Phylogeny of the Genus Agaricus Inferred from Restriction Analysis of Enzymatically Amplified Ribosomal DNA
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Comparative Nutrient Composition of Selected Wild Edible Mushrooms from Two Agro‑Ecological Zones, Uganda
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector Nakalembe et al. SpringerPlus (2015) 4:433 DOI 10.1186/s40064-015-1188-z RESEARCH Open Access Comparative nutrient composition of selected wild edible mushrooms from two agro‑ecological zones, Uganda Immaculate Nakalembe1*, John David Kabasa2 and Deogratias Olila3 *Correspondence: immynakalembe@covab. Abstract mak.ac.ug In Uganda, wild mushrooms are mainly collected during the rainy season and valued 1 Department of Biomolecular Resources as a traditionally nutritious food by the rural poor. However, their nutritional attributes and Biolaboratory Sciences, have not been adequately studied and documented. Comparative nutrient composi- Makerere University, P. O. tion of five wild edible mushroom species was determined, namely: P. tenucuilus, T. Box 7062, Kampala, Uganda Full list of author information tyleranus, T. clypeatus, V. speciosa and T. microcarpus of sub-humid and humid agro- is available at the end of the ecological zones. Standard analytical techniques following the AOAC were used for article proximate and mineral contents determinations. Vitamins determination followed the established standard protocols of the laboratories where the analyses were conducted. Combined use of nutrient concentration and scores were used to compare the level of the contents in the mushroom species. Significant differences (p < 0.05) in nutrient values were demonstrated between and among the mushroom species obtained from the two agro-ecological zones. On dry weight basis, all proximate compositions were high in mushroom species obtained from the humid zone with exception of the total carbohydrates and energy values. Irrespective of the source of the mushrooms, signifi- cant amounts were demonstrated in protein, dry matter, ash and total carbohydrates ranging between 11.56–27.42%, 82.34–99.76%, 10.79–16.87%, and 37.12–61.05%, respectively. -
SP398 for PDF.P65
BULLETIN OF THE PUGET SOUND MYCOLOGICAL SOCIETY Number 398 January 2004 MUSHROOM ODORS R. G. Benedict & D. E. Stuntz growth of bacteria or fungi. One such antibiotic is Diatretyn I, Pacific Search, September 1975 found in Clitocybe diatreta. Some of these chemicals are unstable and release acetylene when they decompose. The sharp orders of Continued from December 2003 Clitocybe inversa and Ripartites helomorpha, especially when wet, The pronounced smell of green corn, not yet chemically defined, are probably due to the decomposition of polyacetylenic com- occurs in the poisonous Inocybe sororia and Inocybe species pounds present. #3399. It is also detected in Cortinarius superbus and Cystoderma Hebeloma crustuliniforme and H. mesophaeum possess a nau- amianthinum. seous combination of radish and the odious organic solvent, pyri- Few species of amanitas have telltale aromas, but one with a sprout- dine. The pretty, lavender-colored Mycena pura and the halluci- ing-potato odor is Amanita porphyria, a non-edible form. The nogenic Psilocybe cyanescens have a mild radish scent. chances of picking a white-gilled, white-spored, potato-scented, As coal is converted to coke, the coal gas vapors contain many mushroom that is not A. porphyria are rare. Mushrooms with simi- odious chemicals in addition to odor-free methane and hydrogen lar odor are Volvariella speciosa and Pluteus cervinus. Both have gases. Mushroom scents arising from Tricholoma inamoenum, T. pink gills and spores, but P. cervinus lacks a volva at the base of sulphureum, and Lepiota bucknallii are said to resemble those in the stem. the unpurified mixture of vapors. Cucumber, farinaceous, and rancid-linseed-oil odors are found in Stinkhorns are highly specialized fleshy fungi with the nauseat- numerous mushrooms. -
Pt Reyes Species As of 12-1-2017 Abortiporus Biennis Agaricus
Pt Reyes Species as of 12-1-2017 Abortiporus biennis Agaricus augustus Agaricus bernardii Agaricus californicus Agaricus campestris Agaricus cupreobrunneus Agaricus diminutivus Agaricus hondensis Agaricus lilaceps Agaricus praeclaresquamosus Agaricus rutilescens Agaricus silvicola Agaricus subrutilescens Agaricus xanthodermus Agrocybe pediades Agrocybe praecox Alboleptonia sericella Aleuria aurantia Alnicola sp. Amanita aprica Amanita augusta Amanita breckonii Amanita calyptratoides Amanita constricta Amanita gemmata Amanita gemmata var. exannulata Amanita calyptraderma Amanita calyptraderma (white form) Amanita magniverrucata Amanita muscaria Amanita novinupta Amanita ocreata Amanita pachycolea Amanita pantherina Amanita phalloides Amanita porphyria Amanita protecta Amanita velosa Amanita smithiana Amaurodon sp. nova Amphinema byssoides gr. Annulohypoxylon thouarsianum Anthrocobia melaloma Antrodia heteromorpha Aphanobasidium pseudotsugae Armillaria gallica Armillaria mellea Armillaria nabsnona Arrhenia epichysium Pt Reyes Species as of 12-1-2017 Arrhenia retiruga Ascobolus sp. Ascocoryne sarcoides Astraeus hygrometricus Auricularia auricula Auriscalpium vulgare Baeospora myosura Balsamia cf. magnata Bisporella citrina Bjerkandera adusta Boidinia propinqua Bolbitius vitellinus Suillellus (Boletus) amygdalinus Rubroboleus (Boletus) eastwoodiae Boletus edulis Boletus fibrillosus Botryobasidium longisporum Botryobasidium sp. Botryobasidium vagum Bovista dermoxantha Bovista pila Bovista plumbea Bulgaria inquinans Byssocorticium californicum -
<I>Hygrocybe</I>
ISSN (print) 0093-4666 © 2013. Mycotaxon, Ltd. ISSN (online) 2154-8889 MYCOTAXON http://dx.doi.org/10.5248/123.91 Volume 123, pp. 91–93 January–March 2013 Eight new combinations and a replacement name in the genus Hygrocybe Alan E. Bessette*, Arleen R. Bessette, William C. Roody & Walter E. Sturgeon * Correspondence to: [email protected] Abstract — Eight invalidly published combinations and one nomen novum in the genus Hygrocybe are validated in this paper. Key words — Hygrophorus, valid publication In Waxcap Mushrooms of Eastern North America (Bessette et al. 2012), eleven Hygrophorus names were invalidly transferred into the genus Hygrocybe because they lacked full and direct basionym references. Three of these eleven taxa (H. murina, H. conica var. atrosanguinea and H. pratensis var. robusta) had previously been validly combined by Malloch (2010). The remaining eight combinations are validated here. According to current interpretations of Hygrocybe by Bon (1976), Pegler (1983), Singer (1986), Young & Wood (1997), Young (2005), and Boertmann (2010), all these taxa should be transferred based on both their macroscopic characters and micromorphology. It should, however, be noted that the genus Hygrocybe currently is under revision based on molecular information, and that significant changes in the taxonomy are expected (Lodge et al. 2006, Boertmann 2010). Each of the taxa for which we propose a new combination has slender basidia, parallel to interwoven hymenophoral trama, and a pileipellis that is a cutis. Several of these taxa have been cited as Hygrocybe species in mushroom club newsletters and species lists as well as in the literature (e.g., Arora 1986, Barron 1999) without a valid combination (Boertmann 2002). -
First Cultivation of Agaricus Flocculosipes and a Novel Thai Strain of A
Mycosphere 5 (6): 814–820 (2014) ISSN 2077 7019 www.mycosphere.org Article Mycosphere Copyright © 2014 Online Edition Doi 10.5943/mycosphere/5/6/11 First cultivation of Agaricus flocculosipes and a novel Thai strain of A. subrufescens Thongklang N 1, 2, Sysouphanthong P 3, Callac P 4 and Hyde KD 1,2 1School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand 2Institute of Excellence in Fungal Research, and School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand 3Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, China 4UR 1264, Mycologie et Sécurité des Aliments, 33883 Villenave d’ Ornon, France Thongklang N, Sysouphanthong P, Callac P, Hyde KD 2014 – First cultivation of Agaricus flocculosipes and a novel Thai strain of A. subrufescens. Mycosphere 5(6), 814–820, Doi 10.5943/mycosphere/5/6/11 Abstract Agaricus flocculosipes and A. subrufescens are edible species that belong to section Arvenses of the genus Agaricus. Agaricus subrufescens (almond mushroom) is known to produce bioactive compounds with medicinal properties, such as anti-cancer and anti-tumor activity and fruiting bodies are also edible and nutritious. Agaricus subrufescens is presently cultivated in Brazil, China, Japan, Taiwan and some European countries for use as foods and nutraceuticals. Agaricus flocculosipes is a newly described species currently known only from Thailand, Mayotte Island and China. Species of Agaricus have high potential for cultivation as many species are edible and have medicinal properties. Herein we report the first cultivation of A. flocculosipes and a Thai strain of A. -
Cultivation of Agaricus Blazei on Pleurotus Spp. Spent Substrate
939 Vol.53, n. 4: pp. 939-944, July-August 2010 BRAZILIAN ARCHIVES OF ISSN 1516-8913 Printed in Brazil BIOLOGY AND TECHNOLOGY AN INTERNATIONAL JOURNAL Cultivation of Agaricus blazei on Pleurotus spp . Spent Substrate Regina Maria Miranda Gern 1*, Nelson Libardi Junior 2, Gabriela Nunes Patrício 3, Elisabeth Wisbeck 2, Mariane Bonatti Chaves 2 and Sandra Aparecida Furlan 2 1Departamento de Ciências Biológicas; Universidade da Região de Joinville; C. P.: 246; Campus Universitário s/n; 89201-972; Joinville - SC - Brasil. 2Departamento de Engenharia Ambiental; Universidade da Região de Joinville; 3Departamento de Química Industrial; Universidade da Região de Joinville; Joinville - SC - Brasil ABSTRACT The aim of this work was the use of Pleurotus ostreatus and Pleurotus sajor-caju for the previous lignocellulolytic decomposition of banana tree leaf straw and the further use of the degraded straw as substrate for the culture of Agaricus blazei. For optimising the production of A. blazei in terms of yield (Y%) and biological efficiency (BE%), adjustments to the composition of the substrate were evaluated in a 2 5 experimental design. The following components were tested in relation to % of substrate dry mass: urea (1 and 10%), rice bran (10 or 20%) or ammonium sulphate (0 or 10%), inoculum (10 or 20%) and the casing material (subsoil or burned rice husks). The best results (79.71 Y% and 6.73 BE%) were found when the substrate containing 10% of rice bran, without ammonium sulphate, inoculated with 20% and covered with subsoil was used. Key words : Agro-industrial Wastes, Basidiomycetes, Edible Mushrooms, Fungi, Lignocellulosic Degradation, Solid State Fermentation INTRODUCTION maize, sugar-cane bagasse, coffee pulp, banana leaves, agave wastes, soy pulp etc) (Patrabansh The culture of edible and medicinal mushrooms and Madan 1997; Obodai et al. -
Chemical Elements in Ascomycetes and Basidiomycetes
Chemical elements in Ascomycetes and Basidiomycetes The reference mushrooms as instruments for investigating bioindication and biodiversity Roberto Cenci, Luigi Cocchi, Orlando Petrini, Fabrizio Sena, Carmine Siniscalco, Luciano Vescovi Editors: R. M. Cenci and F. Sena EUR 24415 EN 2011 1 The mission of the JRC-IES is to provide scientific-technical support to the European Union’s policies for the protection and sustainable development of the European and global environment. European Commission Joint Research Centre Institute for Environment and Sustainability Via E.Fermi, 2749 I-21027 Ispra (VA) Italy Legal Notice Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication. Europe Direct is a service to help you find answers to your questions about the European Union Freephone number (*): 00 800 6 7 8 9 10 11 (*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed. A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server http://europa.eu/ JRC Catalogue number: LB-NA-24415-EN-C Editors: R. M. Cenci and F. Sena JRC65050 EUR 24415 EN ISBN 978-92-79-20395-4 ISSN 1018-5593 doi:10.2788/22228 Luxembourg: Publications Office of the European Union Translation: Dr. Luca Umidi © European Union, 2011 Reproduction is authorised provided the source is acknowledged Printed in Italy 2 Attached to this document is a CD containing: • A PDF copy of this document • Information regarding the soil and mushroom sampling site locations • Analytical data (ca, 300,000) on total samples of soils and mushrooms analysed (ca, 10,000) • The descriptive statistics for all genera and species analysed • Maps showing the distribution of concentrations of inorganic elements in mushrooms • Maps showing the distribution of concentrations of inorganic elements in soils 3 Contact information: Address: Roberto M. -
Trail Key to Common Agaricus Species of the Central California Coast
Trial Key to Common Agaricus Species of the Central California Coast* By Fred Stevens A. Cap and stipe lacking color changes when cut or bruised, odors not distinctive; not yellowing with KOH (3% potassium hydroxide). Also keyed out here are three species with faint or atypical color reactions: Agaricus hondensis and A. californicus which yellow faintly when bruised or with KOH, and Agaricus subrutilescens, which has a cap context that turns greenish with KOH. ......................Key A AA. Cap and stipe flesh reddening or yellowing when bruised or injured, the yellowing reaction enhanced with KOH; odors variable from that of anise, phenol, brine, to that of “mushrooms.” ........ B B. Cap and stipe context reddish-brown, orange-brown to pinkish- brown when cut or injured; not yellowing in KOH with one exception: the cap and context of Agaricus arorae, turns pinkish-brown when cut, but also yellows faintly with KOH, this species is also keyed out here. ...Key B BB. Cap and stipe yellowing when bruised, either rapidly or slowly; yellowing also with KOH; odor either pleasant of anise or almonds, or unpleasant, like that of phenol ............................... C C. Cap margin and/or stipe base yellowing rapidly when bruised, but soon fading; odor unpleasant, phenolic or like that of library paste; yellowing reaction enhanced with KOH, but not strong in Agaricus hondensis and A. californicus; .........................Key C CC. Cap and stipe yellowing slowly when bruised, the color change persistent; odor pleasant: of anise, almonds, or “old baked goods;” also yellowing with KOH; .............................. Key D 1 Key A – Species lacking obvious color changes and distinctive odors A. -
Small Scale Mushroom Production Agaricus Bisporus
Small Scale Mushroom Production Agaricus bisporus VEGETABLE CROPS PRODUCTION GUIDE FOR THE ATLANTIC PROVINCES Prepared by the ADVISORY COMMITTEE ON VEGETABLE CROPS Published by authority of the ATLANTIC PROVINCES AGRICULTURE SERVICES CO-ORDINATING COMMITTEE Introduction Successful mushroom growing involves overcoming difficulties such as temperature and humidity control, pest control and compost preparation. The amateur mushroom grower should recognize that most basements do not provide ideal conditions for good growth. Mushroom production is a difficult task at the best of times. This publication is intended to provide useful tips in order to increase the rate of success of growing mushrooms. Location For the amateur, mushrooms are usually planted in the fall and the best location is the cellar, basement or a barn or any tight, light-proof, well ventilated and insulated building. The following conditions should be met: 1.Air temperatures controlled between 13/C and 21/C. 2.Relative humidities between 80-95 %. A corner of the basement can be partitioned off by the use of a polyethylene divider. This will help to maintain proper humidity levels. A plastic hood placed over the growing bed is a second alternative. Do not place beds where direct sunlight will fall on them. Ventilation is useful to remove offensive odors. Where temperatures cannot be maintained, supplementary heat is necessary. Mushroom beds are usually 120-150 cm wide, 15-20 cm deep and as long as you wish. Boards that form the bottom should not be over 15-20 cm wide, leaving 2 cm to 4 cm cracks between them for ventilation. Several tiers can be made approximately 60 cm apart. -
Catalogue of Fungus Fair
Oakland Museum, 6-7 December 2003 Mycological Society of San Francisco Catalogue of Fungus Fair Introduction ......................................................................................................................2 History ..............................................................................................................................3 Statistics ...........................................................................................................................4 Total collections (excluding "sp.") Numbers of species by multiplicity of collections (excluding "sp.") Numbers of taxa by genus (excluding "sp.") Common names ................................................................................................................6 New names or names not recently recorded .................................................................7 Numbers of field labels from tables Species found - listed by name .......................................................................................8 Species found - listed by multiplicity on forays ..........................................................13 Forays ranked by numbers of species .........................................................................16 Larger forays ranked by proportion of unique species ...............................................17 Species found - by county and by foray ......................................................................18 Field and Display Label examples ................................................................................27 -
Comparison of Nutrient Contents and Antimicrobial Properties of Pleurotus Djamor, Agaricus Bisporus and Ganoderma Tsugae
Int.J.Curr.Microbiol.App.Sci (2014) 3(6): 518-526 ISSN: 2319-7706 Volume 3 Number 6 (2014) pp. 518-526 http://www.ijcmas.com Original Research Article Comparison of Nutrient Contents and Antimicrobial Properties of Pleurotus djamor, Agaricus bisporus and Ganoderma tsugae K.Dharmaraj1*, T. Kuberan2 and R. Mahalakshmi2 1Post Graduate Department of Botany, Ayya Nadar Janaki Ammal College, Sivakasi 626 124, Tamil Nadu, India 2Cybermonk Lifescience Solution, Srivilliputtur 626 125, Tamil Nadu, India *Corresponding author A B S T R A C T The edible mushrooms of pleurotus djamor, Agaricus bisporus and non-edible mushroom Ganoderma tsugae were used for in this study. The dry weight, nutrient contents and antimicrobial activity was studied in edible and non-edible mushrooms. The dry weight of the mushroom was analysed and it was found in the range of 11-16 gm/100gm.the maximum dry weight observed in Ganoderma K e y w o r d s tsugae (16.1 gm/100gm) followed by Agaricus bisporus (14.3 gm/100gm) The maximum nutrient content was observed in Agaricus bisporus and the minimum Mushroom, amount of nutrient content was observed in Ganoderma tsugae. The maximum pathogen, amount of protein (32.0 mg/gm), glucose (13.2 mg/gm) and free amino acid (5.2 inhibition, mg/gm) content was observed in the Agaricus bisporus and the trace amount of antibacterial was observed in Ganoderma tsugae. The antimicrobial activity was studied by the mushroom extracts (acetone and dimethyl sulfoxide) of Pleurotus djamor, Agaricus bisporus and Ganoderma tsugae against the pathogenic bacteria such as Escherichia coli and Pseudomonas aeruginosa. -
Redalyc.Characterisation and Cultivation of Wild Agaricus Species from Mexico
Micología Aplicada International ISSN: 1534-2581 [email protected] Colegio de Postgraduados México Martínez Carrera, D.; Bonilla, M.; Martínez, W.; Sobal, M.; Aguilar, A.; Pellicer González, E. Characterisation and cultivation of wild Agaricus species from Mexico Micología Aplicada International, vol. 13, núm. 1, january, 2001, pp. 9-24 Colegio de Postgraduados Puebla, México Available in: http://www.redalyc.org/articulo.oa?id=68513102 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative MICOLOGIAW AILDPLICADA AGARICUS INTERNATIONAL SPECIES FROM, 13(1), MEXICO 2001, pp. 9-249 © 2001, PRINTED IN BERKELEY, CA, U.S.A. www.micaplint.com CHARACTERISATION AND CULTIVATION OF WILD AGARICUS SPECIES FROM MEXICO* D. MARTÍNEZ-CARRERA, M. BONILLA, W. MARTÍNEZ, M. SOBAL, A. AGUILAR AND E. PELLICER-GONZÁLEZ College of Postgraduates in Agricultural Sciences (CP), Campus Puebla, Mushroom Biotechnology, Apartado Postal 701, Puebla 72001, Puebla, Mexico. Fax: 22-852162. E-mail: [email protected] Accepted for publication October 12, 2000 ABSTRACT Germplasm preservation and genetic improvement of authentic wild species is fundamental for developing the mushroom industry of any country. In Mexico, strains of wild Agaricus species were isolated from diverse regions. Ten species were tentatively identified on the basis of fruit-body morphology: A. abruptibulbus Peck, A. albolutescens Zeller, A. augustus Fries, A. bisporus var. bisporus (Lange)Imbach, A. bitorquis (Quél.)Sacc., A. campestris Link : Fries, A. hortensis (Cooke)Pilàt, A. osecanus Pilát, A.