Using Cross-Species Vaccination Approaches to Counter Emerging

Total Page:16

File Type:pdf, Size:1020Kb

Using Cross-Species Vaccination Approaches to Counter Emerging PERSPECTIVES adjuvant combinations to inform ‘go’ or ‘no- go’ decisions with regard to subsequent Using cross- species vaccination development of promising vaccine candidates (Fig. 1). approaches to counter emerging Most human infectious diseases have an animal origin, with more than 70% of infectious diseases emerging infectious diseases that affect humans initially crossing over from 8 George M. Warimwe , Michael J. Francis , Thomas A. Bowden, animals . Generating wider knowledge of how pathogens behave in animals can Samuel M. Thumbi and Bryan Charleston give indications of how to develop control Abstract | Since the initial use of vaccination in the eighteenth century, our strategies for human diseases, and vice understanding of human and animal immunology has greatly advanced and a wide versa. ‘One Health vaccinology’, a concept in which synergies in human and veterinary range of vaccine technologies and delivery systems have been developed. The immunology are identified and exploited COVID-19 pandemic response leveraged these innovations to enable rapid for vaccine development, could transform development of candidate vaccines within weeks of the viral genetic sequence our ability to control such emerging being made available. The development of vaccines to tackle emerging infectious infectious diseases. Due to similarities in diseases is a priority for the World Health Organization and other global entities. host–pathogen interactions, the natural More than 70% of emerging infectious diseases are acquired from animals, with animal hosts of a zoonotic infection may be the most appropriate model to study the some causing illness and death in both humans and the respective animal host. Yet disease and evaluate vaccine performance9. the study of critical host–pathogen interactions and the underlying immune This could result in a scenario where a mechanisms to inform the development of vaccines for their control is traditionally cross- species vaccine is feasible, such as done in medical and veterinary immunology ‘silos’. In this Perspective, we highlight Louis Pasteur’s live attenuated rabies vaccine 10 a ‘One Health vaccinology’ approach and discuss some key areas of synergy in that was protective in dogs and humans — although different products are now human and veterinary vaccinology that could be exploited to accelerate the used for rabies vaccination in humans and development of effective vaccines against these shared health threats. dogs11 — or our own group’s Rift Valley fever vaccine, which is in co-development Vaccination to control infectious diseases as common bottlenecks that influence for use in humans and multiple livestock has had a major direct impact on human the success of vaccine development species12. Effective control of zoonotic health and welfare and has also secured programmes6 (Fig. 1). However, there are diseases may require vaccination within food supply by improving animal health and differences in the complexity of the vaccine reservoir animal hosts to break transmission controlling zoonotic diseases. For instance, pipelines, largely due to the differing types to humans, and in humans to prevent childhood vaccination prevents more than of clinical data and regulatory requirements disease13, making One Health vaccinology 2 million deaths every year, with vaccination for licensure and the associated bottlenecks relevant for disease control policy. This coverage being a strong indicator of the that are unique to the animal or human strategy is already used for prevention incidence of vaccine-preventable diseases in vaccine pipeline6. One example is the and elimination of rabies, where mass dog humans (for example, measles, yellow fever need for vaccine safety and efficacy data vaccination remains the most cost-effective and polio)1. Similarly, veterinary vaccination as assessed by experimental infection strategy for breaking disease transmission to against endemic diseases increases survival of vaccinated and unvaccinated target humans14,15. However, due to the difficulty in and productivity in food- producing animals animal species in the veterinary field; in predicting spillover events for new infections such as cattle and poultry, with net gains in humans, phase II and phase III randomized from animals to humans16, implementing a disposable household income and access to controlled studies for estimation of cross- species vaccination programme may protein- rich animal source foods improving vaccine efficacy against natural exposure only be feasible where the domestic animal human nutrition2–5. However, despite these are used, although human infection reservoir of human infection is known and many other examples of vaccine impact, studies are now used for some vaccine (see Table 1 for some examples), but a very little interaction occurs between programmes7. Despite these differences, cost–benefit analysis would be necessary human and animal vaccine developers and the solutions to address bottlenecks in the to inform implementation. policymakers. animal and human vaccine development For non- zoonotic illnesses, the natural The development pipelines for human pipelines tend to be similar6. For instance, course of infection and acquisition of and animal vaccines are similar processes, optimizing the immunogenicity of vaccines, immunity against closely related pathogens including biological and scientific parallels whether in animals or in humans, involves may be similar between animals and in vaccine design and evaluation, as well iterative study of vaccination regimens or humans, allowing accelerated development NATURE REVIEWS | IMMUNOLOGY 0123456789();: PERSPECTIVES Human vaccine pipeline Preclinical study Phase I Phase I–III (10–15 years, ≥US$1 billion) (laboratory animals) (first-in- (large-scale human trial) population studies) Licensure and deployment Target product Immunogen GMP process Continuous safety monitoring profile design development (pharmacovigilance/phase IV studies) and manufacture Veterinary vaccine pipeline (3–6 years, ≥US$0.015 billion) Licensure and deployment Early-phase development Late-phase development/ (safety and efficacy in field trials natural disease host) (farm-level vaccine studies) Regulatory affairs and ethical approvals Fig. 1 | Vaccine development pipeline. The typical vaccine development pipeline is shown, starting from target product profiling to licensure and deployment. The respective stages and approximate costs for veterinary and human vaccines are shown. Although presented as a linear chronological process, some of the different stages of the pipeline for a ‘multispecies’ vaccine can occur in parallel. For instance, the candidate ChAdOx1 RVF vaccine against Rift Valley fever12 will soon undergo evaluation in human clinical trials in parallel with veterinary development, having been made with the same manufacturing starting material. GMP, good manufacturing practice. of vaccines that target similar protective relatedness for vaccine development and deployment of effective vaccines against mechanisms. For example, bovine and was the basis of the vaccine that was used for zoonotic diseases. We focus on comparative human respiratory syncytial viruses, which eradication of smallpox22. immunology, applications of current vaccine cause pneumonia in young calves and Early manufacture of Jenner’s smallpox technologies, and regulatory and operational children, respectively, are closely related vaccine involved serial propagation of the considerations for vaccine deployment. genetically and are targeted by the same cowpox virus in calves reared in ‘vaccine types of immune mechanisms, suggesting farms’23. Vaccine manufacture has advanced Immune systems of different species that vaccine strategies exploiting the same considerably but animal-sourced materials The overall structure and composition of the underlying mechanism of immunity may are still used for production of human innate and adaptive immune systems of work for both species17,18. The most widely vaccines; for example, embryonated chicken humans and animal species are broadly used human vaccine, bacille Calmette– eggs are routinely used for the manufacture similar, and comparing their responses Guérin (BCG) against tuberculosis, is of influenza and yellow fever vaccines24,25. to inoculation or infection with similar essentially an attenuated strain of the New highly scalable platform technologies antigens or pathogens can inform vaccine cattle- infecting bacterium Mycobacterium and delivery systems are accelerating vaccine development34. Allometric scaling is an bovis that is avirulent in a wide range of development such that it is now possible important consideration, and the body animal species19. BCG was developed to go from the pathogen genetic sequence size and physiology of livestock species through close collaboration between medical encoding an immunogen of choice to a are more similar to those of humans and veterinary practitioners more than vaccine candidate in a matter of weeks26. than to those of rodents. While rodents 100 years ago19, and the extensive experience Bioinformatic analyses, X- ray crystallography may be convenient for laboratory studies of its use in humans is now informing and cryo- electron microscopy continue due to the ready availability of specific vaccination strategies to control tuberculosis to be leveraged for the identification immunological reagents, lower purchase in cattle20. A recent study found that BCG and optimization of protective antigens and maintenance costs
Recommended publications
  • The Most Effective Tool to Prevent Human Brucellosis
    Chapter 13 Control of Animal Brucellosis — The Most Effective Tool to Prevent Human Brucellosis Marta Pérez-Sancho, Teresa García-Seco, Lucas Domínguez and Julio Álvarez Additional information is available at the end of the chapter http://dx.doi.org/10.5772/61222 Abstract The World Health Organization classifies brucellosis as one of the seven neglected en‐ demic zoonosis which contribute to the perpetuation of poverty in developing coun‐ tries. Although most of the developed countries are free from this important zoonosis, brucellosis has still a widespread distribution in the Mediterranean region, the Middle East, Central Asia, and parts of Latin America, making it a global problem. Nearly half a million of new cases of human brucellosis are reported each year around the world, in which animals (or products of animal origin) are the most likely source of infection. Brucella melitensis, the main etiologic agent of small ruminant brucellosis, is the most prevalent specie involved in cases of human disease in most parts of the world. Additionally, Brucella abortus (main responsible of bovine brucellosis) and Bru‐ cella suis (the most common etiological agent of porcine brucellosis) are often associat‐ ed with human brucellosis. In animal production, brucellosis has a strong economic impact due not only to its direct consequences (e.g., reproductive failures) but also to indirect loses (e.g., trade restrictions). The problem of brucellosis could be considered a clear example of the need for a “One World, One Health” strategy, given that the only approach to achieve its control and subsequent eradication is the cooperation be‐ tween public and animal health authorities.
    [Show full text]
  • Humanitarian Assistance for Wild Animals
    Thoughts Humanitarian Assistance for Wild Animals Kyle Johannsen argues that most wild animals live bad lives, and we should intervene in nature to improve their wellbeing When you read the title of this paper, what ergy, and attract the attention of predators, likely comes to mind is images of Koala by singing for prolonged periods of time. bears being rescued from bush fires, or of Being encumbered isn’t good for peacocks, injured raccoons and deer, being rehabili- and exposing themselves to danger isn’t tated after a hurricane. These are examples good for songbirds. Rather, the function of of humanitarian assistance for wild animals, heavy feathers and prolonged singing, is to but they’re not what this paper is primar- protect the birds’ genes by attracting mates. ily about. The need for humanitarian as- Mating, and reproducing, may be enjoy- sistance in the wild far exceeds the damage able for these animals, but surely evolution caused by natural disasters. Severe suffering would have facilitated these goals some oth- is pervasive in nature. It’s built into natural er way if the purpose of evolved traits were processes, and thus it’s the norm rather than to benefit the animals who have them. the exception. Since the purpose of evolution is to protect genes, you’d think that a parent’s evolved traits at least function to benefit Severe suffering is her children. Unfortunately, protecting an pervasive in nature animals’ genes doesn’t always benefit her children either. After all, many animals are r-strategists: they protect their genes Many people think that evolution is an by producing large numbers of offspring.
    [Show full text]
  • Professional Guidance for Animal Bites and Rabies Control
    December 6, 2004 MEMORANDUM TO: State Public Health Veterinarians State Epidemiologists State Veterinarians Other Parties Interested in Rabies Prevention and Control FROM: Mira J. Leslie, D.V.M., M.P.H, Co-Chair Compendium of Animal Rabies Prevention and Control Committee SUBJECT: Compendium of Animal Rabies Prevention and Control, 2005 The National Association of State Public Health Veterinarians (NASPHV) is pleased to provide the 2005 revision of the Compendium of Animal Rabies Prevention and Control for your use and for distribution to practicing veterinarians and officials in animal control, public health, wildlife management and agriculture in your state. This cover memo summarizes the changes that were made to the document this year. COMPENDIUM CHANGES The section Principles of Rabies Prevention and Control (formerly Part II) is now Part I of the document and Recommendations for Parenteral Rabies Vaccination Procedures is Part II. Part III: Rabies Vaccines Licensed and Marketed in the U.S., 2005 has been updated. The following feline combination vaccine products are no longer available: IMRAB 3 + Feline 3; IMRAB 3 +Feline 4; PUREVAX Feline 3/ Rabies+LEUCAT; ECLIPSE 3 + FeLV/R; ECLIPSE 4+FeLV/R; Fel-O-Guard 3+ FeLV/R; and Fel-O-Guard 4+FeLV/R. The definition of a rabies exposure in Part I.A.1. has been clarified and a new sentence is added to direct questions concerning possible rabies exposures to local and state public health authorities. During 2004, there were two recognized importations of rabid dogs into the United States, one from Puerto Rico (mongoose rabies variant that is readily transmitted dog-to-dog) and one from Thailand (canine rabies virus variant).
    [Show full text]
  • SEARG Report 2001
    W. H. O. PROCEEDINGS OF THE SOUTHERN AND EASTERN AFRICAN RABIES GROUP / WORLD HEALTH ORGANIZATION MEETING SUDAN ERITREA ETHIOPIA UGANDA RWANDA KENYA BURUNDI TANZANIA MALAWI ZAMBIA MOZAMBIQUE ZIMBABWE MADAGASCAR BOTSWANA NAMIBIA SWAZILAND LESOTHO SOUTH AFRICA LILONGWE, MALAWI – 18-22 JUNE 2001 Sixth SEARG meeting, Lilongwe 18-21 June 2001 Official opening CONTENTS OFFICIAL OPENING PROGRAMME OF THE MEETING .............................................................................................................................. 4 Southern and Eastern African Rabies Group conference Lilongwe MALAWI: 18 to 21 June 2001 ................... 4 OPENING SPEECH................................................................................................................................................... 7 OPENING SPEECH................................................................................................................................................... 9 OPENING SPEECH................................................................................................................................................. 10 COUNTRY REPORTS RABIES IN BOTSWANA......................................................................................................................................... 13 RABIES IN BURUNDI IN 1999 AND 2000............................................................................................................... 17 RABIES IN ERITREA ............................................................................................................................................
    [Show full text]
  • 1 WORLD SMALL ANIMAL VETERINARY ASSOCIATION 2015 VACCINATION GUIDELINES for the OWNERS and BREEDERS of DOGS and CATS WSAVA Vacci
    WORLD SMALL ANIMAL VETERINARY ASSOCIATION 2015 VACCINATION GUIDELINES FOR THE OWNERS AND BREEDERS OF DOGS AND CATS WSAVA Vaccination Guidelines Group M.J. Day (Chairman) School of Veterinary Sciences University of Bristol, United Kingdom M.C. Horzinek (Formerly) Department of Microbiology, Virology Division University of Utrecht, the Netherlands R.D. Schultz Department of Pathobiological Sciences University of Wisconsin-Madison, United States of America R. A. Squires James Cook University, Queensland, Australia 1 CONTENTS Introduction.......................................................................................3 Major infectious diseases of the dog and cat....................................5 The immune response......................................................................21 The principle of vaccination..............................................................29 Types of vaccine...............................................................................32 Drivers for change in vaccination protocols......................................35 Canine vaccination guidelines..........................................................37 Feline vaccination guidelines…………………………………………..46 Reporting of adverse reactions.........................................................51 Glossary of terms..............................................................................57 2 INTRODUCTION Vaccination of dogs and cats protects them from infections that may be lethal or cause serious disease. Vaccination is a safe and efficacious
    [Show full text]
  • Chapter 12 RABIES and CONTINUED MILITARY CONCERNS
    Rabies and Continued Military Concerns Chapter 12 RABIES AND CONTINUED MILITARY CONCERNS NICOLE CHEVALIER, DVM, MPH,* AND KARYN HAVAS, DVM, PhD† INTRODUCTION A Historical Perspective The US Military’s Involvement ETIOLOGY AND EPIDEMIOLOGY Rabies Virus Variants and Distribution Rabies-free Definition and Areas Rabies Transmission Process and Conditions CLINICAL REVIEW Clinical Signs of Rabies in Animals Diagnosis of Rabies in Animals Animal Management After Bites from Rabies Suspects Human Postexposure Treatment for Rabies PREVENTION AND CONTROL Animal Vaccination Human Vaccination Military Animal Bite Reports Surveillance RABIES IN AN OPERATIONAL ENVIRONMENT Difficulties Posed by Certain Animal Populations Stray Animal Control Efforts in Afghanistan and Iraq Global Lessons Learned About Stray Animal Control Measures INTERNATIONALLY SUPPORTED RABIES CONTROL PROGRAMS Rabies Surveillance Mass Parenteral Vaccination Oral Vaccination Population Management Euthanasia Human Preexposure Vaccination Human Postexposure Prophylaxis RABIES CONTROL IN FUTURE CONTIGENCY OPERATIONS SUMMARY *Lieutenant Colonel, Veterinary Corps, US Army; Veterinary Capabilities Developer, Directorate of Combat and Doctrine Development, 2377Greeley Road, Building 4011, Joint Base San Antonio-Fort Sam Houston, Texas 78234 †Major, Veterinary Corps, US Army; Veterinary Epidemiologist, US Army Public Health Command, Armed Forces Health Surveillance Center, 503 Robert Grant Avenue, Silver Spring, Maryland 20910 345 Military Veterinary Services INTRODUCTION A Historical Perspective
    [Show full text]
  • Review of Treatment of Generalised Tetanus in Dogs
    Review of treatment of generalised REVIEW tetanus in dogs Fawcett A*a,b, Irwin Pc *Corresponding author aFaculty of Veterinary Science, University of Sydney, Sydney, New South Wales 2006, Australia; [email protected] bSydney Animal Hospitals Inner West, 1A Northumberland Avenue, Stanmore, New South Wales 2048, Australia cCollege of Veterinary Medicine, School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia ABSTRACT This review paper investigates the published evidence for various therapeutic strategies commonly used in the management of generalised tetanus in dogs and cats. The level of the evidence for the efficacy of tetanus antitoxin administration, antimicrobial therapy, wound management and immunotherapy in companion animals was low, review articles citing case reports and small case series, rather than case-control, cohort studies or clinical trials. Untested extrapolation from published data on the treatment of people with tetanus frequently directs recommendations made for the management of tetanus in dogs and cats. There is a need for further studies and evidence-based guidelines for treatment of this condition in dogs and cats. Until then, clinical judgement is required by the veterinarian to determine appropriate treatment. Supportive care remains the mainstay of treatment. Aust Vet Pract 2014;44(1):574-578 INTRODUCTION Generalised tetanus is a rare but life-threatening neurologic disorder characterised by spastic paralysis, caused by tetanospasmin, a potent neurotoxin
    [Show full text]
  • Interim Clinical Considerations for North American Companion-Animal Vaccination Practice During the COVID-19 Pandemic Richard B
    Interim clinical considerations for North American companion-animal vaccination practice during the COVID-19 pandemic Richard B. Ford, DVM, MS, DACVIM, DACVPM (Hon), lead editor, 2017 AAHA Canine Vaccination Guidelines Link V. Welborn, DVM, DABVP, CCRT, chair, 2017 AAHA Canine Vaccination Guidelines Laurie J. Larson, DVM, task force member, 2017 AAHA Canine Vaccination Guidelines Amy Stone, DVM, PhD, chair, 2020 AAHA/AAFP Feline Vaccination Guidelines In the face of the global coronavirus pandemic, and as emphasis on social distancing and sheltering-in- place continue to limit client and patient access to routine veterinary care, the following considerations have been developed to address vaccination protocols for dogs and cats seen in clinical practice. At the time of this writing, it is not possible to predict when exposure risk for humans to the novel coronavirus SARS-CoV-2 will end. Therefore, it is the responsibility of the individual veterinarian to determine when conventional vaccination schedules can be reinstated for the population of patients seen in the practice. If pets are presented for vaccinations that are deemed a priority, other wellness care, including additional vaccinations as appropriate, could be provided as long as there is not an increased risk of coronavirus exposure for people. General considerations • The health and safety of veterinary personnel and clientele during the course of the COVID-19 pandemic is a priority. Therefore, amended vaccination schedules for dogs and cats should be considered. • The impact of social distancing and self-imposed travel restrictions on exposure risk of dogs and cats to infectious disease is not known. However, it can be assumed that certain groups, based on age, geography, and/or environment, do have sustained risk that justifies priority consideration for vaccination (see tables below).
    [Show full text]
  • Section IV: Preventive Medicine and Public Health Services
    Veterinary Support in the Irregular Warfare Environment Section IV: Preventive Medicine and Public Health Services A US Army veterinarian from the 490th Civil Affairs Battalion Functional Specialty Team and a community animal health worker (second from left) work together to treat a young camel during an 8-day Veterinary Civic Action Program in Negele, Ethiopia, August 23, 2011. Using deployed US veterinary personnel helps develop the host nation’s surveillance programs and laboratory capacity, which is not only critical to global zoonotic disease control and surveillance and preventive medicine programs, but also supports the concepts of One Health and nation-building. Photograph: by US Air Force Captain Jennifer Pearson. Reproduced from: https://www.army.mil/article/65682/helping_an_ ethiopian_community_survive_severe_drought. Accessed April 26, 2018. 273 Military Veterinary Services 274 Zoonotic and Animal Diseases of Military Importance Chapter 11 ZOONOTIC AND ANIMAL DISEASES OF MILITARY IMPORTANCE RONALD L. BURKE, DVM, DRPH; TAYLOR B. CHANCE, DVM; KARYN A. HAVAS, DVM, PHD; SAMUEL YINGST, DVM, PhD; PAUL R. FACEMIRE, DVM; SHELLEY P. HONNOLD, DVM, PhD; ERIN M. LONG, DVM; BRETT J. TAYLOR, DVM, MPH; REBECCA I. EVANS, DVM, MPH; ROBIN L. BURKE, DVM, MPH; CONNIE W. SCHMITT, DVM; STEPHANIE E. FONSECA, DVM; REBECCA L. BAXTER, DVM; MICHAEL E. MCCOWN, DVM, MPH; A. RICK ALLEMAN, DVM, PhD; KATHERINE A. SAYLER; LARA S. COTTE, DVM; CLAIRE A. CORNELIUS, DVM, PhD; AUDREY C. MCMILLAN-COLE, DVM, MPVM; KARIN HAMILTON, DVM, MPH; AND KELLY G. VEST, DVM,
    [Show full text]
  • La Vaccination : Enjeux Et Polémiques En Médecine Humaine Et Vétérinaire
    OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible This is an author’s version published in: https://oatao.univ-toulouse.fr/27564/ Fourcade, Océane . La vaccination : enjeux et polémiques en médecine humaine et vétérinaire. Thèse d'exercice, Médecine vétérinaire, Ecole Nationale Vétérinaire de Toulouse - ENVT, 2020, 178 p. Any correspondence concerning this service should be sent to the repository administrator: [email protected] ANNEE 2020 THESE : 2020 – TOU 3 – 4094 LA VACCINATION : ENJEUX ET POLEMIQUES EN MEDECINE HUMAINE ET VETERINAIRE _________________ THESE pour obtenir le grade de DOCTEUR VETERINAIRE DIPLOME D’ETAT présentée et soutenue publiquement devant l’Université Paul-Sabatier de Toulouse par FOURCADE Océane Née, le 27/09/1995 à TOULOUSE (31) ___________ Directrice de thèse : Mme Hélène DANIELS-TREFFANDER ___________ JURY PRESIDENT : M. Christophe PASQUIER Professeur à l’Université Paul-Sabatier de TOULOUSE ASSESSEURS : Mme Hélène DANIELS-TREFFANDER Maître de Conférences à l’Ecole Nationale Vétérinaire de TOULOUSE M. Stéphane BERTAGNOLI Professeur à l’Ecole Nationale Vétérinaire de TOULOUSE MEMBRE INVITEE : Mme Séverine BOULLIER Professeure à l’Ecole Nationale Vétérinaire de TOULOUSE Ministère de l'Agriculture et de l’Alimentation ECOLE NATIONALE VETERINAIRE DE TOULOUSE Directeur : Professeur Pierre SANS PROFESSEURS CLASSE EXCEPTIONNELLE M. BERTAGNOLI Stéphane, Pathologie infectieuse M. BOUSQUET-MELOU Alain, Pharmacologie - Thérapeutique Mme CHASTANT-MAILLARD Sylvie, Pathologie de la Reproduction Mme CLAUW Martine, Pharmacie-Toxicologie M. CONCORDET Didier, Mathématiques, Statistiques, Modélisation M DELVERDIER Maxence, Anatomie Pathologique M. ENJALBERT Francis, Alimentation Mme GAYRARD-TROY Véronique, Physiologie de la Reproduction, Endocrinologie M.
    [Show full text]
  • Antibody Response to Canine Adenovirus-2 Virus Vaccination in Healthy Adult Dogs
    viruses Article Antibody Response to Canine Adenovirus-2 Virus Vaccination in Healthy Adult Dogs Michèle Bergmann 1,*, Monika Freisl 1, Yury Zablotski 1, Stephanie Speck 2, Uwe Truyen 2 and Katrin Hartmann 1 1 Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, Veterinaerstrasse 13, 80539 Munich, Germany; [email protected] (M.F.); [email protected] (Y.Z.); [email protected] (K.H.) 2 Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, An den Tierkliniken 1, 04103 Leipzig, Germany; [email protected] (S.S.); [email protected] (U.T.) * Correspondence: [email protected]; Tel.: +49-2180-2651 Received: 27 August 2020; Accepted: 16 October 2020; Published: 21 October 2020 Abstract: Background: Re-vaccination against canine adenovirus (CAV) is performed in 3-year-intervals but its necessity is unknown. The study determined anti-CAV antibodies within ≤ 28 days of re-vaccination and factors associated with the absence of antibodies and vaccination response. Methods: Ninety-seven healthy adult dogs (last vaccination 12 months) were re-vaccinated ≥ with a modified live CAV-2 vaccine. Anti-CAV antibodies were measured before vaccination (day 0), and after re-vaccination (day 7, 28) by virus neutralization. A 4-fold titer increase was defined ≥ as vaccination response. Fisher’s exact test and multivariate regression analysis were performed to determine factors associated with the absence of antibodies and vaccination response. Results: Totally, 87% of dogs (90/97; 95% CI: 85.61–96.70) had anti-CAV antibodies ( 10) before re-vaccination.
    [Show full text]
  • Human Rabies Encephalitis Prevention and Treatment: Progress Since Pasteur’S Discovery Laurent Dacheux, Olivier Delmas, Hervé Bourhy
    Human rabies encephalitis prevention and treatment: progress since Pasteur’s discovery Laurent Dacheux, Olivier Delmas, Hervé Bourhy To cite this version: Laurent Dacheux, Olivier Delmas, Hervé Bourhy. Human rabies encephalitis prevention and treat- ment: progress since Pasteur’s discovery. Infectious Disorders - Drug Targets, Bentham Science Publishers, 2011, 11 (3), pp.251–299. 10.2174/187152611795768079. pasteur-01491353 HAL Id: pasteur-01491353 https://hal-pasteur.archives-ouvertes.fr/pasteur-01491353 Submitted on 21 Apr 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike| 4.0 International License TITLE Human Rabies Encephalitis Prevention and Treatment: Progress Since Pasteur’s Discovery RUNNING TITLE Prevention and Treatment of Human Rabies Received 3 November 2010; revised 24 December 2010; accepted 10 January 2011. 1/115 ABSTRACT Rabies remains one of the most ancient and deadly of human infectious diseases. This viral zoonosis is transmitted principally by the saliva of infected dogs, inducing a form of encephalomyelitis that is almost invariably fatal. Since the first implementation, by Louis Pasteur in 1885, of an efficient preventive post-exposure treatment, more effective protocols and safer products have been developed, providing almost 100% protection if administered early enough.
    [Show full text]