Ring 18 Molecular Assessment and Clinical Consequences Erika Carter,1 Patricia Heard,1 Minire Hasi,1 Bridgette Soileau,1 Courtney Sebold,1,2 Daniel E

Total Page:16

File Type:pdf, Size:1020Kb

Ring 18 Molecular Assessment and Clinical Consequences Erika Carter,1 Patricia Heard,1 Minire Hasi,1 Bridgette Soileau,1 Courtney Sebold,1,2 Daniel E RESEARCH ARTICLE Ring 18 Molecular Assessment and Clinical Consequences Erika Carter,1 Patricia Heard,1 Minire Hasi,1 Bridgette Soileau,1 Courtney Sebold,1,2 Daniel E. Hale,1 and Jannine D. Cody1,2* 1Department of Pediatrics, University of Texas Health Science Center, San Antonio, Texas 2Chromosome 18 Registry and Research Society, San Antonio, Texas Manuscript Received: 4 April 2014; Manuscript Accepted: 12 September 2014 Ring chromosome 18 is a rare condition which has predomi- nantly been described by case reports and small case series. We How to Cite this Article: assessed a cohort of 30 individuals with ring 18 using both Carter E, Heard P, Hasi M, Soileau B, microarray comparative genomic hybridization (aCGH) and Sebold C, Hale DE, Cody JD. 2015. Ring 18 fluorescence in situ hybridization (FISH). We determined that molecular assessment and clinical each participant had a unique combination of hemizygosity for consequences. the p and q arms. Four ring chromosomes had no detectable deletion of one of the chromosome arms using aCGH. However, Am J Med Genet Part A 167A:54–63. two of these ring chromosomes had telomeric sequences detected using FISH. These data confirm the importance of molecular and cytogenetic analysis to determine both chromosome content and Genest et al., 1963]. The presumption was that ring chromo- morphology. We failed to find dramatic changes in mosaicism somes were formed by the joining of the two ends of the percentage between cytogenetic measurements made at the time normally linear chromosome. Thus, a ring formation led to a of diagnosis and those made years later at the time of this study, netlossofmaterialfrombothendsofthechromosome.Asearly demonstrating that dynamic ring mosaicism is unlikely to be a as 1963, de Grouchy [1965] appreciated that individuals with major cause of phenotypic variability in the ring 18 population. ring 18 had a composite phenotype of 18p- and 18q- [1963]. Lastly, we present data on the clinical features present in our Additionally, he noted that the variable phenotype between cohort, though the extreme genotypic variability makes it im- patients with ring 18 indicated that different individuals had possible to draw direct genotype-phenotype correlations. Future different degrees of hemizygosity for each chromosome arm, work will focus on determining the role of specific hemizygous even predicting that the gene for aural atresia would be on distal genes in order to create individualized projections of the effect of 18q. Forty-nine years later the gene for aural atresia was indeed each person’s specific ring 18 compliment. identified at 18q23 [Feenstra et al., 2011]. Ó 2014 Wiley Periodicals, Inc. A unique feature of ring chromosomes in comparison with other types of derivative chromosomes is their dynamic quality. In Key words: chromosome 18; ring chromosome 18; mosaicism humans, as in maize and Drosophila, ring chromosomes appear to be unstable, generating multiple mitotically derivative cell lines within any one individual. Ring stability after successive mitoses was more recently investigated in vitro [Sodre´ et al., 2010]. In cultured cells from six patients with a ring chromosome, the percent INTRODUCTION of cells with a karyotype of 46,r(N) was reduced over time and the percent of cells monosomic for the ring chromosome or containing Although ring chromosomes have long been appreciated in maize a derivative of the ring chromosome was increased at the second [McClintock, 1932] and Drosophila [Morgan 1933], knowledge of time point. their existence in human cells was limited to irradiated cell lines or tumor cells until 1962. In the next two years,several groups reported individuals with constitutional ring chromosomes [Lindsten and Conflict of interest: none. ÃCorrespondence to: Tillinger, 1962; Wang et al., 1962; Genest et al., 1963]. Since then Janine D Cody, Department of Pediatrics, UT Health Science Center, ring chromosomes have been described originating from all human 7703 Floyd Curl rive, San Antonio, TX 78229. chromosomes [Kosztolanyi 2009]. E-mail: [email protected] Ring chromosome 18 was among the first to be identified in Article first published online in Wiley Online Library humans. In fact, patients in two of the first three human ring (wileyonlinelibrary.com): 22 October 2014 chromosome reports likely had ring 18 [Wang et al., 1962; DOI 10.1002/ajmg.a.36822 Ó 2014 Wiley Periodicals, Inc. 54 CARTER ET AL. 55 In addition to variable chromosome arm hemizygosity and resolution array comparative genomic hybridization (aCGH) in mosaicism, it has been appreciated that the formation of the conjunction with FISH to determine if there were unique properties ring chromosome itself often resulted in duplications just proximal of ring chromosome18 such as breakpoint clusters which might to the deletion breakpoint in 21% of ring chromosome cases [Rossi guide future work to identify dosage sensitive genes and direct et al., 2008]. This phenomenon was first described by Ballif et al. clinical management. [2003] in the formation of human terminal deletions of chromo- some 1p. We have also reported this phenomenon in individuals METHODS with 18q deletions [Heard et al., 2009 Cody et al., 2014]. These data imply that the mechanism of formation of a ring chromosome and a Participants are enrolled in a longitudinal study of individuals with terminal deletion may be similar. chromosome 18 abnormalities at the Chromosome 18 Clinical Determining the phenotypic effects of a ring chromosome is thus Research Center. The study has been approved by the Institutional complicated by multiple factors, including the variable extent and Review Board of the University of Texas Health Science Center at location of hemizygosity, the presence of duplications within the San Antonio. All participants have provided informed consent for ring, somatic mosaicism, and ring instability. their participation. A criterion for enrollment is the submission of Although there have been numerous case reports and small series the original cytogenetic and/or cytogenomic diagnostic laboratory of individuals with Ring 18, these individual reports use a variety of report. Additional medical records are also collected, abstracted, techniques and technologies to assess genotype, making these data and entered into our database. incomplete and difficult to compile and compare. We wished to Blood samples were obtained from the affected individual and assess our large cohort of individuals with ring 18 using a high his/her biological parents for chromosome preparations, DNA FIG. 1. Molecular analysis of the content of 30 ring chromosomes. These data are presented as custom tracks in the UCSC Genome Bowser. Across the top of the figure, the red box around the chromosome ideogram indicates that the image below includes the entire length of the chromosome. Below the ideogram, each horizontal (gold) bar indicates the intact region of each participant’s chromosome 18. At the end of each bar is a darker region indicating the breakpoint region. In most cases this region is too small to be visible in this figure. Regions present in duplicate are indicated by the darker (red) bars. The participant numbers are listed down the left hand side. The thick vertical bars indicated the location of the centromere. The parental origin for those on whom we could gather the data is aligned with each individual’s molecular data. Individuals whose telomeres were detected by FISH are indicated by the star at the telomere position. Several regions with clinical significance are indicated by the bracketed regions. 56 TABLE I. Cytogenetic and Molecular Findings % of cells with each type of chromosome 18 compliment 18, 18 18,0 18, 18, 18, 18, Type of derivative aCGH breakpoints Parental origin of ring Study # (normal) r(18) r(18)X2 r(18)X3 der(18) chromosome determined chromosome 1 100 xP 2 100 xM 3 100 x 8 100 x 11 100 p and q prox dups P 12 100 q prox dup M 19 100 xP 21 100 xP 22 100 x 23 100 xM 24 100 q prox dup 26 100 x 27 100 x 29 100 x 30 100 x 32 100 q prox dup 51387 xM 7 793 xP 9 694 p prox dup P 10 397 x 13 15 85 xM 14 694 x AMERICAN JOURNAL OF MEDICAL GENETICS 16 15 85 xP 17 11 82 4 3 x 4 90 10 18p- p prox dup P 6 90 10 18p- x M 15 81 18 9% double ring and 9% 2 xP double rings 20 52 48 inv18 q prox dup P 25 11 13 76 4 cell lines/3 mar no identifiable deletion chromosomes 28 56 11 33 no identifiable deletion Mosaicism numbers in bold italic are from our studies. Other mosaicism data are from the diagnostic cytogenetic report. x indicates that hemizygosity was determined using aCGH. The numbers in bold italics are our laboratory’s data as opposed to data from our participants medical records. PART A CARTER ET AL. 57 isolation, and creation of immortalized cell lines. Genotyping was performed on DNA from a peripheral blood samples by microarray comparative genomic hybridization (aCGH) using the Agilent system and a custom oligonucleotide array containing 32,000 oligonucleotides across chromosome 18 and 12,000 across the remainder of the genome as previously described [Heard et al., 2009]. Parental origin of the abnormal chromosome was also determined as previously described using PCR-based poly- morphic microsatellites [Heard et al., 2009]. Mosaicism studies were performed on interphase cells and metaphase nuclei from PHA-stimulated lymphocyte cultures from peripheral blood samples by fluorescence in situ hybridization (FISH) analysis using Vysis CEP 18 (a satellite), Telvysion 18p and 18q probes (Abbott Molecular Inc., Des Plaines, IL). Hybridization and post-hybridization washes were performed according to the manufacturer’s protocol and the signals were enumerated using a fluorescence microscope. In order to determine the levels of mosaicism in participants without previous mosaicism studies, one hundred metaphase nuclei were analyzed using centromeric and telomeric probes.
Recommended publications
  • Itcs) in the Mouse Amygdala of Tshz1 Mutants Correlates with Fear, Depression, and Social Interaction Phenotypes
    1160 • The Journal of Neuroscience, January 31, 2018 • 38(5):1160–1177 Development/Plasticity/Repair Loss of Intercalated Cells (ITCs) in the Mouse Amygdala of Tshz1 Mutants Correlates with Fear, Depression, and Social Interaction Phenotypes X Jeffrey Kuerbitz,1 Melinda Arnett,5 Sarah Ehrman,1 XMichael T. Williams,3 XCharles V. Vorhees,3 X Simon E. Fisher,6,7 Alistair N. Garratt,8 XLouis J. Muglia,5 Ronald R. Waclaw,1,4 and XKenneth Campbell1,2 Divisions of 1Developmental Biology, 2Neurosurgery, 3Neurology, 4Experimental Hematology and Cancer Biology, 5Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, 6Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6500 AH Nijmegen, The Netherlands, 7Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands, and 8Institute of Cell Biology and Neurobiology, Center for Anatomy, Charite´ University Hospital Berlin, 10117 Berlin, Germany The intercalated cells (ITCs) of the amygdala have been shown to be critical regulatory components of amygdalar circuits, which control appropriate fear responses. Despite this, the molecular processes guiding ITC development remain poorly understood. Here we establish the zinc finger transcription factor Tshz1 as a marker of ITCs during their migration from the dorsal lateral ganglionic eminence through maturity. Using germline and conditional knock-out (cKO) mouse models, we show that Tshz1 is required for the proper migration and differentiation of ITCs. In the absence of Tshz1, migrating ITC precursors fail to settle in their stereotypical locations encapsulating the lateral amygdala and BLA. Furthermore, they display reductions in the ITC marker Foxp2 and ectopic persistence of the dorsal lateral ganglionic eminence marker Sp8.
    [Show full text]
  • Chromosome 18
    Chromosome 18 Description Humans normally have 46 chromosomes in each cell, divided into 23 pairs. Two copies of chromosome 18, one copy inherited from each parent, form one of the pairs. Chromosome 18 spans about 78 million DNA building blocks (base pairs) and represents approximately 2.5 percent of the total DNA in cells. Identifying genes on each chromosome is an active area of genetic research. Because researchers use different approaches to predict the number of genes on each chromosome, the estimated number of genes varies. Chromosome 18 likely contains 200 to 300 genes that provide instructions for making proteins. These proteins perform a variety of different roles in the body. Health Conditions Related to Chromosomal Changes The following chromosomal conditions are associated with changes in the structure or number of copies of chromosome 18. Distal 18q deletion syndrome Distal 18q deletion syndrome occurs when a piece of the long (q) arm of chromosome 18 is missing. The term "distal" means that the missing piece (deletion) occurs near one end of the chromosome arm. The signs and symptoms of distal 18q deletion syndrome include delayed development and learning disabilities, short stature, weak muscle tone ( hypotonia), foot abnormalities, and a wide variety of other features. The deletion that causes distal 18q deletion syndrome can occur anywhere between a region called 18q21 and the end of the chromosome. The size of the deletion varies among affected individuals. The signs and symptoms of distal 18q deletion syndrome are thought to be related to the loss of multiple genes from this part of the long arm of chromosome 18.
    [Show full text]
  • A Flexible Microfluidic System for Single-Cell Transcriptome Profiling
    www.nature.com/scientificreports OPEN A fexible microfuidic system for single‑cell transcriptome profling elucidates phased transcriptional regulators of cell cycle Karen Davey1,7, Daniel Wong2,7, Filip Konopacki2, Eugene Kwa1, Tony Ly3, Heike Fiegler2 & Christopher R. Sibley 1,4,5,6* Single cell transcriptome profling has emerged as a breakthrough technology for the high‑resolution understanding of complex cellular systems. Here we report a fexible, cost‑efective and user‑ friendly droplet‑based microfuidics system, called the Nadia Instrument, that can allow 3′ mRNA capture of ~ 50,000 single cells or individual nuclei in a single run. The precise pressure‑based system demonstrates highly reproducible droplet size, low doublet rates and high mRNA capture efciencies that compare favorably in the feld. Moreover, when combined with the Nadia Innovate, the system can be transformed into an adaptable setup that enables use of diferent bufers and barcoded bead confgurations to facilitate diverse applications. Finally, by 3′ mRNA profling asynchronous human and mouse cells at diferent phases of the cell cycle, we demonstrate the system’s ability to readily distinguish distinct cell populations and infer underlying transcriptional regulatory networks. Notably this provided supportive evidence for multiple transcription factors that had little or no known link to the cell cycle (e.g. DRAP1, ZKSCAN1 and CEBPZ). In summary, the Nadia platform represents a promising and fexible technology for future transcriptomic studies, and other related applications, at cell resolution. Single cell transcriptome profling has recently emerged as a breakthrough technology for understanding how cellular heterogeneity contributes to complex biological systems. Indeed, cultured cells, microorganisms, biopsies, blood and other tissues can be rapidly profled for quantifcation of gene expression at cell resolution.
    [Show full text]
  • Ring Chromosome 18 in a Patient with Multiple Anomalies* CATHERINE G
    J Med Genet: first published as 10.1136/jmg.4.2.117 on 1 June 1967. Downloaded from 7. med. Genet. (1967). 4, 117. Ring Chromosome 18 in a Patient with Multiple Anomalies* CATHERINE G. PALMER, NUZHAT FAREED, and A. DONALD MERRITT From the Department of Medical Genetics, Indiana University School of Medicine, Indianapolis, Indiana, U.S.A. Ring chromosomes, long of interest in cytogene- At the time of evaluation, the patient (Fig. 1) was 10 tics, have been intensively studied in corn and years old, mentally retarded, and hyperactive. He was Drosophila (McClintock, 1932, 1938; Morgan, 1933; co-operative and able to speak with a three-word syntax. Battacharya, 1950) and also described in Crepis, He had a kyphotic posture and broad-based, balanced gait. The height was 126 cm., weight 212 kg. (both Tulipa, Tradescantia, and other species. In the below the third centile). past few years, a number of reports of ring chromo- His occipital-frontal circumference was 49 cm. (two somes in man have appeared (Table I). We recently standard deviations below the normal). There was encountered a mentally retarded patient with bony roughness over the posterior occipital region. multiple congenital anomalies, in a high proportion The neck had a slight extra fold of skin over the trape- of whose cells we found a ring chromosome 18. zius muscles suggesting webbing, and there was a low The clinical expression of patients with 18 long hairline posteriorly. Ocular findings included an anti- (Lejeune, Berger, Lafourcade, and Rethore, 1966) mongoloid slant, hypertelorism, exotropia, nystagmus, and short arm deletions (Grouchy, Bonnette, and and a normal fundoscopic appearance.
    [Show full text]
  • Abstracts from the 50Th European Society of Human Genetics Conference: Electronic Posters
    European Journal of Human Genetics (2019) 26:820–1023 https://doi.org/10.1038/s41431-018-0248-6 ABSTRACT Abstracts from the 50th European Society of Human Genetics Conference: Electronic Posters Copenhagen, Denmark, May 27–30, 2017 Published online: 1 October 2018 © European Society of Human Genetics 2018 The ESHG 2017 marks the 50th Anniversary of the first ESHG Conference which took place in Copenhagen in 1967. Additional information about the event may be found on the conference website: https://2017.eshg.org/ Sponsorship: Publication of this supplement is sponsored by the European Society of Human Genetics. All authors were asked to address any potential bias in their abstract and to declare any competing financial interests. These disclosures are listed at the end of each abstract. Contributions of up to EUR 10 000 (ten thousand euros, or equivalent value in kind) per year per company are considered "modest". Contributions above EUR 10 000 per year are considered "significant". 1234567890();,: 1234567890();,: E-P01 Reproductive Genetics/Prenatal and fetal echocardiography. The molecular karyotyping Genetics revealed a gain in 8p11.22-p23.1 region with a size of 27.2 Mb containing 122 OMIM gene and a loss in 8p23.1- E-P01.02 p23.3 region with a size of 6.8 Mb containing 15 OMIM Prenatal diagnosis in a case of 8p inverted gene. The findings were correlated with 8p inverted dupli- duplication deletion syndrome cation deletion syndrome. Conclusion: Our study empha- sizes the importance of using additional molecular O¨. Kırbıyık, K. M. Erdog˘an, O¨.O¨zer Kaya, B. O¨zyılmaz, cytogenetic methods in clinical follow-up of complex Y.
    [Show full text]
  • Abstracts from the 51St European Society of Human Genetics Conference: Electronic Posters
    European Journal of Human Genetics (2019) 27:870–1041 https://doi.org/10.1038/s41431-019-0408-3 MEETING ABSTRACTS Abstracts from the 51st European Society of Human Genetics Conference: Electronic Posters © European Society of Human Genetics 2019 June 16–19, 2018, Fiera Milano Congressi, Milan Italy Sponsorship: Publication of this supplement was sponsored by the European Society of Human Genetics. All content was reviewed and approved by the ESHG Scientific Programme Committee, which held full responsibility for the abstract selections. Disclosure Information: In order to help readers form their own judgments of potential bias in published abstracts, authors are asked to declare any competing financial interests. Contributions of up to EUR 10 000.- (Ten thousand Euros, or equivalent value in kind) per year per company are considered "Modest". Contributions above EUR 10 000.- per year are considered "Significant". 1234567890();,: 1234567890();,: E-P01 Reproductive Genetics/Prenatal Genetics then compared this data to de novo cases where research based PO studies were completed (N=57) in NY. E-P01.01 Results: MFSIQ (66.4) for familial deletions was Parent of origin in familial 22q11.2 deletions impacts full statistically lower (p = .01) than for de novo deletions scale intelligence quotient scores (N=399, MFSIQ=76.2). MFSIQ for children with mater- nally inherited deletions (63.7) was statistically lower D. E. McGinn1,2, M. Unolt3,4, T. B. Crowley1, B. S. Emanuel1,5, (p = .03) than for paternally inherited deletions (72.0). As E. H. Zackai1,5, E. Moss1, B. Morrow6, B. Nowakowska7,J. compared with the NY cohort where the MFSIQ for Vermeesch8, A.
    [Show full text]
  • Integrated Analysis of Motif Activity and Gene Expression Changes of Transcription Factors
    Downloaded from genome.cshlp.org on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press Method Integrated analysis of motif activity and gene expression changes of transcription factors Jesper Grud Skat Madsen,1,3 Alexander Rauch,1,3 Elvira Laila Van Hauwaert,1 Søren Fisker Schmidt,1,4 Marc Winnefeld,2 and Susanne Mandrup1 1Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark; 2Research and Development, Beiersdorf AG, 20245 Hamburg, Germany The ability to predict transcription factors based on sequence information in regulatory elements is a key step in systems- level investigation of transcriptional regulation. Here, we have developed a novel tool, IMAGE, for precise prediction of causal transcription factors based on transcriptome profiling and genome-wide maps of enhancer activity. High precision is obtained by combining a near-complete database of position weight matrices (PWMs), generated by compiling public databases and systematic prediction of PWMs for uncharacterized transcription factors, with a state-of-the-art method for PWM scoring and a novel machine learning strategy, based on both enhancers and promoters, to predict the contribu- tion of motifs to transcriptional activity. We applied IMAGE to published data obtained during 3T3-L1 adipocyte differen- tiation and showed that IMAGE predicts causal transcriptional regulators of this process with higher confidence than existing methods. Furthermore, we generated genome-wide maps of enhancer activity and transcripts during human mes- enchymal stem cell commitment and adipocyte differentiation and used IMAGE to identify positive and negative transcrip- tional regulators of this process. Collectively, our results demonstrate that IMAGE is a powerful and precise method for prediction of regulators of gene expression.
    [Show full text]
  • Cortical Neural Stem Cell Lineage Progression Is Regulated by Extrinsic Signaling Molecule Sonic Hedgehog
    HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Cell Rep Manuscript Author . Author manuscript; Manuscript Author available in PMC 2020 May 04. Published in final edited form as: Cell Rep. 2020 March 31; 30(13): 4490–4504.e4. doi:10.1016/j.celrep.2020.03.027. Cortical Neural Stem Cell Lineage Progression Is Regulated by Extrinsic Signaling Molecule Sonic Hedgehog Yue Zhang1,5, Guoping Liu2,5, Teng Guo2,5, Xiaoyi G. Liang1,5, Heng Du2, Lin Yang2, Aparna Bhaduri3, Xiaosu Li2, Zhejun Xu2, Zhuangzhi Zhang2, Zhenmeiyu Li2, Miao He2, Jeremiah Tsyporin1, Arnold R. Kriegstein3, John L. Rubenstein4, Zhengang Yang2,*, Bin Chen1,6,* 1Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA 2State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute for Translational Brain Research, Institutes of Brain Science, Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, China 3Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA 4Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA 5These authors contributed equally 6Lead Contact SUMMARY Neural stem cells (NSCs) in the prenatal neocortex progressively generate different subtypes of glutamatergic projection neurons. Following that, NSCs have a major switch in their progenitor properties and produce γ-aminobutyric acid (GABAergic) interneurons for the olfactory bulb (OB), cortical oligodendrocytes, and astrocytes. Herein, we provide evidence for the molecular mechanism that underlies this switch in the state of neocortical NSCs.
    [Show full text]
  • Genetic Susceptibility Markers for a Breast-Colorectal Cancer Phenotype: Exploratory Results from Genome-Wide Association Studies
    25/07/2019 Genetic susceptibility markers for a breast-colorectal cancer phenotype: Exploratory results from genome-wide association studies Genetic susceptibility markers for a breast-colorectal cancer phenotype: Exploratory results from genome-wide association studies Mala Pande , Aron Joon, Abenaa M. Brewster, Wei V. Chen, John L. Hopper, Cathy Eng, Sanjay Shete, Graham Casey, Fredrick Schumacher, Yi Lin, Tabitha A. Harrison, Emily White, Habibul Ahsan, Irene L. Andrulis, Alice S. Whittemore, Esther M. John, Aung Ko Win, Enes Makalic, Daniel F. Schmidt, Miroslaw K. Kapuscinski, Heather M. Ochs-Balcom, Steven Gallinger, Mark A. Jenkins, Polly A. Newcomb, Noralane M. Lindor, Ulrike Peters, Christopher I. Amos, Patrick M. Lynch Published: April 26, 2018 https://doi.org/10.1371/journal.pone.0196245 Abstract Background Clustering of breast and colorectal cancer has been observed within some families and cannot be explained by chance or known high-risk mutations in major susceptibility genes. Potential shared genetic susceptibility between breast and colorectal cancer, not explained by high-penetrance genes, has been postulated. We hypothesized that yet undiscovered genetic variants predispose to a breast-colorectal cancer phenotype. Methods To identify variants associated with a breast-colorectal cancer phenotype, we analyzed genome-wide association study (GWAS) data from cases and controls that met the following criteria: cases (n = 985) were women with breast cancer who had one or more first- or second-degree relatives with colorectal cancer, men/women with colorectal cancer who had one or more first- or second- degree relatives with breast cancer, and women diagnosed with both breast and colorectal cancer. Controls (n = 1769), were unrelated, breast and colorectal cancer-free, and age- and sex- frequency-matched to cases.
    [Show full text]
  • Nº Ref Uniprot Proteína Péptidos Identificados Por MS/MS 1 P01024
    Document downloaded from http://www.elsevier.es, day 26/09/2021. This copy is for personal use. Any transmission of this document by any media or format is strictly prohibited. Nº Ref Uniprot Proteína Péptidos identificados 1 P01024 CO3_HUMAN Complement C3 OS=Homo sapiens GN=C3 PE=1 SV=2 por 162MS/MS 2 P02751 FINC_HUMAN Fibronectin OS=Homo sapiens GN=FN1 PE=1 SV=4 131 3 P01023 A2MG_HUMAN Alpha-2-macroglobulin OS=Homo sapiens GN=A2M PE=1 SV=3 128 4 P0C0L4 CO4A_HUMAN Complement C4-A OS=Homo sapiens GN=C4A PE=1 SV=1 95 5 P04275 VWF_HUMAN von Willebrand factor OS=Homo sapiens GN=VWF PE=1 SV=4 81 6 P02675 FIBB_HUMAN Fibrinogen beta chain OS=Homo sapiens GN=FGB PE=1 SV=2 78 7 P01031 CO5_HUMAN Complement C5 OS=Homo sapiens GN=C5 PE=1 SV=4 66 8 P02768 ALBU_HUMAN Serum albumin OS=Homo sapiens GN=ALB PE=1 SV=2 66 9 P00450 CERU_HUMAN Ceruloplasmin OS=Homo sapiens GN=CP PE=1 SV=1 64 10 P02671 FIBA_HUMAN Fibrinogen alpha chain OS=Homo sapiens GN=FGA PE=1 SV=2 58 11 P08603 CFAH_HUMAN Complement factor H OS=Homo sapiens GN=CFH PE=1 SV=4 56 12 P02787 TRFE_HUMAN Serotransferrin OS=Homo sapiens GN=TF PE=1 SV=3 54 13 P00747 PLMN_HUMAN Plasminogen OS=Homo sapiens GN=PLG PE=1 SV=2 48 14 P02679 FIBG_HUMAN Fibrinogen gamma chain OS=Homo sapiens GN=FGG PE=1 SV=3 47 15 P01871 IGHM_HUMAN Ig mu chain C region OS=Homo sapiens GN=IGHM PE=1 SV=3 41 16 P04003 C4BPA_HUMAN C4b-binding protein alpha chain OS=Homo sapiens GN=C4BPA PE=1 SV=2 37 17 Q9Y6R7 FCGBP_HUMAN IgGFc-binding protein OS=Homo sapiens GN=FCGBP PE=1 SV=3 30 18 O43866 CD5L_HUMAN CD5 antigen-like OS=Homo
    [Show full text]
  • Deciphering the Molecular Profile of Plaques, Memory Decline And
    ORIGINAL RESEARCH ARTICLE published: 16 April 2014 AGING NEUROSCIENCE doi: 10.3389/fnagi.2014.00075 Deciphering the molecular profile of plaques, memory decline and neuron loss in two mouse models for Alzheimer’s disease by deep sequencing Yvonne Bouter 1†,Tim Kacprowski 2,3†, Robert Weissmann4, Katharina Dietrich1, Henning Borgers 1, Andreas Brauß1, Christian Sperling 4, Oliver Wirths 1, Mario Albrecht 2,5, Lars R. Jensen4, Andreas W. Kuss 4* andThomas A. Bayer 1* 1 Division of Molecular Psychiatry, Georg-August-University Goettingen, University Medicine Goettingen, Goettingen, Germany 2 Department of Bioinformatics, Institute of Biometrics and Medical Informatics, University Medicine Greifswald, Greifswald, Germany 3 Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany 4 Human Molecular Genetics, Department for Human Genetics of the Institute for Genetics and Functional Genomics, Institute for Human Genetics, University Medicine Greifswald, Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany 5 Institute for Knowledge Discovery, Graz University of Technology, Graz, Austria Edited by: One of the central research questions on the etiology of Alzheimer’s disease (AD) is the Isidro Ferrer, University of Barcelona, elucidation of the molecular signatures triggered by the amyloid cascade of pathological Spain events. Next-generation sequencing allows the identification of genes involved in disease Reviewed by: Isidro Ferrer, University of Barcelona, processes in an unbiased manner. We have combined this technique with the analysis of Spain two AD mouse models: (1) The 5XFAD model develops early plaque formation, intraneu- Dietmar R. Thal, University of Ulm, ronal Ab aggregation, neuron loss, and behavioral deficits. (2)TheTg4–42 model expresses Germany N-truncated Ab4–42 and develops neuron loss and behavioral deficits albeit without plaque *Correspondence: formation.
    [Show full text]
  • Genome-Wide Copy Number Profiling Using a 100K SNP Array Reveals Novel Disease-Related Genes BORIS and TSHZ1 in Juvenile Angiofibroma
    INTERNATIONAL JOURNAL OF ONCOLOGY 39: 1143-1151, 2011 Genome-wide copy number profiling using a 100K SNP array reveals novel disease-related genes BORIS and TSHZ1 in juvenile angiofibroma BERNHARD SCHICK1, SILKE WEMMERT1, VIVIENNE WILLNECKER1, JULIA DLUGAICZYK1, PIERO NICOLAI2, HENRYK SIWIEC3, CHRISTIAN T. THIEL4, ANITA RAUCH4,5 and OLAF WENDLER6 1Department of Otorhinolaryngology, Saarland University Medical Center, Homburg/Saar, Germany; 2Department of Otorhinolaryngology, University of Brescia, Italy; 3Department of Otolaryngology, Head and Neck Surgery, University of Lublin, Poland; 4Institute of Human Genetics, University Erlangen-Nuremberg, Erlangen, Germany; 5Institute of Medical Genetics, University of Zurich, Schwerzenbach-Zurich, Switzerland; 6Department of Otorhinolaryngology, Head and Neck Surgery, Erlangen University Hospital, Erlangen, Germany Received May 9, 2011; Accepted June 20, 2011 DOI: 10.3892/ijo.2011.1166 Abstract. Juvenile angiofibroma (JA) is a unique fibrovascular of BORIS in JAs is described with special regard to tumor tumor, which is almost exclusively found in the posterior nasal proliferation and epigenetic dysregulation, and the finding of cavity of adolescent males. Although histologically classified TSHZ1 amplifications is discussed with special respect to the as benign, the tumor often shows an aggressive growth pattern hypothesis of JAs as malformations of the first branchial arch and has been associated with chromosomal imbalances, artery. amplification of oncogenes and epigenetic dysregulation. We present the first genome-wide profiling of JAs (n=14) with a Introduction 100K single nucleotide polymorphism (SNP) microarray. Among the 30 novel JA-specific amplifications detected Juvenile angiofibroma (JA) is an uncommon fibrovascular on autosomal chromosomes with this technique, the genes tumor arising almost exclusively in adolescent males close to encoding the cancer-testis antigen BORIS (brother of the the sphenopalatine foramen in the posterior nasal cavity.
    [Show full text]