1 (Information) Paradox Lost Tim Maudlin
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Here’S No Speed of Light, So What the Heck Did Michelson Measure?” “What the Humean Should Say About Quantities: a Reply to Bricker”
Hellems Building, Office 282 [email protected] CU Boulder, Dept of Philosophy (215)-262-3126 Boulder, CO 80309 www.zrperry.com Zee R. Perry curriculum vitae Employment 2018–present Center Visiting Scholar Center for the Study of Origins, University of Colorado, Boulder 2018–present Visiting Instructor Department of Philosophy, University of Colorado, Boulder 2016–2018 Andrew W. Mellon Foundation Postdoctoral Associate Department of Philosophy, Rutgers University, New Brunswick Education 2009–2016 Ph.D. in Philosophy, New York University. Dissertation: Physical Quantities: Mereology and Dynamics Committee: Tim Maudlin (chair), Cian Dorr, Hartry Field, Shamik Dasgupta (ex- ternal, Princeton) 2007–2009 B.A. in Philosophy, Rutgers University Summa Cum Laude. 2005–2007 Moravian College Areas of Specialization Metaphysics, Philosophy of Physics Areas of Competence Philosophy of Science, Philosophy of Art, Logic Fellowships and Awards Summer Early Career Researcher Visiting Fellowship, ANU School of Philosophy and Centre 2019 for the Philosophy of the Sciences 2018–present Visiting Scholarship Award (Project: Origins of Measurement), Center for the Study of Origins, CU Boulder 2015–2016 Mellon Dissertation Fellowship, NYU 2015 Student Senator’s Council Conference Funding Travel Award, NYU 2015 Outstanding Teaching Award, NYU 2014 Graduate School of Arts and Sciences Dean’s Student Travel Grant, NYU 2009–2014 MacCracken Fellowship, NYU 1 Publications 2017 “How to be a Substantivalist Without Getting Shifty About It”. Philosophical Issues: Metaphysics. 27, (1). (2017). http://philpapers.org/rec/PERHTB 2017 “What the Humean Should Say about Entanglement” (with Harjit Bhogal). Noûs. 51, (1). (2017). http://philpapers.org/rec/BHOWTH 2015 “Properly Extensive Quantities”. Philosophy of Science. University of Chicago Press. -
Paradox Regained? a Brief Comment on Maudlin on Black Hole Information Loss
(Information) Paradox Regained? A Brief Comment on Maudlin on Black Hole Information Loss JB Manchak, James Owen Weatherall Department of Logic and Philosophy of Science University of California, Irvine Abstract We discuss some recent work by Tim Maudlin concerning Black Hole Information Loss. We argue, contra Maudlin, that there is a paradox, in the straightforward sense that there are propositions that appear true, but which are incompatible with one another. We discuss the significance of the paradox and Maudlin's response to it. Keywords: Black holes; Information loss paradox; Kodama-Wald theorem; evaporation event; Global hyperbolicity The black hole information loss paradox (Hawking, 1976) is a widely discussed (putative) puzzle that arises when one attempts to make sense of physicists' expectation that global quantum dynamics will be unitary in light of the postulated phenomenon of black hole evaporation (Hawking, 1974, 1975; Unruh, 1976), which is apparently a consequence of Hawking radiation.1 In a provocative recent manuscript, Tim Maudlin (2017) forcefully argues that \There is no `information loss' paradox." The \solution" to the \paradox", he claims, requires no new physics and indeed, was already available, though not appreciated, in 1975. The appearance of paradox arises only because of persistent errors, both mathematical and conceptual in character, by prominent members of the physics community. There is much to admire in Maudlin's treatment of the subject. We agree, for instance, with his discussion of the (non-)role of \information" in the putative paradox. What is really at issue is predictability, or even better, retrodictability, and not information (at least in the sense of information theory): as we will describe in more detail below, the puzzle concerns whether any specification of data on a particular surface is sufficient to retrodict the physical process by which that data came about. -
The Emergence of Gravitational Wave Science: 100 Years of Development of Mathematical Theory, Detectors, Numerical Algorithms, and Data Analysis Tools
BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 53, Number 4, October 2016, Pages 513–554 http://dx.doi.org/10.1090/bull/1544 Article electronically published on August 2, 2016 THE EMERGENCE OF GRAVITATIONAL WAVE SCIENCE: 100 YEARS OF DEVELOPMENT OF MATHEMATICAL THEORY, DETECTORS, NUMERICAL ALGORITHMS, AND DATA ANALYSIS TOOLS MICHAEL HOLST, OLIVIER SARBACH, MANUEL TIGLIO, AND MICHELE VALLISNERI In memory of Sergio Dain Abstract. On September 14, 2015, the newly upgraded Laser Interferometer Gravitational-wave Observatory (LIGO) recorded a loud gravitational-wave (GW) signal, emitted a billion light-years away by a coalescing binary of two stellar-mass black holes. The detection was announced in February 2016, in time for the hundredth anniversary of Einstein’s prediction of GWs within the theory of general relativity (GR). The signal represents the first direct detec- tion of GWs, the first observation of a black-hole binary, and the first test of GR in its strong-field, high-velocity, nonlinear regime. In the remainder of its first observing run, LIGO observed two more signals from black-hole bina- ries, one moderately loud, another at the boundary of statistical significance. The detections mark the end of a decades-long quest and the beginning of GW astronomy: finally, we are able to probe the unseen, electromagnetically dark Universe by listening to it. In this article, we present a short historical overview of GW science: this young discipline combines GR, arguably the crowning achievement of classical physics, with record-setting, ultra-low-noise laser interferometry, and with some of the most powerful developments in the theory of differential geometry, partial differential equations, high-performance computation, numerical analysis, signal processing, statistical inference, and data science. -
Arxiv:Gr-Qc/0304042V1 9 Apr 2003
Do black holes radiate? Adam D Helfer Department of Mathematics, Mathematical Sciences Building, University of Missouri, Columbia, Missouri 65211, U.S.A. Abstract. The prediction that black holes radiate due to quantum effects is often considered one of the most secure in quantum field theory in curved space–time. Yet this prediction rests on two dubious assumptions: that ordinary physics may be applied to vacuum fluctuations at energy scales increasing exponentially without bound; and that quantum–gravitational effects may be neglected. Various suggestions have been put forward to address these issues: that they might be explained away by lessons from sonic black hole models; that the prediction is indeed successfully reproduced by quantum gravity; that the success of the link provided by the prediction between black holes and thermodynamics justifies the prediction. This paper explains the nature of the difficulties, and reviews the proposals that have been put forward to deal with them. None of the proposals put forward can so far be considered to be really successful, and simple dimensional arguments show that quantum–gravitational effects might well alter the evaporation process outlined by Hawking. arXiv:gr-qc/0304042v1 9 Apr 2003 Thus a definitive theoretical treatment will require an understanding of quantum gravity in at least some regimes. Until then, no compelling theoretical case for or against radiation by black holes is likely to be made. The possibility that non–radiating “mini” black holes exist should be taken seriously; such holes could be part of the dark matter in the Universe. Attempts to place observational limits on the number of “mini” black holes (independent of the assumption that they radiate) would be most welcome. -
Meeting Program
22nd Midwest Relativity Meeting September 28-29, 2012 Chicago, IL http://kicp-workshops.uchicago.edu/Relativity2012/ MEETING PROGRAM http://kicp.uchicago.edu/ http://www.uchicago.edu/ The 22nd Midwest Relativity Meeting will be held Friday and Saturday, September 28 and 29, 2012 at the University of Chicago. The format of the meeting will follow previous regional meetings, where all participants may present a talk of approximately 10-15 minutes, depending on the total number of talks. We intend for the meeting to cover a broad range of topics in gravitation physics, including classical and quantum gravity, numerical relativity, relativistic astrophysics, cosmology, gravitational waves, and experimental gravity. As this is a regional meeting, many of the participants will be from the greater United States Midwest and Canada, but researchers and students from other geographic areas are also welcome. Students are strongly encouraged to give presentations. The Blue Apple Award, sponsored by the APS Topical Group in Gravitation, will be awarded for the best student presentation. We gratefully acknowledge the generous support provided by the Kavli Institute for Cosmological Physics (KICP) at the University of Chicago. Organizing Committe Daniel Holz Robert Wald University of Chicago University of Chicago 22nd Midwest Relativity Meeting September 28-29, 2012 @ Chicago, IL MEETING PROGRAM September 28-29, 2012 @ Kersten Physics Teaching Center (KPTC), Room 106 Friday - September 28, 2012 8:15 AM - 8:55 AM COFFEE & PASTRIES 8:55 AM - 9:00 AM WELCOME -
List of Participants
Exploring Theories of Modified Gravity October 12-14, 2015 KICP workshop, 2015 Chicago, IL http://kicp-workshops.uchicago.edu/2015-mg/ LIST OF PARTICIPANTS http://kicp.uchicago.edu/ http://www.nsf.gov/ http://www.uchicago.edu/ The Kavli Institute for Cosmological Physics (KICP) at the University of Chicago is hosting a workshop this fall on theories of modified gravity. The purpose of workshop is to discuss recent progress and interesting directions in theoretical research into modified gravity. Topics of particular focus include: massive gravity, Horndeski, beyond Horndeski, and other derivatively coupled theories, screening and new physics in the gravitational sector, and possible observational probes of the above. The meeting will be relatively small, informal, and interactive workshop for the focused topics. Organizing Committee Scott Dodelson Wayne Hu Austin Joyce Fermilab, University of Chicago University of Chicago University of Chicago Hayato Motohashi Lian-Tao Wang University of Chicago University of Chicago Exploring Theories of Modified Gravity October 12-14, 2015 @ Chicago, IL 1. Tessa M Baker UPenn / University of Oxford 2. John Boguta University of Illinois Chicago 3. Claudia de Rham Case Western Reserve University 4. Cedric Deffayet CNRS 5. Scott Dodelson Fermilab, University of Chicago 6. Matteo R Fasiello Stanford 7. Maya Fishbach University of Chicago 8. Gregory Gabadadze New York University 9. Salman Habib Argonne National Laboratory 10. Kurt Hinterbichler Perimeter Institute for Theoretical Physics 11. Daniel Holz KICP 12. Wayne Hu University of Chicago 13. Lam Hui Columbia University 14. Elise Jennings Fermilab 15. Austin Joyce University of Chicago 16. Nemanja Kaloper University of California, Davis 17. Rampei Kimura New York University 18. -
On the Backreaction of Scalar and Spinor Quantum Fields in Curved Spacetimes
On the Backreaction of Scalar and Spinor Quantum Fields in Curved Spacetimes Dissertation zur Erlangung des Doktorgrades des Department Physik der Universität Hamburg vorgelegt von Thomas-Paul Hack aus Timisoara Hamburg 2010 Gutachter der Dissertation: Prof. Dr. K. Fredenhagen Prof. Dr. V. Moretti Prof. Dr. R. M. Wald Gutachter der Disputation: Prof. Dr. K. Fredenhagen Prof. Dr. W. Buchmüller Datum der Disputation: Mittwoch, 19. Mai 2010 Vorsitzender des Prüfungsausschusses: Prof. Dr. J. Bartels Vorsitzender des Promotionsausschusses: Prof. Dr. J. Bartels Dekan der Fakultät für Mathematik, Informatik und Naturwissenschaften: Prof. Dr. H. Graener Zusammenfassung In der vorliegenden Arbeit werden zunächst einige Konstruktionen und Resultate in Quantenfeldtheorie auf gekrümmten Raumzeiten, die bisher nur für das Klein-Gordon Feld behandelt und erlangt worden sind, für Dirac Felder verallgemeinert. Es wird im Rahmen des algebraischen Zugangs die erweiterte Algebra der Observablen konstruiert, die insbesondere normalgeordnete Wickpolynome des Diracfeldes enthält. Anschließend wird ein ausgezeichnetes Element dieser erweiterten Algebra, der Energie-Impuls Tensor, analysiert. Unter Zuhilfenahme ausführlicher Berechnungen der Hadamardkoe ?zienten des Diracfeldes wird gezeigt, dass eine lokale, kovariante und kovariant erhaltene Konstruktion des Energie- Impuls Tensors möglich ist. Anschließend wird das Verhältnis der mathematisch fundierten Hadamardreg- ularisierung des Energie-Impuls Tensors mit der mathematisch weniger rigorosen DeWitt-Schwinger -
II Physical Geometry and Fundamental Metaphysics
! 1 II Physical Geometry and Fundamental Metaphysics CIAN DORR Final version: Thursday, 16 September 2010 I. Tim Maudlin’s project sets a new standard for fruitful engagement between philosophy, mathematics and physics. I am glad to have a chance to be part of the conversation. I think we can usefully distinguish two different strands within the project: one more conceptual, the other more straightforwardly metaphysical. The conceptual strand is an attempt to clarify certain concepts, such as continuity, connectedness, and boundary, which are standardly analysed in terms of the topological concept of an open set. The metaphysical strand is a defence of a hypothesis about the geometric aspects of the fun- damental structure of reality—the facts in virtue of which the facts of physical geometry are what they are. What I have to say mostly concerns the metaphysical side of things. But I will begin by saying just a little bit about the conceptual strand. II. In topology textbooks, expressions like ‘continuous function’, ‘connected set of points’, and ‘boundary of a set of points’ are generally given stipulative definitions, on a par with the definitions of made-up words like ‘Hausdorff’ (the adjective) and ‘paracompact’. But as Maudlin emphasises, the former expressions can be used to express concepts of which we have enough of an independent grip to make it reasonable to wonder whether the topological definitions are even extensionally adequate. And he argues quite persuasively that we have no reason to believe that they are. The most important and general argu- ment concerns the live epistemic possibility that physical space is discrete, for example by ! 2 containing only finitely many points. -
2015MRM Scientific Program.Pdf
Thursday, October 1 Afternoon Welcoming Remarks 1:00 p.m. – 1:10 p.m. Vicky Kalogera, Center for Interdisciplinary Exploration and Research in Astrophysics Special General Relativity Invited Talks 1:10 p.m. – 5:10 p.m. Chair: Vicky Kalogera 1:10 2:00 Stu Shapiro, University of Illinois Compact Binary Mergers as Multimessenger Sources of Gravitational Waves 2:00 2:50 Lydia Bieri, University of Michigan Mathematical Relativity Chair: Shane Larson 3:30 4:20 Eva Silverstein, Stanford University Quantum gravity in the early universe and at horizons 4:20 5:10 Rainer Weiss, MIT A brief history of gravitational waves: theoretical insight to measurement Public lecture 7:30 p.m. – 9:00 p.m. 7:30 9:00 John D. Norton, University of Pittsburgh Einstein’s Discovery of the General Theory of Relativity Friday, October 2 Morning, Session One Gravitational Wave Sources 9:00 a.m. – 10:30 a.m. Chair: Vicky Kalogera 9:00 9:12 Carl Rodriguez*, Northwestern University Binary Black Hole Mergers from Globular Clusters: Implications for Advanced LIGO 9:12 9:24 Thomas Osburn*, UNC Chapel Hill Computing extreme mass ratio inspirals at high accuracy and large eccentricity using a hybrid method 9:24 9:36 Eliu Huerta, NCSA, University of Illinois at Urbana-Champaign Detection of eccentric supermassive black hole binaries with pulsar timing arrays: Signal-to-noise ratio calculations 9:36 9:48 Katelyn Breivik*, Northwestern University Exploring galactic binary population variance with population synthesis 9:48 10:00 Eric Poisson, University of Guelph Fluid resonances and self-force 10:00 10:12 John Poirier, University of Notre Dame Gravitomagnetic acceleration of accretion disk matter to polar jets John Poirier and Grant Mathews 10:12 10:24 Philippe Landry*, University of Guelph Tidal Deformation of a Slowly Rotating Material Body *Student 2015 Midwest Relativity Meeting 1 Friday, October 2 Morning, Session Two Gravitational Wave/Electromagnetic Detections 11:00 a.m. -
Credence—And Chance—Without Numbers (And with the Euclidean Property)
Credence—and Chance—Without Numbers (and with the Euclidean Property) Tim Maudlin NYU and John Bell Institute Abstract Accounts of both rational credence and of objective chance have always confronted difficulties associated with events that are assigned “probability zero” by the usual Kolmogorov probability function used to model the situation. One sort of solution recommends extending the number field used to represent credences and chance to the surreals or hyperreals. But the correct solution—the solution that always respects the Euclidean property—is to eliminate numbers from the fundamental representation of credence and chance altogether in favor of a system of relations. This solution also sheds light on other paradoxes, such as the Banach-Tarski paradox and the St. Petersburg paradox. The Problem (?) Suppose that an infinitely sharp dart is thrown at a circular dartboard in such a way that each individual point might be hit: nothing would prevent the dart from landing there. In other words, suppose that a point is randomly chosen from a disk in such a way that every point might be chosen. Let two of these points be labeled p and q. Here are some propositions about credence and chance that every rational person should accept. First, the proposition that either p or q will be chosen is strictly more credible—more rationally believable—than the proposition that p will be hit. If someone did not believe the former more firmly or to a higher degree than the latter then we would have no idea how to make sense of their state of belief. We can illustrate our bewilderment by appeal to practical rationality. -
1 Fundamentality and Time's Arrow Christian Loew (University
Fundamentality and Time’s Arrow Christian Loew (University of Luxembourg, University of Cologne) ABSTRACT. The distribution of matter in our universe is strikingly time asymmetric. Most famously, the Second Law of Thermodynamics says that entropy tends to increase toward the future but not toward the past. But what explains this time-asymmetric distribution of matter? In this paper, I explore the idea that time itself has a direction by drawing from recent work on grounding and metaphysical fundamentality. I will argue that positing such a direction of time, in addition to time-asymmetric boundary conditions (such as the so-called “past hypothesis”), enables a better explanation of the thermodynamic asymmetry than is available otherwise. Contact Information. Université du Luxembourg, Maison des Sciences Humaines; 11, Porte des Sciences; L-4366 Esch-sur-Alzette. Email: [email protected] Acknowledgments. I am grateful to Eddy Keming Chen, Florian Fischer, Roman Frigg, Richard Healey, Andreas Hüttemann, David Glick, Marc Lange, Tim Maudlin, Carlo Rovelli, and two anonymous referees for this journal for their helpful comments and suggestions. Special thanks to Siegfried Jaag for helpful discussion and for comments on earlier drafts of this paper. 1 §1 Introduction The distribution of matter in our universe is strikingly time asymmetric. Most famously, the Second Law of Thermodynamic says that entropy tends to increase toward the future but not toward the past. But what explains this time-asymmetric distribution of matter? The received understanding in the philosophy of physics is that the thermodynamic asymmetry is fully explicable from time-asymmetric boundary conditions, including the low entropy of the early universe (see, e.g., Albert 2015 and Loewer 2012). -
The Logic of Consistent Histories: a Reply to Maudlin
The Logic of Consistent Histories: A Reply to Maudlin Robert B. Griffiths∗ Department of Physics, Carnegie-Mellon University, Pittsburgh, PA 15213, USA Version of 26 September 2011 Abstract The relationship between quantum logic, standard propositional logic, and the (consistent) histories rules for quantum reasoning is discussed. It is shown that Maudlin’s claim [1], that the histories ap- proach is inconsistent, is incorrect. The histories approach is both internally consistent and adequate for discussing the physical situations considered by Maudlin. Contents 1 Introduction 1 2 Logic and Quantum Mechanics 2 2.1 Propositional logic . ....... 2 2.2 QuantumLogic...................................... ...... 2 2.3 Histories Logic and Its Consistency . ........... 2 2.4 RoleofLogicinQuantumTheory . .. .. .. .. .. .. .. .. .. .. .. ....... 3 3 Spins Prepared in Boxes 3 4 GHZ Paradox 4 5 Conclusion 5 1 Introduction The argument for the locality of quantum mechanics in [2] based on the (“consistent” or “decoherent”) histories interpretation has been criticized by Maudlin [1] who claims that the histories approach is inconsis- arXiv:1110.0974v1 [quant-ph] 5 Oct 2011 tent. It will be shown here that Maudlin’s arguments are incorrect: the histories approach is both internally consistent as a form of quantum logic, and also an appropriate tool for consistently analyzing the two specific physical situations mentioned in [1]. Naturally, a system of reasoning that is internally consistent may not be appropriate or adequate when applied to a particular problem, and it could be that Maudlin’s complaint about inconsistency is really about, or perhaps includes, something which might better be called inadequacy. In what follows some attempt will be made to address adequacy along with consistency in the narrower sense, though the emphasis will be on the latter.