Picloram Herbicide

Total Page:16

File Type:pdf, Size:1020Kb

Picloram Herbicide Picloram Herbicide A Technical Bibliography of Non-Target Effects Compiled by: Milo Mihajlovich, RPF Incremental Forest Technologies Ltd. Foreword The following compilation into one sourcebook of an extensive collection of abstracts on the herbicide picloram is intended to provide users of this herbicide ready access to the breadth and evolution of scientific understanding of this herbicide. Deliberate effects – for example, efficacy were not included – as the sourcebook is intended more to assist in understanding the likelihood and type of non-target effects associated with using this herbicide. A literature search of 15 databases resulted in a total of literally hundreds of references. These were sorted into 13 generalized categories to ease access and allow users of the bibliography to target specific concerns quickly and easily. The bibliography reflects the breadth and depth of understanding picloram from the perspective of refereed journals and without input from the compiler. The bibliography is designed as an information access tool, not as a stand-alone reference. Users are urged to identify literature of interest using the abstracts in the guide then to seek out the original publication(s) to more clearly understand the results and implications of the research. Abstracts from differing sources often varied slightly in extent and content. The compiler attempted to select the abstract, which provided the most information about both outcomes and methodologies. Where abstracts were not given none was prepared and the title alone was included in the bibliography. The literature search for compiling this bibliography was completed on February 2001. The thirteen categories of references were not used as exclusive sets – where an abstract suggested the article was cogent to several categories the attempt was made to include it in all appropriate categories. Milo Mihajlovich, RPF Incremental Forest Technologies Ltd. Edmonton, AB July, 2001 Acknowledgement and Thanks Preparation of this bibliography would not have been possible without the hard work and valuable combination of interest and skills of Ms. Valerie Sowiak. Her efforts and contribution to this bibliography are greatly appreciated. Table of Contents Bibliography of References for Non-target Field and Laboratory Reports of Picloram Herbicide Subject Page ANALYTICAL METHODOLOGY ............................................................................... 1 AQUATIC INVERTEBRATES.................................................................................... 23 ARTHROPOD TOXICITY........................................................................................... 28 BIODIVERSITY ........................................................................................................... 30 ENVIRONMENTAL FATE - PLANTS ....................................................................... 37 ENVIRONMENTAL FATE - SOILS ........................................................................... 45 ENVIRONMENTAL FATE - WATER ........................................................................ 76 FISH & AMPHIBIANS.................................................................................................93 HUMAN TOXICOLOGY............................................................................................. 99 MAMMALIAN TOXICOLOGY................................................................................ 106 AVIAN TOXICOLOGY ............................................................................................. 115 NON-TARGET PLANTS AND RECROPPING........................................................ 118 SOIL MICROBIOTA..................................................................................................131 ii Picloram Analytical Methodology ANALYTICAL METHODOLOGY Abramova, K.A., T.D. Panasyuk, and E.A. Kalinina. 1973. Determination of Tordon 22-K in soil and plants by a biological method. Khimiya v Sel'skom Khozyaistve. Vol. 11: 298-300. Russian Tordon 22-K picloram-potassium 24.9% was applied at 0.0036-0.0327 mg/kg to a 2:2:1 mixture of peat + soil + sand, in which French beans were sown as bioassay plants, in the glasshouse. The surface area of whole leaves was taken as a quantitative assessment of picloram residues in the soil. The sensitivity of the method was 0.003-0.004 mg/kg. Residues in the soil of 0.1 mg/kg reduced grain yields of wheat by 20% while 0.2 mg/kg almost entirely prevented grain formation. Residues in wheat straw from plants grown in soil containing 0.2-0.4 mg picloram/kg were determined by macerating plant tissues, mixing them in soil and leaving for 1-60 days before sowing French beans as bioassay plants; residues in the straw after 20 days in the soil averaged 5.47 mg/kg for the low application and 12.28 mg/kg for the high application. Agriculture Canada, Research Station, Kentville. 1976. Research Branch Report 1975, pp. 17-30. P. 25. Picloram residues. The potassium salt of picloram (Tordon 22K) at 4.48 kg/ha (2 p.p.m.) was soil-incorporated to a depth of 15 cm. Analysis of the soil 18, 63, 145, 337, 504, 690 and 843 days later showed the presence of picloram at 1.86, 1.78, 1.32, 0.7, 0.28, 0.12 and 0.02 p.p.m., respectively. Soil containing 1.32 p.p.m. picloram inhibited the growth of carrots, parsnips, potatoes, table beets and rutabagas sown in the glasshouse. One year after the application of picloram, the growth of sweet corn and oats was reduced by about 20% while beans (Phaseolus sp.), parsnips and Swiss chard (Beta vulgaris var. cicla) failed to grow at all. Picloram residues 1055 days after application were 2.5 parts per billion (109) as determined by a bioassay using bean.P. 25. Test for picloram. A rapid, sensitive and specific fluorescence test for picloram was developed. Sulphuric acid 36 N solution was added to the dry residue in quartz tubes or on a white porcelain plate. Under short wavelength UV radiation, yellow fluorescence was observed. The test can also be carried out using glass test tubes and long wavelength UV radiation but this method is not so sensitive. Agriculture Canada, Research Station, Regina. 1976. Research Branch Report 1975, pp. 265-272. P. 268. Herbicide behaviour in the environment. Results of investigations into the fate of herbicides in the environment are reported. The persistence of atrazine in Brown soils appeared to be related to Ca content and pH of the soil. The order of leachability of 3 uracil herbicides in a range of soil types was bromacil > terbacil > lenacil. Residue levels of 2,4-D of 0.002 and 0.017 mu g/m3 were detected in the air above Regina in June and July. The rate of volatilization of 2,4-D isooctyl ester from Asquith sandy loam soil was high for the first 24 h, after which time volatilization was negligible. The degradation of C-2242 (chlortoluron) in steam-sterilized soil was negligible, 1 Picloram Analytical Methodology indicating that microbiological processes are important for the breakdown of this herbicide. Residues from spring applications of benazolin, benzoylprop, alachlor, nitrofen, profluralin and picloram were detectable the following October while asulam had disappeared. Benzoylprop-ethyl, alachlor, nitrofen and profluralin were detected only in the top 5 cm of soil whereas residues of benazolin, picloram and the acid derivative of benzoylprop were observed at lower depths. In a study of the persistence of 4 herbicides in irrigation water, simazine was the most persistent, followed by atrazine, monuron and bromacil. Albanis, T.A. and D.G. Hela. 1995. Multi-residue pesticide analysis in environmental water samples using solid-phase extraction discs and gas chromatography with flame thermionic and mass-selective detection. J. of Chromatography. 707: 283-292. A multi-residue analysis for 25 pesticides was developed as a rapid screening method for organic contaminants in river, lake and sea water samples. Gas chromatography with flame thermionic detection (GC-FTD) and mass selective detection (GC-MSD) using 2 different capillary columns, DB-1 and HP-5, were employed for the identification of 25 selected pesticides belonging to the triazines, organophosphorus compounds and substituted ureas, carbamates, anilides, anilines and amides. The extraction of various natural waters spiked with pesticide mixtures was effected with C18 Empore solid-phase extraction discs and filter-aid glass beads. The triazine compounds (atrazine, simazine, propazine, prometryne and cyanazine) were recovered from distilled and underground water samples at relative high levels (73.5-105%) compared with the river waters (39.9-80.5%), lake water (54.6-81.8%) and marine water (38.6-79.9%). The organophosphorus compounds studied (monocrotophos, terbufos, diazinon, methyl parathion, ethyl parathion, malathion and ethion) were also recovered from distilled and underground water samples at relatively high levels (62.4-118%) compared with river waters (27.3-98.9%), lake water (41.0-85.2%) and marine water (33.4-81.3%). The substituted ureas (monuron, diuron and linuron), substituted anilines and anilides (trifluralin, propanil, propachlor and alachor), carbamates (EPTC and carbofuran) and other compounds (molinate, picloram, captan and MCPA isooctyl ester) were recovered at the same level as triazines. Confirmation of pesticide identity was performed by using GC-MS in the selected-ion monitoring mode. Baur, J.R. 1980. Release characteristics of starch xanthide herbicide formulations. Journal of Environmental Quality. 9: 379-382. A laboratory procedure was
Recommended publications
  • 2,4-Dichlorophenoxyacetic Acid
    2,4-Dichlorophenoxyacetic acid 2,4-Dichlorophenoxyacetic acid IUPAC (2,4-dichlorophenoxy)acetic acid name 2,4-D Other hedonal names trinoxol Identifiers CAS [94-75-7] number SMILES OC(COC1=CC=C(Cl)C=C1Cl)=O ChemSpider 1441 ID Properties Molecular C H Cl O formula 8 6 2 3 Molar mass 221.04 g mol−1 Appearance white to yellow powder Melting point 140.5 °C (413.5 K) Boiling 160 °C (0.4 mm Hg) point Solubility in 900 mg/L (25 °C) water Related compounds Related 2,4,5-T, Dichlorprop compounds Except where noted otherwise, data are given for materials in their standard state (at 25 °C, 100 kPa) 2,4-Dichlorophenoxyacetic acid (2,4-D) is a common systemic herbicide used in the control of broadleaf weeds. It is the most widely used herbicide in the world, and the third most commonly used in North America.[1] 2,4-D is also an important synthetic auxin, often used in laboratories for plant research and as a supplement in plant cell culture media such as MS medium. History 2,4-D was developed during World War II by a British team at Rothamsted Experimental Station, under the leadership of Judah Hirsch Quastel, aiming to increase crop yields for a nation at war.[citation needed] When it was commercially released in 1946, it became the first successful selective herbicide and allowed for greatly enhanced weed control in wheat, maize (corn), rice, and similar cereal grass crop, because it only kills dicots, leaving behind monocots. Mechanism of herbicide action 2,4-D is a synthetic auxin, which is a class of plant growth regulators.
    [Show full text]
  • INDEX to PESTICIDE TYPES and FAMILIES and PART 180 TOLERANCE INFORMATION of PESTICIDE CHEMICALS in FOOD and FEED COMMODITIES
    US Environmental Protection Agency Office of Pesticide Programs INDEX to PESTICIDE TYPES and FAMILIES and PART 180 TOLERANCE INFORMATION of PESTICIDE CHEMICALS in FOOD and FEED COMMODITIES Note: Pesticide tolerance information is updated in the Code of Federal Regulations on a weekly basis. EPA plans to update these indexes biannually. These indexes are current as of the date indicated in the pdf file. For the latest information on pesticide tolerances, please check the electronic Code of Federal Regulations (eCFR) at http://www.access.gpo.gov/nara/cfr/waisidx_07/40cfrv23_07.html 1 40 CFR Type Family Common name CAS Number PC code 180.163 Acaricide bridged diphenyl Dicofol (1,1-Bis(chlorophenyl)-2,2,2-trichloroethanol) 115-32-2 10501 180.198 Acaricide phosphonate Trichlorfon 52-68-6 57901 180.259 Acaricide sulfite ester Propargite 2312-35-8 97601 180.446 Acaricide tetrazine Clofentezine 74115-24-5 125501 180.448 Acaricide thiazolidine Hexythiazox 78587-05-0 128849 180.517 Acaricide phenylpyrazole Fipronil 120068-37-3 129121 180.566 Acaricide pyrazole Fenpyroximate 134098-61-6 129131 180.572 Acaricide carbazate Bifenazate 149877-41-8 586 180.593 Acaricide unclassified Etoxazole 153233-91-1 107091 180.599 Acaricide unclassified Acequinocyl 57960-19-7 6329 180.341 Acaricide, fungicide dinitrophenol Dinocap (2, 4-Dinitro-6-octylphenyl crotonate and 2,6-dinitro-4- 39300-45-3 36001 octylphenyl crotonate} 180.111 Acaricide, insecticide organophosphorus Malathion 121-75-5 57701 180.182 Acaricide, insecticide cyclodiene Endosulfan 115-29-7 79401
    [Show full text]
  • Herbicides for Spring Weed Control in Alfalfa — Dwight Lingenfelter and Bill Curran, Penn State Weed Science
    http://cmegicmlebanon.blogspot.com/2012/02/herbicides-for-spring-weed-control-in.html Herbicides for Spring Weed Control in Alfalfa — Dwight Lingenfelter and Bill Curran, Penn State Weed Science It’s time to check the need for weed control. Keep in mind all of these herbicides are labeled for use in pure—stand alfalfa. However, only metribuzin and Pursuit can be applied to established alfalfa-grass mixes. Here are a few guidelines about available products: Gramoxone Inteon 2L (paraquat) — May be applied at 2 to 3 pt/A to established “dormant” stands before 2 inches of spring regrowth. The weeds must be actively growing at the time of application. Gramoxone is also labeled at 1 to 2 pt/A for dormant application on new fall seeded stands. Gramoxone will desiccate any green tissue including actively growing alfalfa. Be especially cautious with new fall seedings. Gramoxone is effective on low to moderate infestations of winter annuals including chickweed, henbit, deadnettle, and mustard species. If winter annual weed infestations are severe, consider one of the soil active alternatives. Do not use on mixed stands. Poast Plus 1E (sethoxydim) — Poast Plus controls annual grasses and suppresses perennial grasses in seedling and established alfalfa. Apply Poast Plus at 1.5 to 2.5 pt/A to actively growing grassy weeds. Poast Plus should be applied to small grasses and performance improves with warmer temperatures. Do not use on mixed stands. Prowl H2O 3.8CS — has a supplemental label for use in seedling and established alfalfa. For seedling alfalfa (2-trifoliate to six inches tall), apply Prowl H2O at 1.1 to 2.1 pints pt/A prior to weed emergence.
    [Show full text]
  • AP-42, CH 9.2.2: Pesticide Application
    9.2.2PesticideApplication 9.2.2.1General1-2 Pesticidesaresubstancesormixturesusedtocontrolplantandanimallifeforthepurposesof increasingandimprovingagriculturalproduction,protectingpublichealthfrompest-bornediseaseand discomfort,reducingpropertydamagecausedbypests,andimprovingtheaestheticqualityofoutdoor orindoorsurroundings.Pesticidesareusedwidelyinagriculture,byhomeowners,byindustry,andby governmentagencies.Thelargestusageofchemicalswithpesticidalactivity,byweightof"active ingredient"(AI),isinagriculture.Agriculturalpesticidesareusedforcost-effectivecontrolofweeds, insects,mites,fungi,nematodes,andotherthreatstotheyield,quality,orsafetyoffood.Theannual U.S.usageofpesticideAIs(i.e.,insecticides,herbicides,andfungicides)isover800millionpounds. AiremissionsfrompesticideusearisebecauseofthevolatilenatureofmanyAIs,solvents, andotheradditivesusedinformulations,andofthedustynatureofsomeformulations.Mostmodern pesticidesareorganiccompounds.EmissionscanresultdirectlyduringapplicationorastheAIor solventvolatilizesovertimefromsoilandvegetation.Thisdiscussionwillfocusonemissionfactors forvolatilization.Thereareinsufficientdataavailableonparticulateemissionstopermitemission factordevelopment. 9.2.2.2ProcessDescription3-6 ApplicationMethods- Pesticideapplicationmethodsvaryaccordingtothetargetpestandtothecroporothervalue tobeprotected.Insomecases,thepesticideisapplieddirectlytothepest,andinotherstothehost plant.Instillothers,itisusedonthesoilorinanenclosedairspace.Pesticidemanufacturershave developedvariousformulationsofAIstomeetboththepestcontrolneedsandthepreferred
    [Show full text]
  • List of Herbicide Groups
    List of herbicides Group Scientific name Trade name clodinafop (Topik®), cyhalofop (Barnstorm®), diclofop (Cheetah® Gold*, Decision®*, Hoegrass®), fenoxaprop (Cheetah® Gold* , Wildcat®), A Aryloxyphenoxypropionates fluazifop (Fusilade®, Fusion®*), haloxyfop (Verdict®), propaquizafop (Shogun®), quizalofop (Targa®) butroxydim (Falcon®, Fusion®*), clethodim (Select®), profoxydim A Cyclohexanediones (Aura®), sethoxydim (Cheetah® Gold*, Decision®*), tralkoxydim (Achieve®) A Phenylpyrazoles pinoxaden (Axial®) azimsulfuron (Gulliver®), bensulfuron (Londax®), chlorsulfuron (Glean®), ethoxysulfuron (Hero®), foramsulfuron (Tribute®), halosulfuron (Sempra®), iodosulfuron (Hussar®), mesosulfuron (Atlantis®), metsulfuron (Ally®, Harmony®* M, Stinger®*, Trounce®*, B Sulfonylureas Ultimate Brushweed®* Herbicide), prosulfuron (Casper®*), rimsulfuron (Titus®), sulfometuron (Oust®, Eucmix Pre Plant®*), sulfosulfuron (Monza®), thifensulfuron (Harmony®* M), triasulfuron, (Logran®, Logran® B Power®*), tribenuron (Express®), trifloxysulfuron (Envoke®, Krismat®*) florasulam (Paradigm®*, Vortex®*, X-Pand®*), flumetsulam B Triazolopyrimidines (Broadstrike®), metosulam (Eclipse®), pyroxsulam (Crusader®Rexade®*) imazamox (Intervix®*, Raptor®,), imazapic (Bobcat I-Maxx®*, Flame®, Midas®*, OnDuty®*), imazapyr (Arsenal Xpress®*, Intervix®*, B Imidazolinones Lightning®*, Midas®*, OnDuty®*), imazethapyr (Lightning®*, Spinnaker®) B Pyrimidinylthiobenzoates bispyribac (Nominee®), pyrithiobac (Staple®) C Amides: propanil (Stam®) C Benzothiadiazinones: bentazone (Basagran®,
    [Show full text]
  • Chemical Brush Control: Assessing the Hazard
    Reprinted from the JOURNAL OF FORESTRY, Vol. 69, No. 10, October 1971 Reproduced by USDA Forest Service for official use. PLEASE DO NOT REMOVE FROM FILES CHEMICAL BRUSH CONTROL: ASSESSING THE HAZARD hazard from the use of any chemical requires consider- ABSTRACT—An adequate evaluation of the hazard asso- ation of both the likelihood of exposure and the toxicity ciated with the use of any chemical agent requires consid- of the chemical (15). eration of both the toxicity of the material and the poten- tial for exposure of nontarget organisms. The hazard can be high only if both the toxicity of the chemical and the Likelihood of Exposure to Herbicides potential for exposure to a significant dose are high. The The likelihood that a nontarget organism will be relatively large doses of 2,4-D, amitrole, 2,4,5-T, and exposed to a significant dose is determined by the picloram required to produce acutely toxic responses in behavior of the chemical. Behavior is the initial dis- most nontarget organisms are not likely to occur from nor- tribution, subsequent movement, persistence, and fate mal chemical brush control operations on forest lands. The short persistence, lack of biomagnification in food chains, of chemicals in the environment. Chemical behavior and the rapid excretion of these herbicides by animals dictates the magnitude and duration of exposure and preclude chronic exposure and, therefore, chronic toxicity. thus the nature of a toxic response. A long history of field use and research shows our com- Herbicides applied aerially are distributed initially mon brush control chemicals can be used with minimum among four components of the forest environment—air, hazard to the quality of our environment.
    [Show full text]
  • Chemical Weed Control
    2014 North Carolina Agricultural Chemicals Manual The 2014 North Carolina Agricultural Chemicals Manual is published by the North Carolina Cooperative Extension Service, College of Agriculture and Life Sciences, N.C. State University, Raleigh, N.C. These recommendations apply only to North Carolina. They may not be appropriate for conditions in other states and may not comply with laws and regulations outside North Carolina. These recommendations are current as of November 2013. Individuals who use agricultural chemicals are responsible for ensuring that the intended use complies with current regulations and conforms to the product label. Be sure to obtain current information about usage regulations and examine a current product label before applying any chemical. For assistance, contact your county Cooperative Extension agent. The use of brand names and any mention or listing of commercial products or services in this document does not imply endorsement by the North Carolina Cooperative Extension Service nor discrimination against similar products or services not mentioned. VII — CHEMICAL WEED CONTROL 2014 North Carolina Agricultural Chemicals Manual VII — CHEMICAL WEED CONTROL Chemical Weed Control in Field Corn ...................................................................................................... 224 Weed Response to Preemergence Herbicides — Corn ........................................................................... 231 Weed Response to Postemergence Herbicides — Corn ........................................................................
    [Show full text]
  • Chemicals Used in Military Operations During the Vietnam War
    Chemicals Used in Military Operations during the Vietnam War General use: Insecticide, DDT - Pyrethrum aerosol, G-1152, 12-oz, can.* Insecticide, Dichlorvos, 20% impregnated strips Insecticide, Lindane, 1% dusting powder, 2-oz. can** Insecticide, Pyrethrum, 0.6% aerosol, 12-oz. can Insecticide, Pyrethrum, 0.4% solution, 1-gal. can Repellent, Clothing and personal application, m 75% DEET, 6-oz. (aerosol can) Repellent, Clothing and personal application, m 75% DEET, 2-oz. (plastic bottle) Repellent, Clothing and personal application, m 75% DEET, ½-oz. (bottle, component of survival kit) Rodenticide, Anticoagulant, Ready mixed bait, 5-lb can Rodenticide, bait block, diphacin, 8-oz. block Supervision Required: Insecticide, Aluminum phosphide, tablets, can Insecticide, Aluminum phosphide, pellets, flask Insecticide, Baygon, 1% solution, 1-gal. can Insecticide, Baygon, 2% bait, 5-lb. bottle Insecticide, Carbaryl, 80% powder, 15-lb. pail Insecticide, Carbaryl-DDT, Micronized dust, 1-gram*** Insecticide, Carbaryl-DDT, Micronized dust, 5-gram*** Insecticide, Carbaryl-DDT, Micronized dust, 13-gram*** Insecticide, Chlordane, 72% emulsifiable concentrate, 5-gal. pail Insecticide, Chlordane, 5%-6% dust, 25-lb. pail Insecticide, Diazinon, 0.5% solution, 1-gal. can Insecticide, Diazinon, 48% emulsifiable concentrate, 1-gal. can Insecticide, Dieldrin, 15% emulsifiable concentrate, 5-gal. pail Insecticide, DDT, 25% emulsifiable concentrate, 5-gal. pail * For disinsectization of aircraft in compliance with Public Health Quarantine. ** For use in control of body lice. *** For disinsectization of aircraft in compliance with Agricultural Quarantine. 1 Insecticide, DDT, 75% wettable powder, 20-lb. pail Insecticide, Dichlorvos, 20% impregnated pellets, 30-lb. pail Insecticide, Dursban, 40.8% emulsifiable concentrate Insecticide, Lindane, 12% emulsifiable concentrate, 5-gal.
    [Show full text]
  • METRIBUZIN 75 Dry Flowable Herbicide for Control of Certain Grasses and Broadleaf Weeds
    GROUP 5 HERBICIDE METRIBUZIN 75 Dry Flowable Herbicide For control of certain grasses and broadleaf weeds. ACTIVE INGREDIENT: Metribuzin, 4-Amino-6- (1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazin-5 (4H)-one ................ 75.00% OTHER INGREDIENTS: ............................................................. 25.00% TOTAL 100.00% Stop - Read the label before use. KEEP OUT OF REACH OF CHILDREN CAUTION FIRST AID If swallowed: Call a poison control center or doctor immediately for treatment advice. Have person sip a glass of water if able to swallow. Do not induce vomiting unless told to do so by a poison control center or doctor. Do not give anything by mouth to an unconscious person. If in eyes: Hold eye open and rinse slowly and gently with water for 15 to 20 minutes. Remove contact lenses, if present, after the first 5 minutes, then continue rinsing eye. Call a poison control center or doctor for treatment advice. If on skin or clothing: Take off contaminated clothing. Rinse skin immediately with plenty of water for 15 to 20 minutes. Call a poison control center or doctor for treatment advice. FOR A MEDICAL EMERGENCY INVOLVING THIS PRODUCT CALL: 1-866-944-8565. Have the product container or label with you when calling a poison control center or doctor, or going for treatment. Note To Physician: Treat patient symptomatically. Obtain prompt medical aid if poisoning should occur. Symptoms of Poisoning: The compound does not cause any definite symptoms that would be diagnostic. Poisoning is accompanied by breathing difficulties and sedation. EPA REG. NO. 34704-876 EPA EST. NO. 70989-AR-001 NET CONTENTS 5.0 LB (2.26 KG) 013117 V1D 02R17 FORMULATED FOR LOVELAND PRODUCTS, INC.®, P.O.
    [Show full text]
  • 5. Key Post-Emergent Modes of Action
    5. KEY POST-EMERGENT MODES OF ACTION When new mode of action herbicides are first introduced, of this enzyme is reduction in the production of fatty acids manufacturers typically provide robust formulations and use required for construction of cell membranes needed for rates. There is often a high level of “forgiveness” in the label. new cell production. As resistant populations are selected over time, there is The ACCase enzyme in most broadleaf plants is insensitive sometimes a period where the herbicide may still be useful, to herbicides from this herbicide mode of action, and hence albeit with reduced performance. In these situations of low- there is acceptable crop tolerance in most broadleaf crops level or emerging resistance, it is critical that users seek to and no efficacy on most broadleaf weeds. Some exceptions maximise application conditions to ensure everything possible exist. For example, haloxyfop is able to control the broadleaf is done to enhance the herbicide performance. weed storksbill or geranium (Erodium spp.) while high rates of clethodim can damage canola, particularly when flowering. Understanding how each of the key modes of action available for post-emergent weed control work, how they The three sub-groups of Group A herbicides bind to the target enter and translocate in the plant, and what is required to enzyme at slightly different, and overlapping, amino acids. This differential binding can lead to differences in target site maximise efficacy is critical knowledge for maximising field herbicide resistance patterns both between and within the performance. sub groups (refer to the Acetyl CoA Carboxylase inhibitors This chapter coves the key modes of actions used for post- section under section 6.3.1.1.
    [Show full text]
  • Interaction of 4-Hydroxyphenylpyruvate
    Weed Science Interaction of 4-hydroxyphenylpyruvate www.cambridge.org/wsc dioxygenase (HPPD) and atrazine alternative photosystem II (PS II) inhibitors for control of multiple herbicide–resistant waterhemp Research Article (Amaranthus tuberculatus) in corn Cite this article: Willemse C, Soltani N, David CH, Jhala AJ, Robinson DE, Sikkema PH 1 2 3 4 (2021) Interaction of 4-hydroxyphenylpyruvate Christian Willemse , Nader Soltani , C. Hooker David , Amit J. Jhala , dioxygenase (HPPD) and atrazine alternative 5 5 photosystem II (PS II) inhibitors for control of Darren E. Robinson and Peter H. Sikkema multiple herbicide–resistant waterhemp (Amaranthus tuberculatus) in corn. Weed Sci. 1Graduate Student, Department of Plant Agriculture, University of Guelph, Ontario, Canada; 2Adjunct Professor, 69:492–503. doi: 10.1017/wsc.2021.34 Department of Plant Agriculture, University of Guelph, Ontario, Canada; 3Associate Professor, Department of Plant Agriculture, University of Guelph, Ontario, Canada; 4Associate Professor, Department of Agronomy and Received: 15 December 2020 Horticulture, University of Nebraska–Lincoln, Lincoln, NE, USA and 5Professor, Department of Plant Agriculture, Revised: 16 March 2021 University of Guelph, Ontario, Canada Accepted: 14 April 2021 First published online: 20 April 2021 Abstract Associate Editor: Dean Riechers, University of Illinois The complementary activity of 4-hydroxphenylpyruvate dioxygenase (HPPD) inhibitors and atrazine is well documented, but the use of atrazine is restricted in some geographic areas, Keywords:
    [Show full text]
  • A Corn and Soybean Herbicide Chart
    By Premix This chart lists premix herbicides alphabetically by their trade names Corn and Soybean so you can identify the premix’s component herbicides and their respective site of action groups. Refer to the Mode of Action chart on the left for more information. Herbicide Chart Component Premix Site of Action Trade Name ® Trade Name ® Active Ingredient Group Repeated use of herbicides with the same Anthem Zidua pyroxasulfone 15 Cadet fluthiacet-ethyl 14 site of action can result in the development of Autority Assist Spartan sulfentrazone 14 Pursuit imazethapyr 2 herbicide-resistant weed populations. Authority First Spartan sulfentrazone 14 FirstRate cloransulam 2 Autority MTZ Spartan sulfentrazone 14 Sencor metribuzin 5 By Mode of Action (effect on plant growth) Authority XL Spartan sulfentrazone 14 Classic chlorimuron 2 This chart groups herbicides by their modes of action to assist you in Autumn Super Autumn iodosulfuron 2 selecting herbicides 1) to maintain greater diversity in herbicide use and ------- thiencarbazone 2 Basis Blend Resolve rimsulfuron 2 2) to rotate among herbicides with different sites of action to delay the Harmony thifensulfuron 2 development of herbicide resistance. Bicep II Magnum Dual II Magnum s-metolachlor 15 (Bicep Lite II Mag) AAtrex atrazine 5 The Site of Action Group is a classification system developed by the Weed Science Society of America. Boundary Dual Magnum s-metolachlor 15 Sencor metribuzin 5 Breakfree ATZ Breakfree acetochlor 15 (Breakfree ATZ Lite) AAtrex atrazine 5 Number of resistant Bullet
    [Show full text]