Book of Abstracts Ii Contents

Total Page:16

File Type:pdf, Size:1020Kb

Book of Abstracts Ii Contents Gravitational Wave Probes of Fundamental Physics Monday, 11 November 2019 - Wednesday, 13 November 2019 Volkshotel, Amsterdam, The Netherlands Book of Abstracts ii Contents Welcome ............................................. 1 Detecting Gauged Lµ − Lτ using Neutron Star Binaries .................. 1 Primordial Gravitational Waves from Modified Gravity and Cosmology .......... 1 Novel signatures of dark matter in laser-interferometric gravitational-wave detectors . 1 Audible Axions ......................................... 2 Gravitational waves and collider probes of extended Higgs sectors ............. 3 Simulating black hole dynamics and gravitational wave emission in galactic-scale simula- tions ............................................. 3 Dark Energy Instabilities induced by Gravitational Waves ................. 3 Probing the Early and Late Universe with the Gravitational-Wave Background . 4 Dark, Cold, and Noisy: Constraining Secluded Hidden Sectors with Gravitational Waves 4 Extreme Dark Matter Tests with Extreme Mass Ratio Inspirals ............... 5 Cosmological Tests of Gravity with Gravitational Waves .................. 5 Gravitational Collider Physics ................................. 5 Radiation from Global Topological Strings using Adaptive Mesh Refinement . 6 Massive black hole binaries in the cosmos .......................... 6 Constraining the speed of gravity using astrometric measurements ............ 7 Cross-correlation of the astrophysical gravitational-wave background with galaxy cluster- ing .............................................. 7 Fundamental and Gravitational Wave Science with Pulsar Timing ............. 7 test short talk .......................................... 8 Binary black holes beyond general relativity ......................... 8 Discussion session: particle physics around black holes ................... 8 Discussion session: numerics ................................. 9 iii Dense matter equation of state constraints from NICER ................... 9 New prospects in numerical relativity ............................. 9 A Unique Multi-Messenger Probe of QCD Axion Dark Matter ............... 9 Gravitational-wave echoes ................................... 10 Gravitational Wave Detection at low frequency with Atom Interferometry . 10 Black holes in string theory and observations ........................ 11 Clarifying the Hubble Constant Tension ........................... 11 Phase Transitions, Dark Sectors and Gravitational Waves . 11 Gravitational Waves signatures from collisions of exotic compact objects . 11 Gravitational probes of exotic compact objects ........................ 12 Discussion session: primordial black holes .......................... 12 Gravity waves from ALP dark matter fragmentation ..................... 12 Discussion session: cosmology ................................. 12 Wrap-up talk .......................................... 13 Hearing the sirens of the early Universe: Primordial Black Holes and Gravitational Waves 13 NANOGrav: progress toward detecting a SMBHB stochastic background . 13 iv Gravitational Wave Probes of Fundamental Physics / Book of Abstracts 1 Welcome Lightning talks / 44 Detecting Gauged Lµ − Lτ using Neutron Star Binaries Author: Ranjan Laha1 Co-authors: Toby Oliver Opferkuch 1; Jeff Dror 2 1 CERN 2 Lawrence Berkeley National Laboratory Corresponding Authors: [email protected], [email protected], [email protected] We show that gravitational wave emission from neutron star binaries can be used to discover ultra- light U(1)Lµ−Lτ vectors by making use of the large inevitable abundance of muons inside neutron stars. In pulsar binaries the U(1)Lµ−Lτ vectors induce an anomalously fast decay of the orbital period through the emission of dipole radiation. We study a range of different pulsar binaries, finding the most powerful constraints for vector masses below O(10−18 eV). For merging binaries the presence of muons in neutron stars can result in dipole radiation as well as a modification of the chirp mass during the inspiral phase. We make projections for a prospective search using the GW170817 event and find that current data can discover light vectors with masses below O(10−18 eV). In both cases, the limits attainable with neutron stars reach gauge coupling g0 <∼ 10−20, which are many orders of magnitude stronger than previous constraints. We also show projections for next generation experiments, such as Einstein Telescope. Lightning talks / 48 Primordial Gravitational Waves from Modified Gravity and Cos- mology Author: Anish Ghoshal1 1 L Corresponding Author: [email protected] We will review gravitational wave propagation in standard and non-standard cosmological history. Particularly, we will discuss the spectrum of primordial gravitational (PWG) waves spectrum in- duced due to inflation in such scenarios. Then we will show the predictions in scenarios aspre- dicted by various modified gravity theories, motivated by beyond ΛCDM model of cosmology and dark energy scenarios. As an example, we will discuss scalar-tensor theory as modified cosmology candidate. Next we will comment upon the sensitivity reaches of such predictions within the future and current GW detectors. Short talks / 49 Novel signatures of dark matter in laser-interferometric gravitational- wave detectors Page 1 Gravitational Wave Probes of Fundamental Physics / Book of Abstracts Authors: Yevgeny Stadnik1; Hartmut Grote2 1 Kavli IPMU, University of Tokyo 2 Cardiff University Corresponding Authors: [email protected], [email protected] Dark matter may induce apparent temporal variations in the physical “constants”, including the electromagnetic fine-structure constant and fermion masses. In particular, a coherently oscillating classical dark-matter field may induce apparent oscillations of physical constants in time, whilethe passage of macroscopic dark-matter objects (such as topological defects) may induce apparent tran- sient variations in the physical constants. We point out several new signatures of the aforementioned types of dark matter that can arise due to the geometric asymmetry created by the beam-splitter ina two-arm laser interferometer. These new signatures include dark-matter-induced time-varying size changes of a freely-suspended beam-splitter and associated time-varying shifts of the main reflect- ing surface of the beam-splitter that splits and recombines the laser beam, as well as time-varying refractive-index changes in the freely-suspended beam-splitter and time-varying size changes of freely-suspended arm mirrors. We demonstrate that existing ground-based experiments already have sufficient sensitivity to probe extensive regions of unconstrained parameter space inmodels involving oscillating scalar dark-matter fields and domain walls composed of scalar fields. Inthe case of oscillating dark-matter fields, Michelson interferometers — in particular, the GEO\,600 de- tector — are especially sensitive. The sensitivity of Fabry-Perot-Michelson interferometers, includ- ing LIGO, VIRGO and KAGRA, to oscillating dark-matter fields can be significantly increased by making the thicknesses of the freely-suspended Fabry-Perot arm mirrors different in the two arms. Not-too-distantly-separated laser interferometers can benefit from cross-correlation measurements in searches for effects of spatially coherent dark-matter fields. In addition to broadband searches for oscillating dark-matter fields, we also discuss how small-scale Michelson interferometers, such as the Fermilab holometer, could be used to perform resonant narrowband searches for oscillating dark-matter fields with enhanced sensitivity to dark matter. Finally, we discuss the possibility of using future space-based detectors, such as LISA, to search for dark matter via time-varying size changes of and time-varying forces exerted on freely-floating test masses. Reference: H. Grote and Y. V. Stadnik, arXiv:1906.06193 Lightning talks / 50 Audible Axions Authors: Wolfram Ratzinger1; Benjamin Stefanek2; Pedro Klaus Schwaller3; Camila S. Machado3 1 Johannes Gutenberg Universität Mainz 2 JGU Mainz 3 Mainz University Corresponding Authors: [email protected], [email protected], [email protected], [email protected] mainz.de Conventional approaches to probing axions and axion-like particles (ALPs) typically rely on a cou- pling to photons. However, if this coupling is extremely weak, ALPs become invisible and are ef- fectively decoupled from the Standard Model. We show that such invisible axions, which are viable candidates for dark matter, can produce a stochastic gravitational wave background in the early uni- verse. This signal is generated in models where the invisible axion couples to a dark gaugeboson that experiences a tachyonic instability when the axion begins to oscillate. Incidentally,the same mechanism also widens the viable parameter space for axion dark matter. Quantum fluctuations amplified by the exponentially growing gauge boson modes source chiral gravitational waves. We discuss the parameter space where this signal can possibly be detected by pulsar timing arrays or space/ground-based gravitational wave detectors, taking into account obstructions to the tachyonic growth like kinetic mixing of the gauge boson resulting in a thermal mass. Page 2 Gravitational Wave Probes of Fundamental Physics / Book of Abstracts Lightning talks / 51 Gravitational waves and collider probes of extended Higgs sec- tors Author: Maria Ramos1 1 LIP Corresponding Author: [email protected]
Recommended publications
  • Lateral Input-Optic Displacement in a Diffractive Fabry-Perot Cavity
    Home Search Collections Journals About Contact us My IOPscience Lateral input-optic displacement in a diffractive Fabry-Perot cavity This content has been downloaded from IOPscience. Please scroll down to see the full text. 2010 J. Phys.: Conf. Ser. 228 012022 (http://iopscience.iop.org/1742-6596/228/1/012022) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 194.95.157.184 This content was downloaded on 26/04/2017 at 10:56 Please note that terms and conditions apply. You may also be interested in: Coupling of lateral grating displacement to the output ports of a diffractive Fabry–Perotcavity J Hallam, S Chelkowski, A Freise et al. Experimental demonstration of a suspended, diffractively-coupled Fabry--Perot cavity M P Edgar, B W Barr, J Nelson et al. Commissioning of the tuned DC readout at GEO 600 J Degallaix, H Grote, M Prijatelj et al. Control and automatic alignment of the output mode cleaner of GEO 600 M Prijatelj, H Grote, J Degallaix et al. The GEO 600 gravitational wave detector B Willke, P Aufmuth, C Aulbert et al. OSCAR a Matlab based optical FFT code Jérôme Degallaix Phase and alignment noise in grating interferometers A Freise, A Bunkowski and R Schnabel Review of the Laguerre-Gauss mode technology research program at Birmingham P Fulda, C Bond, D Brown et al. The Holometer: an instrument to probe Planckian quantum geometry Aaron Chou, Henry Glass, H Richard Gustafson et al. 8th Edoardo Amaldi Conference on Gravitational Waves IOP Publishing Journal of Physics: Conference Series 228 (2010) 012022 doi:10.1088/1742-6596/228/1/012022 Lateral input-optic displacement in a diffractive Fabry-Perot cavity J.
    [Show full text]
  • 5 Optical Design
    ET-0106A-10 issue :2 ET Design Study date :January27,2011 page :204of315 5 Optical design 5.1 Description Responsible: WP3 coordinator, A. Freise Put here the description of the content of the section . 5.2 Executive Summary Responsible: WP3 coordinator, A. Freise Put here a summary of the main achievement/statements of this section . 5.3 Review on the geometry of the observatory Author(s): Andreas Freise,StefanHild This section briefly reviews the reasoning behind the shape of current gravitational wave detectors and then discusses alternative geometries which can be of interest for third-generation detectors. We will use the ter- minology introduced in the review of a triangular configuration [220] and discriminate between the geometry, topology and configuration of a detector as follows: The geometry describes the position information of one or several interferometers, defined by the number of interferometers, their location and relative orientation. The topology describes the optical system formed by its core elements. The most common examples are the Michelson, Sagnac and Mach–Zehnder topologies. Finally the configuration describes the detail of the optical layout and the set of parameters that can be changed for a given topology, ranging from the specifications of the optical core elements to the control systems, including the operation point of the main interferometer. Please note that the addition of optical components to a given topology is often referred to as a change in configuration. 5.3.1 The L-shape Current gravitational wave detectors represent the most precise instruments for measuring length changes. They are laser interferometers with km-long arms and are operated differently from many precision instruments built for measuring an absolute length.
    [Show full text]
  • The Einstein Telescope (ET) Is a Proposed Underground Infrastructure to Host a Third- Generation, Gravitational-Wave Observatory
    The Einstein Telescope (ET) is a proposed underground infrastructure to host a third- generation, gravitational-wave observatory. It builds on the success of current, second-generation laser- interferometric detectors Advanced Virgo and Advanced LIGO, whose breakthrough discoveries of merging black holes (BHs) and neutron stars over the past 5 years have ushered scientists into the new era of gravitational-wave astronomy. The Einstein Telescope will achieve a greatly improved sensitivity by increasing the size of the interferometer from the 3km arm length of the Virgo detector to 10km, and by implementing a series of new technologies. These include a cryogenic system to cool some of the main optics to 10 – 20K, new quantum technologies to reduce the fluctuations of the light, and a set of infrastructural and active noise-mitigation measures to reduce environmental perturbations. The Einstein Telescope will make it possible, for the first time, to explore the Universe through gravitational waves along its cosmic history up to the cosmological dark ages, shedding light on open questions of fundamental physics and cosmology. It will probe the physics near black-hole horizons (from tests of general relativity to quantum gravity), help understanding the nature of dark matter (such as primordial BHs, axion clouds, dark matter accreting on compact objects), and the nature of dark energy and possible modifications of general relativity at cosmological scales. Exploiting the ET sensitivity and frequency band, the entire population of stellar and intermediate mass black holes will be accessible over the entire history of the Universe, enabling to understand their origin (stellar versus primordial), evolution, and demography.
    [Show full text]
  • Holographic Noise in Interferometers a New Experimental Probe of Planck Scale Unification
    Holographic Noise in Interferometers A new experimental probe of Planck scale unification FCPA planning retreat, April 2010 1 Planck scale seconds The physics of this “minimum time” is unknown 1.616 ×10−35 m Black hole radius particle energy ~1016 TeV € Quantum particle energy size Particle confined to Planck volume makes its own black hole FCPA planning retreat, April 2010 2 Interferometers might probe Planck scale physics One interpretation of the Planck frequency/bandwidth limit predicts a new kind of uncertainty leading to a new detectable effect: "holographic noise” Different from gravitational waves or quantum field fluctuations Predicts Planck-amplitude noise spectrum with no parameters We are developing an experiment to test this hypothesis FCPA planning retreat, April 2010 3 Quantum limits on measuring event positions Spacelike-separated event intervals can be defined with clocks and light But transverse position measured with frequency-bounded waves is uncertain by the diffraction limit, Lλ0 This is much larger than the wavelength € Lλ0 L λ0 Add second€ dimension: small phase difference of events over Wigner (1957): quantum limits large transverse patch with one spacelike dimension FCPA planning€ retreat, April 2010 4 € Nonlocal comparison of event positions: phases of frequency-bounded wavepackets λ0 Wavepacket of phase: relative positions of null-field reflections off massive bodies € Δf = c /2πΔx Separation L € ΔxL = L(Δf / f0 ) = cL /2πf0 Uncertainty depends only on L, f0 € FCPA planning retreat, April 2010 5 € Physics Outcomes
    [Show full text]
  • Seismic Characterization of the Euregio Meuse-Rhine in View of Einstein Telescope
    SEISMIC CHARACTERIZATION OF THE EUREGIO MEUSE-RHINE IN VIEW OF EINSTEIN TELESCOPE 13 September 2019 First results of seismic studies of the Belgian-Dutch-German site for Einstein Telescope Soumen Koley1, Maria Bader1, Alessandro Bertolini1, Jo van den Brand1,2, Henk Jan Bulten1,3, Stefan Hild1,2, Frank Linde1,4, Bas Swinkels1, Bjorn Vink5 1. Nikhef, National Institute for Subatomic Physics, Amsterdam, The Netherlands 2. Maastricht University, Maastricht, The Netherlands 3. VU University Amsterdam, Amsterdam, The Netherlands 4. University of Amsterdam, Amsterdam, The Netherlands 5. Antea Group, Maastricht, The Netherlands CONFIDENTIAL Figure 1: Artist impression of the Einstein Telescope gravitational wave observatory situated at a depth of 200-300 meters in the Euregio Meuse-Rhine landscape. The triangular topology with 10 kilometers long arms allows for the installation of multiple so-called laser interferometers. Each of which can detect ripples in the fabric of space-time – the unique signature of a gravitational wave – as minute relative movements of the mirrors hanging at the bottom of the red and white towers indicated in the illustration at the corners of the triangle. 1 SEISMIC CHARACTERIZATION OF THE EUREGIO MEUSE-RHINE IN VIEW OF EINSTEIN TELESCOPE Figure 2: Drill rig for the 2018-2019 campaign used for the completion of the 260 meters deep borehole near Terziet on the Dutch-Belgian border in South Limburg. Two broadband seismic sensors were installed: one at a depth of 250 meters and one just below the surface. Both sensors are accessible via the KNMI portal: http://rdsa.knmi.nl/dataportal/. 2 SEISMIC CHARACTERIZATION OF THE EUREGIO MEUSE-RHINE IN VIEW OF EINSTEIN TELESCOPE Executive summary The European 2011 Conceptual Design Report for Einstein Telescope identified the Euregio Meuse-Rhine and in particular the South Limburg border region as one of the prospective sites for this next generation gravitational wave observatory.
    [Show full text]
  • Stochastic Gravitational Wave Backgrounds
    Stochastic Gravitational Wave Backgrounds Nelson Christensen1;2 z 1ARTEMIS, Universit´eC^oted'Azur, Observatoire C^oted'Azur, CNRS, 06304 Nice, France 2Physics and Astronomy, Carleton College, Northfield, MN 55057, USA Abstract. A stochastic background of gravitational waves can be created by the superposition of a large number of independent sources. The physical processes occurring at the earliest moments of the universe certainly created a stochastic background that exists, at some level, today. This is analogous to the cosmic microwave background, which is an electromagnetic record of the early universe. The recent observations of gravitational waves by the Advanced LIGO and Advanced Virgo detectors imply that there is also a stochastic background that has been created by binary black hole and binary neutron star mergers over the history of the universe. Whether the stochastic background is observed directly, or upper limits placed on it in specific frequency bands, important astrophysical and cosmological statements about it can be made. This review will summarize the current state of research of the stochastic background, from the sources of these gravitational waves, to the current methods used to observe them. Keywords: stochastic gravitational wave background, cosmology, gravitational waves 1. Introduction Gravitational waves are a prediction of Albert Einstein from 1916 [1,2], a consequence of general relativity [3]. Just as an accelerated electric charge will create electromagnetic waves (light), accelerating mass will create gravitational waves. And almost exactly arXiv:1811.08797v1 [gr-qc] 21 Nov 2018 a century after their prediction, gravitational waves were directly observed [4] for the first time by Advanced LIGO [5, 6].
    [Show full text]
  • The Holometer: a Measurement of Planck-Scale Quantum Geometry
    The Holometer: A Measurement of Planck-Scale Quantum Geometry Stephan Meyer November 3, 2014 1 The problem with geometry Classical geometry is made of definite points and is based on “locality.” Relativity is consistent with this point of view but makes geometry “dynamic” - reacts to masses. Quantum physics holds that nothing happens at a definite time or place. All measurements are quantum and all known measurements follow quantum physics. Anything that is “real” must be measurable. How can space-time be the answer? Stephan Meyer SPS - November 3, 2014 2 Whats the problem? Start with - Black Holes What is the idea for black holes? - for a massive object there is a surface where the escape velocity is the speed of light. Since nothing can travel faster than the speed of light, things inside this radius are lost. We can use Phys131 to figure this out Stephan Meyer SPS - November 3, 2014 3 If r1 is ∞, then To get the escape velocity, we should set the initial kinetic energy equal to the potential energy and set the velocity equal to the speed of light. Solving for the radius, we get Stephan Meyer SPS - November 3, 2014 4 having an object closer than r to a mass m, means it is lost to the world. This is the definition of the Schwarzshild radius of a black hole. So for stuff we can do physics with we need: Stephan Meyer SPS - November 3, 2014 5 A second thing: Heisenberg uncertainty principle: an object cannot have its position and momentum uncertainty be arbitrarily small This can be manipulated, using the definition of p and E to be What we mean is that to squeeze something to a size λ, we need to put in at least energy E.
    [Show full text]
  • Strategic Overview of Fermilab Particle Astrophysics Program
    Strategic Overview of Fermilab Particle Astrophysics Program Craig Hogan PAC 16 January 2015 Particle Astrophysics at Fermilab Fermilab (and HEP) mission: study the fundamental nature of matter, energy, space and time Cosmic studies uniquely probe deep mysteries: dark matter, cosmic acceleration, neutrino mass, gravity Challenging experiments require capabilities of national laboratories: technologies, development, engineering, scale, management DOE labs share effort on most cosmic experiments Program is planned with University community Fermilab’s plan is based on the scientific drivers in the HEPAP P5 report, as shaped by community support needs, agency funding opportunities, and unique laboratory capabilities 2 Craig Hogan | Particle Astrophysics Program 1/8/15 Fermilab Center for Par0cle Astrophysics Strategic Plan - January 2015 P5 Driver Experiments Dark Maer G1: SuperCDMS Soudan, COUPP/PICO, Darkside, DAMIC G2: SuperCDMS SNOLAB, LZ, ADMX G3: R&D towards advanced WIMP and Axion experiments Dark Energy DES, DESI, LSST CMB SPT-3G, CMB-S4 Exploring the Holometer, Pierre Auger Unknown Detector R&D R&D on new techniques for par0cle astrophysics experiments Astrophysics Strong coupling with par0cle astrophysics experiments Theory Dark Matter Astrophysical evidence suggests that most of our Galaxy is made of a new form of matter Theory suggests that it may be detectable in this decade Weakly Interacting Massive Particles (WIMPs) Axions (solution to CP problem of strong interactions) P5: diverse program for direct detection of WIMPs and axions
    [Show full text]
  • DEUTSCHES ELEKTRONEN-SYNCHROTRON Ein Forschungszentrum Der Helmholtz-Gemeinschaft DESY 20-187 TUM-HEP-1293-20 Arxiv:2011.04731 November 2020
    DEUTSCHES ELEKTRONEN-SYNCHROTRON Ein Forschungszentrum der Helmholtz-Gemeinschaft DESY 20-187 TUM-HEP-1293-20 arXiv:2011.04731 November 2020 Gravitational Waves as a Big Bang Thermometer A. Ringwald Deutsches Elektronen-Synchrotron DESY, Hamburg J. Sch¨utte-Engel Fachbereich Physik, Universit¨atHamburg and Department of Physics, University of Illinois at Urbana-Champaign, Urbana, USA and Illinois Center for Advanced Studies of the Universe, University of Illinois at Urbana-Champaign, Urbana, USA C. Tamarit Physik-Department T70, Technische Universit¨atM¨unchen,Garching ISSN 0418-9833 NOTKESTRASSE 85 - 22607 HAMBURG DESY behält sich alle Rechte für den Fall der Schutzrechtserteilung und für die wirtschaftliche Verwertung der in diesem Bericht enthaltenen Informationen vor. DESY reserves all rights for commercial use of information included in this report, especially in case of filing application for or grant of patents. To be sure that your reports and preprints are promptly included in the HEP literature database send them to (if possible by air mail): DESY DESY Zentralbibliothek Bibliothek Notkestraße 85 Platanenallee 6 22607 Hamburg 15738 Zeuthen Germany Germany DESY 20-187 TUM-HEP-1293-20 Gravitational Waves as a Big Bang Thermometer Andreas Ringwald1, Jan Sch¨utte-Engel2;3;4 and Carlos Tamarit5 1 Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany 2 Department of Physics, Universit¨atHamburg, Luruper Chaussee 149, D-22761 Hamburg, Germany 3 Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A. 4 Illinois Center for Advanced Studies of the Universe, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A. 5 Physik-Department T70, Technische Universit¨atM¨unchen, James-Franck-Straße, D-85748 Garching, Germany Abstract There is a guaranteed background of stochastic gravitational waves produced in the thermal plasma in the early universe.
    [Show full text]
  • 2015MRM Scientific Program.Pdf
    Thursday, October 1 Afternoon Welcoming Remarks 1:00 p.m. – 1:10 p.m. Vicky Kalogera, Center for Interdisciplinary Exploration and Research in Astrophysics Special General Relativity Invited Talks 1:10 p.m. – 5:10 p.m. Chair: Vicky Kalogera 1:10 2:00 Stu Shapiro, University of Illinois Compact Binary Mergers as Multimessenger Sources of Gravitational Waves 2:00 2:50 Lydia Bieri, University of Michigan Mathematical Relativity Chair: Shane Larson 3:30 4:20 Eva Silverstein, Stanford University Quantum gravity in the early universe and at horizons 4:20 5:10 Rainer Weiss, MIT A brief history of gravitational waves: theoretical insight to measurement Public lecture 7:30 p.m. – 9:00 p.m. 7:30 9:00 John D. Norton, University of Pittsburgh Einstein’s Discovery of the General Theory of Relativity Friday, October 2 Morning, Session One Gravitational Wave Sources 9:00 a.m. – 10:30 a.m. Chair: Vicky Kalogera 9:00 9:12 Carl Rodriguez*, Northwestern University Binary Black Hole Mergers from Globular Clusters: Implications for Advanced LIGO 9:12 9:24 Thomas Osburn*, UNC Chapel Hill Computing extreme mass ratio inspirals at high accuracy and large eccentricity using a hybrid method 9:24 9:36 Eliu Huerta, NCSA, University of Illinois at Urbana-Champaign Detection of eccentric supermassive black hole binaries with pulsar timing arrays: Signal-to-noise ratio calculations 9:36 9:48 Katelyn Breivik*, Northwestern University Exploring galactic binary population variance with population synthesis 9:48 10:00 Eric Poisson, University of Guelph Fluid resonances and self-force 10:00 10:12 John Poirier, University of Notre Dame Gravitomagnetic acceleration of accretion disk matter to polar jets John Poirier and Grant Mathews 10:12 10:24 Philippe Landry*, University of Guelph Tidal Deformation of a Slowly Rotating Material Body *Student 2015 Midwest Relativity Meeting 1 Friday, October 2 Morning, Session Two Gravitational Wave/Electromagnetic Detections 11:00 a.m.
    [Show full text]
  • Mhz Gravitational Wave Constraints with Decameter Michelson Interferometers
    MHz gravitational wave constraints with decameter Michelson interferometers The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Chou, Aaron S. et al. “MHz Gravitational Wave Constraints with Decameter Michelson Interferometers.” Physical Review D 95.6 (2017): n. pag. © 2017 American Physical Society As Published http://dx.doi.org/10.1103/PhysRevD.95.063002 Publisher American Physical Society Version Final published version Citable link http://hdl.handle.net/1721.1/107214 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. PHYSICAL REVIEW D 95, 063002 (2017) MHz gravitational wave constraints with decameter Michelson interferometers Aaron S. Chou,1 Richard Gustafson,2 Craig Hogan,1,3 Brittany Kamai,1,3,4,* Ohkyung Kwon,3,5 Robert Lanza,3,6 Shane L. Larson,7,8 Lee McCuller,3,6 Stephan S. Meyer,3 Jonathan Richardson,2,3 Chris Stoughton,1 Raymond Tomlin,1 and Rainer Weiss6 (Holometer Collaboration) 1Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA 2University of Michigan, Ann Arbor, Michigan 48109, USA 3University of Chicago, Chicago, Illinois 60637, USA 4Vanderbilt University, Nashville, Tennessee 37235, USA 5Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea 6Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA 7Northwestern University, Evanston, Illinois 60208, USA 8Adler Planetarium, Chicago, Illinois 60605, USA (Received 16 November 2016; published 3 March 2017) A new detector, the Fermilab Holometer, consists of separatepffiffiffiffiffiffi yet identical 39-meter Michelson interferometers.
    [Show full text]
  • A Primer on LIGO and Virgo Gravitational Wave Detectors
    A primer on LIGO and Virgo gravitational wave detectors Jo van den Brand, Nikhef and VU University Amsterdam, [email protected] Gravitational Wave Open Data Workshop #2, Paris, April 8, 2019 Interferometric gravitational wave detectors Tiny vibrations in space can now be observed by using the kilometer-scale laser-based interferometers of LIGO and Virgo. This enables an entire new field in science Eleven detections…so far First gravitational wave detection with GW150914 and first binary neutron star GW170817 Event GW150914 Chirp-signal from gravitational waves from two Einsteincoalescing black holes were Telescope observed with the LIGO detectors by the LIGO-Virgo Consortium on September 14, 2015 The next gravitational wave observatory Event GW150914 On September 14th 2015 the gravitational waves generated by a binary black hole merger, located about 1.4 Gly from Earth, crossed the two LIGO detectors displacing their test masses by a small fraction of the radius of a proton Displacement Displacement ( 0.005 0.0025 0.000 Proton radii Proton - 0.0025 - 0.005 ) Proton radius=0.87 fm Measuring intervals must be smaller than 0.01 seconds Laser interferometer detectorsEinstein Telescope The next gravitational wave observatory Laser interferometer detectorsEinstein Telescope The next gravitational wave observatory LIGO Hanford VIRGO KAGRA LIGO Livingston GEO600 Effect of a strong gravitational wave on ITF arm 2Δ퐿 h= = 10−22 퐿 Laser interferometer detectors Michelson interferometer If we would use a single photon and only distinguish between bright and dark fringe, then such an ITF would not be sensitive: −6 휆/2 0.5 ×10 m −10 ℎcrude ≈ = ≈ 10 퐿optical 4000 m Need to do 1012 times better.
    [Show full text]