] in the fields of “Organic Chemistry”, “Physical Chemistry” and “Solid State e-mail: [email protected] Postgraduate Chemistry”. Biological Sciences Fundamental Medicine about the Faculty about the Faculty It was founded in 1991. Since 1976 the training of chemists It was founded in 1998. Establishment of the Faculty and all its achievements has been carried out in the Chemistry Department as part are closely connected with leading institutions of the region: The Urals of the Faculty of Physics. Research Center for Radiation Medicine, South Ural State Medical University, City Clinical Hospital № 6, Chelyabinsk Regional Station of Blood Transfusion, etc. 5 tRaining aReas and specialties tRaining aReas and specialties Bachelor DEGREE Bachelor DEGREE Ecology Linguistics and Nature Management SPECIALIST DEGREE Forest Science Translation and Translation Studies Dean: Water Bioresources Dean: Sergey F. LIKHACHEV, Liliya A. NEFEDOVA, Doctor of Biological Sciences, and Aquaculture Doctor of Philology, Professor, MASTER DEGREE Professor Honored Worker of the Higher Linguistics Education of the Russian Contacts: MASTER DEGREE Federation, Professor Emeritus of CSU tel.: +7 (351) 253-38-79; Ecology 254-49-03; 255-53-11 and Nature Management Contacts: e-mail: [email protected] tel.: +7 (351) 799-71-22; e-mail: [email protected] Postgraduate Technosphere Security about the Faculty about the Faculty It was founded in 1996. For 19 years the faculty has trained more than 400 It was established in 1994 and became the linguistic center graduates who work on industrial enterprises, in state management bodies of the South Urals. of the federal, regional and local significance, state reserves, national parks, wildlife refuges, in the institutions of general, secondary special and higher education. 6 tRaining aReas and specialties tRaining aReas and specialties Bachelor DEGREE Bachelor DEGREE Psychology Foreign Regional Studies Psychological and Pedagogical Education International Relations Special Defectologic Education Philosophy SPECIALIST DEGREE Postgraduate Dean: Dean: Clinical Psychology Elvina Z. YagnaKOVA, Political Sciences and Regional Studies Sergey A. REPIN, Candidate of Pedagogical Sciences Historical Sciences and Archeology Doctor of Education, Professor, MASTER DEGREE Philosophy, Ethics and Religious Studies Honored Teacher of the Russian Contacts: Federation Psychology tel.: +7 (351) 799-71-37, Psychological and Pedagogical Education e-mail: [email protected] Contacts: Faculty Website: tel.: +7 (351) 799-72-61, Postgraduate www.eurasia.csu.ru e-mail: [email protected] Psychological Sciences Education and Psychological Sciences about the Faculty about the Faculty It was established in May, 1998 by integration of Oriental Languages It was established in 2002 by integration of the Faculties of Psychology Department and Political Sciences Department on the Faculty of Philology. and Pedagogics. Such a structural unit allows students to obtain a broader The name choice is conditioned by the fact that East is a key region of the specialization, to solve complex problems of educational process study and Russia is called “Eurasia” by those who believe that it is a special and scientific research. civilization combining European and Asian origins with the dominance of the last. 7 tRaining aReas and specialties tRaining aReas and specialties Bachelor DEGREE Bachelor DEGREE Economics State and Municipal Management Social Work Management Sociology Human Resource Management Management MASTER DEGREE Dean: Dean: SPECIALIST DEGREE Vasiliy P. MaKSIMOV, Management Alexey Yu. SHUMAKOV, Economic Security Candidate of Economic Sciences, State and Municipal Management Candidate of Economic Sciences, Associate Professor Professor Finances and Credit Accounting, Analysis and Audit Postgraduate Contacts: Social Work Economics Contacts: tel.: +7 (351) 799-70-74, Mathematical Methods in Economics tel.: +7 (351) 799-70-90, e-mail: [email protected] World Economics e-mail: [email protected] Faculty Website: www.econ.csu.ru MASTER DEGREE Economics Sociology Postgraduate Economics Social Sciences about the Faculty about the Faculty It was founded in 1996 to meet the region's need for professional Since its
Recommended publications
  • SKIF Ural Supercomputer
    Russian Academy of Sciences Program Systems Institute SKIFSKIF-GRID-GRID SKIF Ural Supercomputer The SKIF Ural supercomputer with peak performance of 16 Tflops is the most powerful Russian computer installation in the Urals, Siberia, and in the Far East. The SKIF Ural supercomputer has been built by the Russian company of T-Platforms to order from the South Ural State University using funds federally allocated to its innovation educational program within the bounds of the Priority National Education project. The SKIF Ural supercomputer incorporates advanced technical solutions and original engineering developments having been made in the course of implementation of the Union State SKIF-GRID program by the scientific-industrial alliance involving the T-Platforms company, the Program Key features of the SKIF Ural Systems Institute of the Russian Academy of supercomputer Sciences, MSU, SUSU, and other organizations. The SKIF Ural has cluster architecture and Peak/Linpak 15.936 Tflops / 12.2 Tflops incorporates over three hundred up-to-date performance 45nm Hypertown quad-core processors, Number of computing nodes/processors 166/332 developed by Intel Corporation. Formfactor of the node blade The supercomputer is equipped with advanced Processor type quad-core Intel® Xeon® E5472, 3,0 ГГц licensed software for research with the help of Total volume of RAM 1.3 TB engineering modeling and analysis including of all computing nodes FlowVision bundled software made by the Russian firm of TESIS. Total volume of disk memory 26.5 TB of all computing nodes In March 2008 the SKIF Ural supercomputer Type of the system network DDR InfiniBand took the 4th position in the eighth edition of the (Mellanox ConnectX) TOP50 list of the fastest computers in the CIS Type of managing (auxiliary) Gigabit Ethernet countries.
    [Show full text]
  • A MICROHISTORY of MASS GRAVES, DEAD BODIES, and THEIR PUBLIC USES* ** François-Xavier Nerard
    RED CORPSES: A MICROHISTORY OF MASS GRAVES, DEAD BODIES, AND THEIR PUBLIC USES* ** François-Xavier Nerard To cite this version: François-Xavier Nerard. RED CORPSES: A MICROHISTORY OF MASS GRAVES, DEAD BOD- IES, AND THEIR PUBLIC USES* **. Quaestio Rossica, Ural Federal University 2021, 9 (1), pp.138- 154. 10.15826/qr.2021.1.570. halshs-03191111 HAL Id: halshs-03191111 https://halshs.archives-ouvertes.fr/halshs-03191111 Submitted on 9 Apr 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. DOI 10.15826/qr.2021.1.570 УДК 94(470.5)''1918/1919'' + 612.013 + 393.1 RED CORPSES: A MICROHISTORY OF MASS GRAVES, DEAD BODIES, AND THEIR PUBLIC USES* ** François-Xavier Nérard Université Paris 1 Pantheon-Sorbonne, CRHS – SIRICE, Paris, France What happens to corpses produced by armed conflicts? This question may seem simple: most bodies are buried, more or less quickly, in mass graves. However, the time between death and the moment when the human remains are inhumed deserves to be studied. This article focuses on the situation in the Urals at the end of the Civil War (1918–1919). The fights between the Bolsheviks and their oppo- nents resulted in many casualties.
    [Show full text]
  • German Quarter» of Magnitogorsk
    ISSN 0798 1015 HOME Revista ESPACIOS ! ÍNDICES ! A LOS AUTORES ! Vol. 39 (Nº 01) Year 2018. Páge 10 How European design was implemented in the architecture of a Soviet provincial city: the «German Quarter» of Magnitogorsk Cómo el diseño europeo fue implementado en la arquitectura de una ciudad provincial rusa: El caso del «Barrio alemán» de Magnitogorsk Elena V. MALEKO 1; Yuliya L. KIVA-KHAMZINA 2; Natal'ya A. RUBANOVA 3; Elena V. КАRPOVA 4; Elena V. OLEYNIK 5; Oksana E. CHERNOVA 6 Received: 01/11/2017 • Approved: 25/11/2017 Contents 1. Introduction 2. Methodological Framework 3. Results 4. Discussions 5. Conclusions Bibliographic references ABSTRACT: RESUMEN: This article aims to look at how the design of German El propósito del artículo consiste en el estudio de las architects was realized in a provincial Soviet city. It is características especiales del proyecto de arquitectos for this reason that the city of Magnitogorsk was chosen alemanes en el espacio de una ciudad provincial for this study, which provides an excellent example of soviética. Por esta misma razón la arquitectura de different national traditions combined within the urban Magnitogorsk se convirtió en materia prima para el environment. The article describes the main principles estudio ya que es un ejemplo de asociación de diversas behind the architectural design of a Russian provincial tradiciones nacionales en el contexto urbanístico. El city during the Soviet time; how the German urban artículo especifica el fundamento de la formación del design was realized in the 20th century; the style of the aspecto arquitectónico de la ciudad provincial rusa en el German architecture and its originality; the importance período soviético; se detectan las características of the German Quarter of Magnitogorsk as an especiales de la realización de proyectos de arquitectos illustration of how the urban environment can be alemanes en el contexto de los procesos urbanísticos rejuvenated through the introduction of foreign del siglo XX; se revela la estilística de la arquitectura features.
    [Show full text]
  • History of Radiation and Nuclear Disasters in the Former USSR
    History of radiation and nuclear disasters in the former USSR M.V.Malko Institute of Power Engineering National Academy of Sciences of Belarus Akademicheskaya Str.15, Minsk, 220 000, Republic of Belarus E-mail: [email protected] Abstracts. The report describes the history of radiation and nuclear accidents in the former USSR. These accidents accompanied development of military and civilian use of nuclear energy. Some of them as testing of the first Soviet nuclear, Kyshtym radiation accident, radiation contamination of the Karachai lake and the Techa river, nuclear accidents at the Soviet submarine on August 10, 1985 in the Chazhma Bay (near Vladivostok) as well as nuclear accidents on April 26, 1986 at the Chernobyl NPP were of large scale causing significant radiological problems for many hundreds thousands of people. There were a number of important reasons of these and other accidents. The most important among them were time pressure by development of nuclear weapon, an absence of required financial and material means for adequate management of problems of nuclear and radiation safety, and inadequate understanding of harmful interaction of ionizing radiation on organism as well as a hypersecrecy by realization of projects of military and civilian use of nuclear energy in the former USSR. Introduction. The first nuclear reactor in the USSR reached the critical state on the 25 December 1946 [1] or 4 years later than reactor constructed by Enrico Fermi [2]. The first Soviet reactor was developed at the Laboratory N2 in Moscow (later I.V.Kurchatov Institute of Atomic Energy). This was a very important step in a realization of the Soviet military atomic program that began in September 1942.
    [Show full text]
  • Systemic Criteria for the Evaluation of the Role of Monofunctional Towns in the Formation of Local Urban Agglomerations
    ISSN 2007-9737 Systemic Criteria for the Evaluation of the Role of Monofunctional Towns in the Formation of Local Urban Agglomerations Pavel P. Makagonov1, Lyudmila V. Tokun2, Liliana Chanona Hernández3, Edith Adriana Jiménez Contreras4 1 Russian Presidential Academy of National Economy and Public Administration, Russia 2 State University of Management, Finance and Credit Department, Russia 3 Instituto Politécnico Nacional, Escuela Superior de Ingeniería Mecánica y Eléctrica, Mexico 4 Instituto Politécnico Nacional, Escuela Superior de Cómputo, Mexico [email protected], [email protected], [email protected] Abstract. There exist various federal and regional monotowns do not possess any distinguishing self- programs aimed at solving the problem of organization peculiarities in comparison to other monofunctional towns in the periods of economic small towns. stagnation and structural unemployment occurrence. Nevertheless, people living in such towns can find Keywords. Systemic analysis, labor migration, labor solutions to the existing problems with the help of self- market, agglomeration process criterion, self- organization including diurnal labor commuting migration organization of monotown population. to the nearest towns with a more stable economic situation. This accounts for the initial reason for agglomeration processes in regions with a large number 1 Introduction of monotowns. Experimental models of the rank distribution of towns in a system (region) and evolution In this paper, we discuss the problems of criteria of such systems from basic ones to agglomerations are explored in order to assess the monotown population using as an example several intensity of agglomeration processes in the systems of monotowns located in Siberia (Russia). In 2014 the towns in the Middle and Southern Urals (the Sverdlovsk Government of the Russian Federation issued two and Chelyabinsk regions of Russia).
    [Show full text]
  • Assessment of the Distribution of Heavy Metals Around a Cu Smelter Town, Karabash, South Urals, Russia
    E3S Web of Conferences 1, 19010 (2013) DOI: 10.1051/e3sconf/20130119 010 C Owned by the authors, published by EDP Sciences, 2013 Assessment of the Distribution of Heavy Metals around a Cu Smelter Town, Karabash, South Urals, Russia Y. G . Tatsy Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Science, 19 Kosygin St., Moscow 119991, RUSSIA, [email protected] Abstract. Technogenic geochemical anomaly was formed as a result of large-scale copper-smelting production run for almost hundred years without any ecological standards in Karabash region. Environmental assessment of the area affected by the Cu smelter plant after the plant’s substantial modernization shows that atmospheric emissions remain sufficiently high, and re-vegetation that began emerging during the time the plant was closed has slowed down after the plant reopened. The assessment of contamination of soil, bottom sediments and surface water showed extremely high concentrations of heavy metals. Key words: Heavy metals, Karabash, soil and water pollution Introduction town of Karabash, Chelyabinsk region, South Ural, Russia. The smelter is located close to the town centre Local technogenic anomalies are formed in in the area of and produces blister copper and sulfuric acid. mining and metallurgical enterprises. Such cites can be Karabash lies within the SW-NE trending flat seen as natural-technogenic testing areas for studying bottomed valley with altitudes ranging from 250 to 650 processes of involvement of chemicals in natural m. The dominance of W, SW and NW wind directions migratory flows. The Karabash technogenic anomaly creates a complex picture of the distribution of aerial which was being formed around the large copper smelter industrial emissions, and in the windless weather leading plant is precisely such testing area and gives a unique to sedimentation on the urban territory.
    [Show full text]
  • Chelyabinsk Airburst, Damage Assessment, Meteorite Recovery and Characterization
    O. P. Popova, et al., Chelyabinsk Airburst, Damage Assessment, Meteorite Recovery and Characterization. Science 342 (2013). Chelyabinsk Airburst, Damage Assessment, Meteorite Recovery, and Characterization Olga P. Popova1, Peter Jenniskens2,3,*, Vacheslav Emel'yanenko4, Anna Kartashova4, Eugeny Biryukov5, Sergey Khaibrakhmanov6, Valery Shuvalov1, Yurij Rybnov1, Alexandr Dudorov6, Victor I. Grokhovsky7, Dmitry D. Badyukov8, Qing-Zhu Yin9, Peter S. Gural2, Jim Albers2, Mikael Granvik10, Läslo G. Evers11,12, Jacob Kuiper11, Vladimir Kharlamov1, Andrey Solovyov13, Yuri S. Rusakov14, Stanislav Korotkiy15, Ilya Serdyuk16, Alexander V. Korochantsev8, Michail Yu. Larionov7, Dmitry Glazachev1, Alexander E. Mayer6, Galen Gisler17, Sergei V. Gladkovsky18, Josh Wimpenny9, Matthew E. Sanborn9, Akane Yamakawa9, Kenneth L. Verosub9, Douglas J. Rowland19, Sarah Roeske9, Nicholas W. Botto9, Jon M. Friedrich20,21, Michael E. Zolensky22, Loan Le23,22, Daniel Ross23,22, Karen Ziegler24, Tomoki Nakamura25, Insu Ahn25, Jong Ik Lee26, Qin Zhou27, 28, Xian-Hua Li28, Qiu-Li Li28, Yu Liu28, Guo-Qiang Tang28, Takahiro Hiroi29, Derek Sears3, Ilya A. Weinstein7, Alexander S. Vokhmintsev7, Alexei V. Ishchenko7, Phillipe Schmitt-Kopplin30,31, Norbert Hertkorn30, Keisuke Nagao32, Makiko K. Haba32, Mutsumi Komatsu33, and Takashi Mikouchi34 (The Chelyabinsk Airburst Consortium). 1Institute for Dynamics of Geospheres of the Russian Academy of Sciences, Leninsky Prospect 38, Building 1, Moscow, 119334, Russia. 2SETI Institute, 189 Bernardo Avenue, Mountain View, CA 94043, USA. 3NASA Ames Research Center, Moffett Field, Mail Stop 245-1, CA 94035, USA. 4Institute of Astronomy of the Russian Academy of Sciences, Pyatnitskaya 48, Moscow, 119017, Russia. 5Department of Theoretical Mechanics, South Ural State University, Lenin Avenue 76, Chelyabinsk, 454080, Russia. 6Chelyabinsk State University, Bratyev Kashirinyh Street 129, Chelyabinsk, 454001, Russia.
    [Show full text]
  • Numerical Modeling of the 2013 Meteorite Entry in Lake Chebarkul, Russia
    Nat. Hazards Earth Syst. Sci., 17, 671–683, 2017 www.nat-hazards-earth-syst-sci.net/17/671/2017/ doi:10.5194/nhess-17-671-2017 © Author(s) 2017. CC Attribution 3.0 License. Numerical modeling of the 2013 meteorite entry in Lake Chebarkul, Russia Andrey Kozelkov1,2, Andrey Kurkin2, Efim Pelinovsky2,3, Vadim Kurulin1, and Elena Tyatyushkina1 1Russian Federal Nuclear Center, All-Russian Research Institute of Experimental Physics, Sarov, 607189, Russia 2Nizhny Novgorod State Technical University n. a. R. E. Alekseev, Nizhny Novgorod, 603950, Russia 3Institute of Applied Physics, Nizhny Novgorod, 603950, Russia Correspondence to: Andrey Kurkin ([email protected]) Received: 4 November 2016 – Discussion started: 4 January 2017 Revised: 1 April 2017 – Accepted: 13 April 2017 – Published: 11 May 2017 Abstract. The results of the numerical simulation of possi- Emel’yanenko et al., 2013; Popova et al., 2013; Berngardt et ble hydrodynamic perturbations in Lake Chebarkul (Russia) al., 2013; Gokhberg et al., 2013; Krasnov et al., 2014; Se- as a consequence of the meteorite fall of 2013 (15 Febru- leznev et al., 2013; De Groot-Hedlin and Hedlin, 2014): ary) are presented. The numerical modeling is based on the – the meteorite with a diameter of 16–19 m flew into the Navier–Stokes equations for a two-phase fluid. The results of ◦ the simulation of a meteorite entering the water at an angle earth’s atmosphere at about 20 to the horizon at a ve- ∼ −1 of 20◦ are given. Numerical experiments are carried out both locity of 17–22 km s . when the lake is covered with ice and when it is not.
    [Show full text]
  • Great Siberian Highway and Process Urbanization on Southern Ural (1891-1914 Years)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Siberian Federal University Digital Repository Journal of Siberian Federal University. Humanities & Social Sciences 2 (2009 2) 176-183 ~ ~ ~ УДК 908 Great Siberian Highway and Process Urbanization on Southern Ural (1891-1914 Years) Aleksandr A. Timofeev* South-Ural state university, 76 Lenin av., Chelyabinsk, 454080 Russia 1 Received 23.03.2009, received in revised form 30.03.2009, accepted 6.04.2009 There are considered urban population’s processes occurring on Southern Ural after construction of the Transsiberian railway (Transsib) at the end of XIX – the beginning of XX centuries in clause. The reasons of strengthening of the urbanization process , the increase of the urban population’s share on Southern Ural were growth of industry and trade, requirement for a cheap labour. Ufa, Zlatoust, Chelyabinsk cities, located along the Transsiberian railway, become the large railway stations. Keywords: Transsiberian railway, Southern Ural, urbanization, modernization. The considered period of 1891-1914 it is communication networks in the urbanized possible to characterize as an initial stage the territories. Modernization, «industrialization, urbanization’s transition of the Southern-Ural urbanization frequently proceed in interrelation». region. The essence of a urbanization consists In conditions of modernization of the end XIX – in territorial concentration of the human the beginnings XX centuries cities concentrated activity, conducting to the intensification and in themselves economic, administrative, differentiations down to allocation of new scientific, spiritual potential of all society. The city forms and spatial structures of population economic maintenance of modernization consists moving. Urban transition is qualitatively in development industrial, transport, trading, allocated, supreme stage of the urbanization’s financial-bank systems and other kinds of not process, which conducts to radical transformation agricultural branches.
    [Show full text]
  • Seismic Characterization of the Chelyabinsk Meteords Terminal
    ○E Seismic Characterization of the Chelyabinsk Meteor’s Terminal Explosion by Sebastian Heimann, Álvaro González, Rongjiang Wang, Simone Cesca, and Torsten Dahm Online Material: Figures of waveform fit, apparent source time explosion (airburst) of the meteor southwest of Chelyabinsk functions, and video of impact of shock wave at factory. city, and had an equivalent moment magnitude of 3.60. This implies that this is the second largest meteor explosion ever INTRODUCTION seismically recorded, only surpassed by the 1908 Tunguska event (Ben-Menahem, 1975). Impacts with our planet cause seismic shaking by a variety of mechanisms. Catastrophic ground motion, even at antipodal DESCRIPTION OF THE GROUND SHAKING distances, can be generated by the extremely infrequent, hyper- sonic collisions with large asteroids or comets (Meschede et al., The seismic ground shaking caused by the Chelyabinsk meteor 2011). Fortunately, the atmosphere effectively shields the was exceptionally well registered at planetary scale. It can be smaller (and far more common) meteoroids, greatly reducing observed in more than 70 digital, broadband seismic recordings their initial kinetic energy at high altitude, causing them to from stations located at least up to 4000 km away, sampling slow down, break up, and even vaporize, producing a meteor most azimuths. At further distances, the identification of the (Ceplecha and Revelle, 2005). In most instances, the ground meteor signal is hampered by the coincidental interference shaking is triggered by the atmospheric shock wave of a meteor, with wave arrivals from a tectonic earthquake with magnitude M not by the impact of the surviving meteorites (Edwards w 5.7, originated in Tonga at 03:02:23 UTC.
    [Show full text]
  • Guide to Investment Chelyabinsk Region Pwc Russia ( Provides Industry-Focused Assurance, Advisory, Tax and Legal Services
    Guide to Investment Chelyabinsk Region PwC Russia (www.pwc.ru) provides industry-focused assurance, advisory, tax and legal services. Over 2,500 professionals working in PwC offices in Moscow, St Petersburg, Ekaterinburg, Kazan, Novosibirsk, Krasnodar, Yuzhno-Sakhalinsk and Vladikavkaz share their thinking, experience and solutions to develop fresh perspectives and practical advice for our clients. Global PwC network includes over 169,000 employees in 158 countries. PwC first appeared in Russia in 1913 and re-established its presence here in 1989. Since then, PwC has been a leader in providing professional services in Russia. According to the annual rating published in Expert magazine, PwC is the largest audit and consulting firm in Russia (see Expert, 2000-2011). This overview has been prepared in conjunction with and based on the materials provided by the Ministry of Economic Development of Chelyabinsk Region. This publication has been prepared for general guidance on matters of interest only, and does not constitute professional advice. You should not act upon the information contained in this publication without obtaining specific professional advice. No representation or warranty (express or implied) is given as to the accuracy or completeness of the information contained in this publication, and, to the extent permitted by law, PwC network, its members, employees and agents accept no liability, and disclaim all responsibility, for the consequences of you or anyone else acting, or refraining to act, in reliance on the information
    [Show full text]
  • BR IFIC N° 2611 Index/Indice
    BR IFIC N° 2611 Index/Indice International Frequency Information Circular (Terrestrial Services) ITU - Radiocommunication Bureau Circular Internacional de Información sobre Frecuencias (Servicios Terrenales) UIT - Oficina de Radiocomunicaciones Circulaire Internationale d'Information sur les Fréquences (Services de Terre) UIT - Bureau des Radiocommunications Part 1 / Partie 1 / Parte 1 Date/Fecha 22.01.2008 Description of Columns Description des colonnes Descripción de columnas No. Sequential number Numéro séquenciel Número sequencial BR Id. BR identification number Numéro d'identification du BR Número de identificación de la BR Adm Notifying Administration Administration notificatrice Administración notificante 1A [MHz] Assigned frequency [MHz] Fréquence assignée [MHz] Frecuencia asignada [MHz] Name of the location of Nom de l'emplacement de Nombre del emplazamiento de 4A/5A transmitting / receiving station la station d'émission / réception estación transmisora / receptora 4B/5B Geographical area Zone géographique Zona geográfica 4C/5C Geographical coordinates Coordonnées géographiques Coordenadas geográficas 6A Class of station Classe de station Clase de estación Purpose of the notification: Objet de la notification: Propósito de la notificación: Intent ADD-addition MOD-modify ADD-ajouter MOD-modifier ADD-añadir MOD-modificar SUP-suppress W/D-withdraw SUP-supprimer W/D-retirer SUP-suprimir W/D-retirar No. BR Id Adm 1A [MHz] 4A/5A 4B/5B 4C/5C 6A Part Intent 1 107125602 BLR 405.6125 BESHENKOVICHI BLR 29E28'13'' 55N02'57'' FB 1 ADD 2 107125603
    [Show full text]