2015MRM Scientific Program.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lateral Input-Optic Displacement in a Diffractive Fabry-Perot Cavity
Home Search Collections Journals About Contact us My IOPscience Lateral input-optic displacement in a diffractive Fabry-Perot cavity This content has been downloaded from IOPscience. Please scroll down to see the full text. 2010 J. Phys.: Conf. Ser. 228 012022 (http://iopscience.iop.org/1742-6596/228/1/012022) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 194.95.157.184 This content was downloaded on 26/04/2017 at 10:56 Please note that terms and conditions apply. You may also be interested in: Coupling of lateral grating displacement to the output ports of a diffractive Fabry–Perotcavity J Hallam, S Chelkowski, A Freise et al. Experimental demonstration of a suspended, diffractively-coupled Fabry--Perot cavity M P Edgar, B W Barr, J Nelson et al. Commissioning of the tuned DC readout at GEO 600 J Degallaix, H Grote, M Prijatelj et al. Control and automatic alignment of the output mode cleaner of GEO 600 M Prijatelj, H Grote, J Degallaix et al. The GEO 600 gravitational wave detector B Willke, P Aufmuth, C Aulbert et al. OSCAR a Matlab based optical FFT code Jérôme Degallaix Phase and alignment noise in grating interferometers A Freise, A Bunkowski and R Schnabel Review of the Laguerre-Gauss mode technology research program at Birmingham P Fulda, C Bond, D Brown et al. The Holometer: an instrument to probe Planckian quantum geometry Aaron Chou, Henry Glass, H Richard Gustafson et al. 8th Edoardo Amaldi Conference on Gravitational Waves IOP Publishing Journal of Physics: Conference Series 228 (2010) 012022 doi:10.1088/1742-6596/228/1/012022 Lateral input-optic displacement in a diffractive Fabry-Perot cavity J. -
Holographic Noise in Interferometers a New Experimental Probe of Planck Scale Unification
Holographic Noise in Interferometers A new experimental probe of Planck scale unification FCPA planning retreat, April 2010 1 Planck scale seconds The physics of this “minimum time” is unknown 1.616 ×10−35 m Black hole radius particle energy ~1016 TeV € Quantum particle energy size Particle confined to Planck volume makes its own black hole FCPA planning retreat, April 2010 2 Interferometers might probe Planck scale physics One interpretation of the Planck frequency/bandwidth limit predicts a new kind of uncertainty leading to a new detectable effect: "holographic noise” Different from gravitational waves or quantum field fluctuations Predicts Planck-amplitude noise spectrum with no parameters We are developing an experiment to test this hypothesis FCPA planning retreat, April 2010 3 Quantum limits on measuring event positions Spacelike-separated event intervals can be defined with clocks and light But transverse position measured with frequency-bounded waves is uncertain by the diffraction limit, Lλ0 This is much larger than the wavelength € Lλ0 L λ0 Add second€ dimension: small phase difference of events over Wigner (1957): quantum limits large transverse patch with one spacelike dimension FCPA planning€ retreat, April 2010 4 € Nonlocal comparison of event positions: phases of frequency-bounded wavepackets λ0 Wavepacket of phase: relative positions of null-field reflections off massive bodies € Δf = c /2πΔx Separation L € ΔxL = L(Δf / f0 ) = cL /2πf0 Uncertainty depends only on L, f0 € FCPA planning retreat, April 2010 5 € Physics Outcomes -
The Emergence of Gravitational Wave Science: 100 Years of Development of Mathematical Theory, Detectors, Numerical Algorithms, and Data Analysis Tools
BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 53, Number 4, October 2016, Pages 513–554 http://dx.doi.org/10.1090/bull/1544 Article electronically published on August 2, 2016 THE EMERGENCE OF GRAVITATIONAL WAVE SCIENCE: 100 YEARS OF DEVELOPMENT OF MATHEMATICAL THEORY, DETECTORS, NUMERICAL ALGORITHMS, AND DATA ANALYSIS TOOLS MICHAEL HOLST, OLIVIER SARBACH, MANUEL TIGLIO, AND MICHELE VALLISNERI In memory of Sergio Dain Abstract. On September 14, 2015, the newly upgraded Laser Interferometer Gravitational-wave Observatory (LIGO) recorded a loud gravitational-wave (GW) signal, emitted a billion light-years away by a coalescing binary of two stellar-mass black holes. The detection was announced in February 2016, in time for the hundredth anniversary of Einstein’s prediction of GWs within the theory of general relativity (GR). The signal represents the first direct detec- tion of GWs, the first observation of a black-hole binary, and the first test of GR in its strong-field, high-velocity, nonlinear regime. In the remainder of its first observing run, LIGO observed two more signals from black-hole bina- ries, one moderately loud, another at the boundary of statistical significance. The detections mark the end of a decades-long quest and the beginning of GW astronomy: finally, we are able to probe the unseen, electromagnetically dark Universe by listening to it. In this article, we present a short historical overview of GW science: this young discipline combines GR, arguably the crowning achievement of classical physics, with record-setting, ultra-low-noise laser interferometry, and with some of the most powerful developments in the theory of differential geometry, partial differential equations, high-performance computation, numerical analysis, signal processing, statistical inference, and data science. -
Arxiv:Gr-Qc/0304042V1 9 Apr 2003
Do black holes radiate? Adam D Helfer Department of Mathematics, Mathematical Sciences Building, University of Missouri, Columbia, Missouri 65211, U.S.A. Abstract. The prediction that black holes radiate due to quantum effects is often considered one of the most secure in quantum field theory in curved space–time. Yet this prediction rests on two dubious assumptions: that ordinary physics may be applied to vacuum fluctuations at energy scales increasing exponentially without bound; and that quantum–gravitational effects may be neglected. Various suggestions have been put forward to address these issues: that they might be explained away by lessons from sonic black hole models; that the prediction is indeed successfully reproduced by quantum gravity; that the success of the link provided by the prediction between black holes and thermodynamics justifies the prediction. This paper explains the nature of the difficulties, and reviews the proposals that have been put forward to deal with them. None of the proposals put forward can so far be considered to be really successful, and simple dimensional arguments show that quantum–gravitational effects might well alter the evaporation process outlined by Hawking. arXiv:gr-qc/0304042v1 9 Apr 2003 Thus a definitive theoretical treatment will require an understanding of quantum gravity in at least some regimes. Until then, no compelling theoretical case for or against radiation by black holes is likely to be made. The possibility that non–radiating “mini” black holes exist should be taken seriously; such holes could be part of the dark matter in the Universe. Attempts to place observational limits on the number of “mini” black holes (independent of the assumption that they radiate) would be most welcome. -
Stochastic Gravitational Wave Backgrounds
Stochastic Gravitational Wave Backgrounds Nelson Christensen1;2 z 1ARTEMIS, Universit´eC^oted'Azur, Observatoire C^oted'Azur, CNRS, 06304 Nice, France 2Physics and Astronomy, Carleton College, Northfield, MN 55057, USA Abstract. A stochastic background of gravitational waves can be created by the superposition of a large number of independent sources. The physical processes occurring at the earliest moments of the universe certainly created a stochastic background that exists, at some level, today. This is analogous to the cosmic microwave background, which is an electromagnetic record of the early universe. The recent observations of gravitational waves by the Advanced LIGO and Advanced Virgo detectors imply that there is also a stochastic background that has been created by binary black hole and binary neutron star mergers over the history of the universe. Whether the stochastic background is observed directly, or upper limits placed on it in specific frequency bands, important astrophysical and cosmological statements about it can be made. This review will summarize the current state of research of the stochastic background, from the sources of these gravitational waves, to the current methods used to observe them. Keywords: stochastic gravitational wave background, cosmology, gravitational waves 1. Introduction Gravitational waves are a prediction of Albert Einstein from 1916 [1,2], a consequence of general relativity [3]. Just as an accelerated electric charge will create electromagnetic waves (light), accelerating mass will create gravitational waves. And almost exactly arXiv:1811.08797v1 [gr-qc] 21 Nov 2018 a century after their prediction, gravitational waves were directly observed [4] for the first time by Advanced LIGO [5, 6]. -
The Holometer: a Measurement of Planck-Scale Quantum Geometry
The Holometer: A Measurement of Planck-Scale Quantum Geometry Stephan Meyer November 3, 2014 1 The problem with geometry Classical geometry is made of definite points and is based on “locality.” Relativity is consistent with this point of view but makes geometry “dynamic” - reacts to masses. Quantum physics holds that nothing happens at a definite time or place. All measurements are quantum and all known measurements follow quantum physics. Anything that is “real” must be measurable. How can space-time be the answer? Stephan Meyer SPS - November 3, 2014 2 Whats the problem? Start with - Black Holes What is the idea for black holes? - for a massive object there is a surface where the escape velocity is the speed of light. Since nothing can travel faster than the speed of light, things inside this radius are lost. We can use Phys131 to figure this out Stephan Meyer SPS - November 3, 2014 3 If r1 is ∞, then To get the escape velocity, we should set the initial kinetic energy equal to the potential energy and set the velocity equal to the speed of light. Solving for the radius, we get Stephan Meyer SPS - November 3, 2014 4 having an object closer than r to a mass m, means it is lost to the world. This is the definition of the Schwarzshild radius of a black hole. So for stuff we can do physics with we need: Stephan Meyer SPS - November 3, 2014 5 A second thing: Heisenberg uncertainty principle: an object cannot have its position and momentum uncertainty be arbitrarily small This can be manipulated, using the definition of p and E to be What we mean is that to squeeze something to a size λ, we need to put in at least energy E. -
Strategic Overview of Fermilab Particle Astrophysics Program
Strategic Overview of Fermilab Particle Astrophysics Program Craig Hogan PAC 16 January 2015 Particle Astrophysics at Fermilab Fermilab (and HEP) mission: study the fundamental nature of matter, energy, space and time Cosmic studies uniquely probe deep mysteries: dark matter, cosmic acceleration, neutrino mass, gravity Challenging experiments require capabilities of national laboratories: technologies, development, engineering, scale, management DOE labs share effort on most cosmic experiments Program is planned with University community Fermilab’s plan is based on the scientific drivers in the HEPAP P5 report, as shaped by community support needs, agency funding opportunities, and unique laboratory capabilities 2 Craig Hogan | Particle Astrophysics Program 1/8/15 Fermilab Center for Par0cle Astrophysics Strategic Plan - January 2015 P5 Driver Experiments Dark Maer G1: SuperCDMS Soudan, COUPP/PICO, Darkside, DAMIC G2: SuperCDMS SNOLAB, LZ, ADMX G3: R&D towards advanced WIMP and Axion experiments Dark Energy DES, DESI, LSST CMB SPT-3G, CMB-S4 Exploring the Holometer, Pierre Auger Unknown Detector R&D R&D on new techniques for par0cle astrophysics experiments Astrophysics Strong coupling with par0cle astrophysics experiments Theory Dark Matter Astrophysical evidence suggests that most of our Galaxy is made of a new form of matter Theory suggests that it may be detectable in this decade Weakly Interacting Massive Particles (WIMPs) Axions (solution to CP problem of strong interactions) P5: diverse program for direct detection of WIMPs and axions -
DEUTSCHES ELEKTRONEN-SYNCHROTRON Ein Forschungszentrum Der Helmholtz-Gemeinschaft DESY 20-187 TUM-HEP-1293-20 Arxiv:2011.04731 November 2020
DEUTSCHES ELEKTRONEN-SYNCHROTRON Ein Forschungszentrum der Helmholtz-Gemeinschaft DESY 20-187 TUM-HEP-1293-20 arXiv:2011.04731 November 2020 Gravitational Waves as a Big Bang Thermometer A. Ringwald Deutsches Elektronen-Synchrotron DESY, Hamburg J. Sch¨utte-Engel Fachbereich Physik, Universit¨atHamburg and Department of Physics, University of Illinois at Urbana-Champaign, Urbana, USA and Illinois Center for Advanced Studies of the Universe, University of Illinois at Urbana-Champaign, Urbana, USA C. Tamarit Physik-Department T70, Technische Universit¨atM¨unchen,Garching ISSN 0418-9833 NOTKESTRASSE 85 - 22607 HAMBURG DESY behält sich alle Rechte für den Fall der Schutzrechtserteilung und für die wirtschaftliche Verwertung der in diesem Bericht enthaltenen Informationen vor. DESY reserves all rights for commercial use of information included in this report, especially in case of filing application for or grant of patents. To be sure that your reports and preprints are promptly included in the HEP literature database send them to (if possible by air mail): DESY DESY Zentralbibliothek Bibliothek Notkestraße 85 Platanenallee 6 22607 Hamburg 15738 Zeuthen Germany Germany DESY 20-187 TUM-HEP-1293-20 Gravitational Waves as a Big Bang Thermometer Andreas Ringwald1, Jan Sch¨utte-Engel2;3;4 and Carlos Tamarit5 1 Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany 2 Department of Physics, Universit¨atHamburg, Luruper Chaussee 149, D-22761 Hamburg, Germany 3 Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A. 4 Illinois Center for Advanced Studies of the Universe, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A. 5 Physik-Department T70, Technische Universit¨atM¨unchen, James-Franck-Straße, D-85748 Garching, Germany Abstract There is a guaranteed background of stochastic gravitational waves produced in the thermal plasma in the early universe. -
Meeting Program
22nd Midwest Relativity Meeting September 28-29, 2012 Chicago, IL http://kicp-workshops.uchicago.edu/Relativity2012/ MEETING PROGRAM http://kicp.uchicago.edu/ http://www.uchicago.edu/ The 22nd Midwest Relativity Meeting will be held Friday and Saturday, September 28 and 29, 2012 at the University of Chicago. The format of the meeting will follow previous regional meetings, where all participants may present a talk of approximately 10-15 minutes, depending on the total number of talks. We intend for the meeting to cover a broad range of topics in gravitation physics, including classical and quantum gravity, numerical relativity, relativistic astrophysics, cosmology, gravitational waves, and experimental gravity. As this is a regional meeting, many of the participants will be from the greater United States Midwest and Canada, but researchers and students from other geographic areas are also welcome. Students are strongly encouraged to give presentations. The Blue Apple Award, sponsored by the APS Topical Group in Gravitation, will be awarded for the best student presentation. We gratefully acknowledge the generous support provided by the Kavli Institute for Cosmological Physics (KICP) at the University of Chicago. Organizing Committe Daniel Holz Robert Wald University of Chicago University of Chicago 22nd Midwest Relativity Meeting September 28-29, 2012 @ Chicago, IL MEETING PROGRAM September 28-29, 2012 @ Kersten Physics Teaching Center (KPTC), Room 106 Friday - September 28, 2012 8:15 AM - 8:55 AM COFFEE & PASTRIES 8:55 AM - 9:00 AM WELCOME -
List of Participants
Exploring Theories of Modified Gravity October 12-14, 2015 KICP workshop, 2015 Chicago, IL http://kicp-workshops.uchicago.edu/2015-mg/ LIST OF PARTICIPANTS http://kicp.uchicago.edu/ http://www.nsf.gov/ http://www.uchicago.edu/ The Kavli Institute for Cosmological Physics (KICP) at the University of Chicago is hosting a workshop this fall on theories of modified gravity. The purpose of workshop is to discuss recent progress and interesting directions in theoretical research into modified gravity. Topics of particular focus include: massive gravity, Horndeski, beyond Horndeski, and other derivatively coupled theories, screening and new physics in the gravitational sector, and possible observational probes of the above. The meeting will be relatively small, informal, and interactive workshop for the focused topics. Organizing Committee Scott Dodelson Wayne Hu Austin Joyce Fermilab, University of Chicago University of Chicago University of Chicago Hayato Motohashi Lian-Tao Wang University of Chicago University of Chicago Exploring Theories of Modified Gravity October 12-14, 2015 @ Chicago, IL 1. Tessa M Baker UPenn / University of Oxford 2. John Boguta University of Illinois Chicago 3. Claudia de Rham Case Western Reserve University 4. Cedric Deffayet CNRS 5. Scott Dodelson Fermilab, University of Chicago 6. Matteo R Fasiello Stanford 7. Maya Fishbach University of Chicago 8. Gregory Gabadadze New York University 9. Salman Habib Argonne National Laboratory 10. Kurt Hinterbichler Perimeter Institute for Theoretical Physics 11. Daniel Holz KICP 12. Wayne Hu University of Chicago 13. Lam Hui Columbia University 14. Elise Jennings Fermilab 15. Austin Joyce University of Chicago 16. Nemanja Kaloper University of California, Davis 17. Rampei Kimura New York University 18. -
On the Backreaction of Scalar and Spinor Quantum Fields in Curved Spacetimes
On the Backreaction of Scalar and Spinor Quantum Fields in Curved Spacetimes Dissertation zur Erlangung des Doktorgrades des Department Physik der Universität Hamburg vorgelegt von Thomas-Paul Hack aus Timisoara Hamburg 2010 Gutachter der Dissertation: Prof. Dr. K. Fredenhagen Prof. Dr. V. Moretti Prof. Dr. R. M. Wald Gutachter der Disputation: Prof. Dr. K. Fredenhagen Prof. Dr. W. Buchmüller Datum der Disputation: Mittwoch, 19. Mai 2010 Vorsitzender des Prüfungsausschusses: Prof. Dr. J. Bartels Vorsitzender des Promotionsausschusses: Prof. Dr. J. Bartels Dekan der Fakultät für Mathematik, Informatik und Naturwissenschaften: Prof. Dr. H. Graener Zusammenfassung In der vorliegenden Arbeit werden zunächst einige Konstruktionen und Resultate in Quantenfeldtheorie auf gekrümmten Raumzeiten, die bisher nur für das Klein-Gordon Feld behandelt und erlangt worden sind, für Dirac Felder verallgemeinert. Es wird im Rahmen des algebraischen Zugangs die erweiterte Algebra der Observablen konstruiert, die insbesondere normalgeordnete Wickpolynome des Diracfeldes enthält. Anschließend wird ein ausgezeichnetes Element dieser erweiterten Algebra, der Energie-Impuls Tensor, analysiert. Unter Zuhilfenahme ausführlicher Berechnungen der Hadamardkoe ?zienten des Diracfeldes wird gezeigt, dass eine lokale, kovariante und kovariant erhaltene Konstruktion des Energie- Impuls Tensors möglich ist. Anschließend wird das Verhältnis der mathematisch fundierten Hadamardreg- ularisierung des Energie-Impuls Tensors mit der mathematisch weniger rigorosen DeWitt-Schwinger -
Vanderbilt University, Department of Physics & Astronomy VU Station B 1807, Nashville, TN 37235 Phone: 615-322-2828, FAX: 61
CURRICULUM VITAE: KEIVAN GUADALUPE STASSUN SENIOR ASSOCIATE DEAN FOR GRADUATE EDUCATION & RESEARCH, COLLEGE OF ARTS & SCIENCE Vanderbilt University, Department of Physics & Astronomy VU Station B 1807, Nashville, TN 37235 Phone: 615-322-2828, FAX: 615-343-7263 [email protected] DEGREES EARNED University of Wisconsin—Madison Degree: Ph.D. in Astronomy, 2000 Thesis: Rotation, Accretion, and Circumstellar Disks among Low-Mass Pre-Main-Sequence Stars Advisor: Robert D. Mathieu University of California at Berkeley Degree: A.B. in Physics/Astronomy (double major) with Honors, 1994 Thesis: A Simultaneous Photometric and Spectroscopic Variability Study of Classical T Tauri Stars Advisor: Gibor Basri EMPLOYMENT HISTORY Vanderbilt University Director, Vanderbilt Center for Autism & Innovation, 2017-present Stevenson Endowed Professor of Physics & Astronomy, 2016-present Senior Associate Dean for Graduate Education & Research, College of Arts & Science, 2015-18 Harvie Branscomb Distinguished Professor, 2015-16 Professor of Physics and Astronomy, 2011-present Director, Vanderbilt Initiative in Data-intensive Astrophysics (VIDA), 2007-present Co-Director, Fisk-Vanderbilt Masters-to-PhD Bridge Program, 2004-15 Associate Professor of Physics and Astronomy, 2008-11 Assistant Professor of Physics and Astronomy, 2003-08 Fisk University Adjunct Professor of Physics, 2006-present University of Wisconsin—Madison NASA Hubble Postdoctoral Research Fellow, Astronomy, 2001-03 Area: Observational Studies of Low-Mass Star Formation Mentor: Robert D. Mathieu University of Wisconsin—Madison Assistant Director and Postdoctoral Fellow, NSF Graduate K-12 Teaching Fellows Program, 2000-01 Duties: Development of fellowship program, instructor for graduate course in science education research Mentor: Terrence Millar HONORS AND AWARDS Presidential Award for Excellence in Science, Math, and Engineering Mentoring—2018 AAAS Mentor of the Year—2018 HHMI Professor—2018- Research Corporation for Science Advancement SEED Award—2017 1/29 Keivan G.