The Holometer: a Measurement of Planck-Scale Quantum Geometry

Total Page:16

File Type:pdf, Size:1020Kb

The Holometer: a Measurement of Planck-Scale Quantum Geometry The Holometer: A Measurement of Planck-Scale Quantum Geometry Stephan Meyer November 3, 2014 1 The problem with geometry Classical geometry is made of definite points and is based on “locality.” Relativity is consistent with this point of view but makes geometry “dynamic” - reacts to masses. Quantum physics holds that nothing happens at a definite time or place. All measurements are quantum and all known measurements follow quantum physics. Anything that is “real” must be measurable. How can space-time be the answer? Stephan Meyer SPS - November 3, 2014 2 Whats the problem? Start with - Black Holes What is the idea for black holes? - for a massive object there is a surface where the escape velocity is the speed of light. Since nothing can travel faster than the speed of light, things inside this radius are lost. We can use Phys131 to figure this out Stephan Meyer SPS - November 3, 2014 3 If r1 is ∞, then To get the escape velocity, we should set the initial kinetic energy equal to the potential energy and set the velocity equal to the speed of light. Solving for the radius, we get Stephan Meyer SPS - November 3, 2014 4 having an object closer than r to a mass m, means it is lost to the world. This is the definition of the Schwarzshild radius of a black hole. So for stuff we can do physics with we need: Stephan Meyer SPS - November 3, 2014 5 A second thing: Heisenberg uncertainty principle: an object cannot have its position and momentum uncertainty be arbitrarily small This can be manipulated, using the definition of p and E to be What we mean is that to squeeze something to a size λ, we need to put in at least energy E. Stephan Meyer SPS - November 3, 2014 6 Setting the these two physics limits equal, λ= r gives and we can turn this into a time: Stephan Meyer SPS - November 3, 2014 7 The “Planck Scale” Max Planck was the first person to put these numbers together in this way. the Planck time is the Planck length is This is much too small to measure directly. Stephan Meyer SPS - November 3, 2014 8 What does it mean? Quantum Particle Black Hole log (size) log log (mass-energy) Planck length 10-35 m Stephan Meyer SPS - November 3, 2014 9 Dynamical geometry must be indeterminate at the Planck scale Quantum Particle Black Hole Forbidden by Quantum Mechanics (size) log Forbidden by Gravity log (mass-energy) Planck length 10-35 m Forbidden by both QM and Gravity Stephan Meyer SPS - November 3, 2014 10 Classical Physics Quantum Field Theory log (size) log General Relativity log (mass-energy) Planck length 10-35 m String Theory Stephan Meyer SPS - November 3, 2014 11 So how do we deal with this? Classical Geometry - “space-time” Dynamical but not quantum Responds to particles and fields Field Theory Quantum particles and fields play on the stage of classical geometry This approximation explains all experiments with particles. But cannot be the whole story. Stephan Meyer SPS - November 3, 2014 12 But problems remain in Quantum Field Theory Quantum states do not obey locality Proven by EPR-type experiments Nothing happens a definite time or place Yet locality is the basis of relativity, assumed by field theory Classical space-time is emergent At the Planck scale, dynamical space-time is indeterminate Field theory cannot predict energy of the vacuum Quantum properties of macroscopic geometry are assumed away Gravity is thermodynamical Black hole theory suggests that gravity is a statistical behavior Metric does not describe fundamental degrees of freedom Actual physical states are holographic Information encoded with Planck density on 2D bounding surfaces States must have new forms of spatially nonlocal entanglement Somehow, physics needs to go beyond the standard approximations of quantum field theory Stephan Meyer SPS - November 3, 2014 13 Classical geometry is an approximation to a quantum system Classical Physics Quantum Field Theory log (size) log General Relativity log (mass-energy) Planck length 10-35 m String Theory Is there quantum behavior of nearly classical macroscopic geometry? Stephan Meyer SPS - November 3, 2014 14 possibly... In the `70s, Bekenstein and others were thinking about black holes and entropy. It would be nice to not have relativity “break” thermodynamics. Inspired by thought experiments, it was realized there was a minimum entropy a black hole could have and that was proportional to its surface area. More surprising, it was later shown that the constant of proportionality was the square of the Planck length. Stephan Meyer SPS - November 3, 2014 15 Consequently, information is encoded with Planck density on 2D bounding surfaces “This is what we found out about Nature’s book keeping system: the data can be written onto a surface, and the pen with which the data are written has a finite size.” - Gerard ‘t Hooft 1 bit of information This is the holographic principle. on every 0.724 x 10-65 cm2 on top of that comes the bound of information There are many fewer “The shocking thing is not the degrees of freedom holography, but rather the bandwidth limit.” - Raphael Bousso in physical systems than it appears. Stephan Meyer SPS - November 3, 2014 16 How can we measure something? Can we imagine an observable of the reduced number of degrees of freedom? Hogan suggested that we could use diffraction to amplify the Planck-scale fuzziness. Information is conveyed by null-spheres expanding and contracting at the speed of light. Stephan Meyer SPS - November 3, 2014 17 Amplified Planck-scale fuzziness Suppose the transverse space-time coordinate information is encoded at a particular plane on a grid with spacing lP . The resulting diffraction over the later propigation, amplifies Planck-scale effects. The position uncertainty grows as Stephan Meyer SPS - November 3, 2014 18 The Holometer Group • Fermilab A. Chou (co-PI), H. Glass, C. Hogan (Project Scientist),C. Stoughton, R. Tomlin • U Chicago B. Lanza, L. McCuller, S. Meyer (co-PI), J. Richardson • Vanderbilt B. Kamai • MIT M. Evans, S. Waldman, R. Weiss • U. Michigan D. Gustafson • Northwestern J. Steffen And a number of undergraduate researchers from Chicago and REU programs. Stephan Meyer SPS - November 3, 2014 19 Interferometer end mirror Introduction L1 L2 SP Laser end mirror end beam splitter ASP 20 The power in the ASP The power is where the angle brackets are time averages and the “delay” is Stephan Meyer SPS - November 3, 2014 21 In operation, the interferometer is held a small distance from exactly null then changes in delay make changes in the intensity on the photodiode depending only on the slope of the curve at the operating point. In this way we measure the change of differential arm length Stephan Meyer SPS - November 3, 2014 22 end mirror L1 L2 SP Laser end mirror end beam splitter ASP 23 end mirror Power Recycling L1 Power recycling mirror L2 Laser end mirror end beam splitter In addition we put in a power recycling mirror on the SP. It is possible to build up the power in the interferometer to larger than the laser power 24 Holographic signal in a Michelson Interferometer The beam comes in from the left, samples the beamsplitter position and goes down the arms and back. We can think of the upward arm as making a time measurement. During that time the transverse uncertainty L of the up/down position of the beamsplitter grows. When the two beams return this uncertainty results in a variation of relative phase of the two return beams. On return the position of the beam on the beamsplitter is uncertain by where for a 40 meter armlength, L, and λoptical is the wavelength of the laser light, 1.064 μm. Stephan Meyer SPS - November 3, 2014 25 Conventional noise in an Interferometer The conventional quantum noise in an interferometer is “shot noise,” the minimum noise from a “rain” of discrete photons, also, the Heisenberg uncertainty principal for a coherent state in an interferometer arm is so the phase spectral density from shot noise for a 1kW beam is Stephan Meyer SPS - November 3, 2014 26 The need for correlation The ratio of holometric signal to shot noise is so its a tiny signal even with 40 m arms and 1 kW in the interferometer. This can be overcome by using two interferometers. The holographic signal is correlated between the two instruments while the shot noise is uncorrelated. By sampling the noise many times, we can reduce the uncorrelated part: Stephan Meyer SPS - November 3, 2014 27 We can find the required N, the number of observations, needed to make the correlated part equal to the uncorrelated part which is a large number. Fortunately, each measurement is independent of the next after one light -7 passing time, τsample = 3 x 10 sec. The total time needed to get to a signal-to-noise-ratio of 1 is Stephan Meyer SPS - November 3, 2014 28 Optics block diagram The optics are actively locked to the laser and the differential length is adjusted by moving the interferometer end mirrors to keep the system “locked.” Stephan Meyer SPS - November 3, 2014 29 End Mirror The pair of interferometers End Mirror 5 mW (arms made 2 m long) Power recycling mirror 1 kW 100 mW 1 W Vacuum tubing Laser 1 Photo Diode Laser 2 Beam Splitters Arm for null test 30 31 32 EndEnd station station optics optics and vibration vibration isolation isolation PZT (1 of 3) end mirror T ~ 1 PPM transmission optics 23 kg mass viton ball (1 of 3) Stephan Meyer SPS - November 3, 2014 The Holometer is located at FermiLab in an old meson beamline Stephan Meyer SPS - November 3, 2014 34 Center stations of the Holometer 35 36 37 38 The signal The expected cross correlation signal will be Ξ(τ) τ The zero lag signal is the total variation.
Recommended publications
  • Lateral Input-Optic Displacement in a Diffractive Fabry-Perot Cavity
    Home Search Collections Journals About Contact us My IOPscience Lateral input-optic displacement in a diffractive Fabry-Perot cavity This content has been downloaded from IOPscience. Please scroll down to see the full text. 2010 J. Phys.: Conf. Ser. 228 012022 (http://iopscience.iop.org/1742-6596/228/1/012022) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 194.95.157.184 This content was downloaded on 26/04/2017 at 10:56 Please note that terms and conditions apply. You may also be interested in: Coupling of lateral grating displacement to the output ports of a diffractive Fabry–Perotcavity J Hallam, S Chelkowski, A Freise et al. Experimental demonstration of a suspended, diffractively-coupled Fabry--Perot cavity M P Edgar, B W Barr, J Nelson et al. Commissioning of the tuned DC readout at GEO 600 J Degallaix, H Grote, M Prijatelj et al. Control and automatic alignment of the output mode cleaner of GEO 600 M Prijatelj, H Grote, J Degallaix et al. The GEO 600 gravitational wave detector B Willke, P Aufmuth, C Aulbert et al. OSCAR a Matlab based optical FFT code Jérôme Degallaix Phase and alignment noise in grating interferometers A Freise, A Bunkowski and R Schnabel Review of the Laguerre-Gauss mode technology research program at Birmingham P Fulda, C Bond, D Brown et al. The Holometer: an instrument to probe Planckian quantum geometry Aaron Chou, Henry Glass, H Richard Gustafson et al. 8th Edoardo Amaldi Conference on Gravitational Waves IOP Publishing Journal of Physics: Conference Series 228 (2010) 012022 doi:10.1088/1742-6596/228/1/012022 Lateral input-optic displacement in a diffractive Fabry-Perot cavity J.
    [Show full text]
  • A Basic Michelson Laser Interferometer for the Undergraduate Teaching Laboratory Demonstrating Picometer Sensitivity Kenneth G
    A basic Michelson laser interferometer for the undergraduate teaching laboratory demonstrating picometer sensitivity Kenneth G. Libbrechta) and Eric D. Blackb) 264-33 Caltech, Pasadena, California 91125 (Received 3 July 2014; accepted 4 November 2014) We describe a basic Michelson laser interferometer experiment for the undergraduate teaching laboratory that achieves picometer sensitivity in a hands-on, table-top instrument. In addition to providing an introduction to interferometer physics and optical hardware, the experiment also focuses on precision measurement techniques including servo control, signal modulation, phase-sensitive detection, and different types of signal averaging. Students examine these techniques in a series of steps that take them from micron-scale sensitivity using direct fringe counting to picometer sensitivity using a modulated signal and phase-sensitive signal averaging. After students assemble, align, and characterize the interferometer, they then use it to measure nanoscale motions of a simple harmonic oscillator system as a substantive example of how laser interferometry can be used as an effective tool in experimental science. VC 2015 American Association of Physics Teachers. [http://dx.doi.org/10.1119/1.4901972] 8–14 I. INTRODUCTION heterodyne readouts, and perhaps multiple lasers. Modern interferometry review articles tend to focus on complex optical Optical interferometry is a well-known experimental tech- configurations as well,15 as they offer improved sensitivity and nique for making precision displacement measurements, stability over simpler designs. While these advanced instru- with examples ranging from Michelson and Morley’s famous ment strategies are becoming the norm in research and indus- aether-drift experiment to the extraordinary sensitivity of try, for educational purposes we sought to develop a basic modern gravitational-wave detectors.
    [Show full text]
  • Detector Description and Performance for the First Coincidence
    ARTICLE IN PRESS Nuclear Instruments and Methods in Physics Research A 517 (2004) 154–179 Detector description and performance for the first coincidence observations between LIGO and GEO B. Abbotta, R. Abbottb, R. Adhikaric, A. Ageevao,1, B. Allend, R. Amine, S.B. Andersona, W.G. Andersonf, M. Arayaa, H. Armandulaa, F. Asiria,2, P. Aufmuthg, C. Aulberth, S. Babaki, R. Balasubramaniani, S. Ballmerc, B.C. Barisha, D. Barkeri, C. Barker-Pattonj, M. Barnesa, B. Barrk, M.A. Bartona, K. Bayerc, R. Beausoleill,3, K. Belczynskim, R. Bennettk,4, S.J. Berukoffh,5, J. Betzwieserc, B. Bhawala, I.A. Bilenkoao, G. Billingsleya, E. Blacka, K. Blackburna, B. Bland-Weaverj, B. Bochnerc,6, L. Boguea, R. Borka, S. Bosen, P.R. Bradyd, V.B. Braginskya,o, J.E. Brauo, D.A. Brownd, S. Brozekg,7, A. Bullingtonl, A. Buonannop,8, R. Burgessc, D. Busbya, W.E. Butlerq, R.L. Byerl, L. Cadonatic, G. Cagnolik, J.B. Campr, C.A. Cantleyk, L. Cardenasa, K. Carterb, M.M. Caseyk, J. Castiglionee, A. Chandlera, J. Chapskya,9, P. Charltona, S. Chatterjic, Y. Chenp, V. Chickarmanes, D. Chint, N. Christensenu, D. Churchesi, C. Colacinog,v, R. Coldwelle, M. Colesb,10, D. Cookj, T. Corbittc, D. Coynea, J.D.E. Creightond, T.D. Creightona, D.R.M. Crooksk, P. Csatordayc, B.J. Cusackw, C. Cutlerh, E. D’Ambrosioa, K. Danzmanng,v,x, R. Daviesi, E. Daws,11, D. DeBral, T. Delkere,12, R. DeSalvoa, S. Dhurandary,M.D!ıazf, H. Dinga, R.W.P. Dreverz, R.J. Dupuisk, C. Ebelingu, J. Edlunda, P. Ehrensa, E.J.
    [Show full text]
  • Holographic Noise in Interferometers a New Experimental Probe of Planck Scale Unification
    Holographic Noise in Interferometers A new experimental probe of Planck scale unification FCPA planning retreat, April 2010 1 Planck scale seconds The physics of this “minimum time” is unknown 1.616 ×10−35 m Black hole radius particle energy ~1016 TeV € Quantum particle energy size Particle confined to Planck volume makes its own black hole FCPA planning retreat, April 2010 2 Interferometers might probe Planck scale physics One interpretation of the Planck frequency/bandwidth limit predicts a new kind of uncertainty leading to a new detectable effect: "holographic noise” Different from gravitational waves or quantum field fluctuations Predicts Planck-amplitude noise spectrum with no parameters We are developing an experiment to test this hypothesis FCPA planning retreat, April 2010 3 Quantum limits on measuring event positions Spacelike-separated event intervals can be defined with clocks and light But transverse position measured with frequency-bounded waves is uncertain by the diffraction limit, Lλ0 This is much larger than the wavelength € Lλ0 L λ0 Add second€ dimension: small phase difference of events over Wigner (1957): quantum limits large transverse patch with one spacelike dimension FCPA planning€ retreat, April 2010 4 € Nonlocal comparison of event positions: phases of frequency-bounded wavepackets λ0 Wavepacket of phase: relative positions of null-field reflections off massive bodies € Δf = c /2πΔx Separation L € ΔxL = L(Δf / f0 ) = cL /2πf0 Uncertainty depends only on L, f0 € FCPA planning retreat, April 2010 5 € Physics Outcomes
    [Show full text]
  • THE MICHELSON INTERFEROMETER Intermediate ( First Part) to Advanced (Latter Parts)
    THE MICHELSON INTERFEROMETER Intermediate ( first part) to Advanced (latter parts) Goal: There is a progression of goals for this experiment but you do not have to do Reading: the last goal. The first goal is to align the interferometer and calibrate it. Calibration ADC should be done both mechanically and Michelson program writeup optically with a HeNe laser. The second Stepper motors goal is a study of the sodium doublet. One measures the average wavelength of the two Good optics text lines and the separation of the lines. The Fourier transforms and FFT final experimental goal is to find interference fringes for white light and measure it’s coherence length. Homework: 1. Indicate how the standard michelson interferometer optics is the same as the Introduction: optics shown in fig. 2. Figure 1 The optics of the Michelson Interferometer. Note the light directed away from the mirrors is offset from the light directed toward the mirrors for clarity Note: The observation of fringes associated with the sodium doublet is a rather difficult Figure 2 The optics of the Michelson experiment and the observation of white Interferometer is equivalent to the that of light fringes is even more difficult. two sources S1 ans S2, that are emitting Understanding how the concept of light that is in phase. Note: source S1 is coherence length relates to this experiment movable. is almost essential to complete these goals. 2. Explain changes the optics in fig.1 and 2 required to account for the finite size of the light source Page -1- 3. For the optics shown in fig.2, at what Experimental tasks distance should the detector (eye) be There are three experimental tasks, focused? but only the first two are required.
    [Show full text]
  • Increasing the Sensitivity of the Michelson Interferometer Through Multiple Reflection Woonghee Youn
    Rose-Hulman Institute of Technology Rose-Hulman Scholar Graduate Theses - Physics and Optical Engineering Graduate Theses Summer 8-2015 Increasing the Sensitivity of the Michelson Interferometer through Multiple Reflection Woonghee Youn Follow this and additional works at: http://scholar.rose-hulman.edu/optics_grad_theses Part of the Engineering Commons, and the Optics Commons Recommended Citation Youn, Woonghee, "Increasing the Sensitivity of the Michelson Interferometer through Multiple Reflection" (2015). Graduate Theses - Physics and Optical Engineering. Paper 7. This Thesis is brought to you for free and open access by the Graduate Theses at Rose-Hulman Scholar. It has been accepted for inclusion in Graduate Theses - Physics and Optical Engineering by an authorized administrator of Rose-Hulman Scholar. For more information, please contact bernier@rose- hulman.edu. Increasing the Sensitivity of the Michelson Interferometer through Multiple Reflection A Thesis Submitted to the Faculty of Rose-Hulman Institute of Technology by Woonghee Youn In Partial Fulfillment of the Requirements for the Degree of Master of Science in Optical Engineering August 2015 © 2015 Woonghee Youn 2 ABSTRACT Youn, Woonghee M.S.O.E Rose-Hulman Institute of Technology August 2015 Increase a sensitivity of the Michelson interferometer through the multiple reflection Dr. Charles Joenathan Michelson interferometry has been one of the most famous and popular optical interference system for analyzing optical components and measuring optical metrology properties. Typical Michelson interferometer can measure object displacement with wavefront shapes to one half of the laser wavelength. As testing components and devices size reduce to micro and nano dimension, Michelson interferometer sensitivity is not suitable. The purpose of this study is to design and develop the Michelson interferometer using the concept of multiple reflections.
    [Show full text]
  • Stochastic Gravitational Wave Backgrounds
    Stochastic Gravitational Wave Backgrounds Nelson Christensen1;2 z 1ARTEMIS, Universit´eC^oted'Azur, Observatoire C^oted'Azur, CNRS, 06304 Nice, France 2Physics and Astronomy, Carleton College, Northfield, MN 55057, USA Abstract. A stochastic background of gravitational waves can be created by the superposition of a large number of independent sources. The physical processes occurring at the earliest moments of the universe certainly created a stochastic background that exists, at some level, today. This is analogous to the cosmic microwave background, which is an electromagnetic record of the early universe. The recent observations of gravitational waves by the Advanced LIGO and Advanced Virgo detectors imply that there is also a stochastic background that has been created by binary black hole and binary neutron star mergers over the history of the universe. Whether the stochastic background is observed directly, or upper limits placed on it in specific frequency bands, important astrophysical and cosmological statements about it can be made. This review will summarize the current state of research of the stochastic background, from the sources of these gravitational waves, to the current methods used to observe them. Keywords: stochastic gravitational wave background, cosmology, gravitational waves 1. Introduction Gravitational waves are a prediction of Albert Einstein from 1916 [1,2], a consequence of general relativity [3]. Just as an accelerated electric charge will create electromagnetic waves (light), accelerating mass will create gravitational waves. And almost exactly arXiv:1811.08797v1 [gr-qc] 21 Nov 2018 a century after their prediction, gravitational waves were directly observed [4] for the first time by Advanced LIGO [5, 6].
    [Show full text]
  • Strategic Overview of Fermilab Particle Astrophysics Program
    Strategic Overview of Fermilab Particle Astrophysics Program Craig Hogan PAC 16 January 2015 Particle Astrophysics at Fermilab Fermilab (and HEP) mission: study the fundamental nature of matter, energy, space and time Cosmic studies uniquely probe deep mysteries: dark matter, cosmic acceleration, neutrino mass, gravity Challenging experiments require capabilities of national laboratories: technologies, development, engineering, scale, management DOE labs share effort on most cosmic experiments Program is planned with University community Fermilab’s plan is based on the scientific drivers in the HEPAP P5 report, as shaped by community support needs, agency funding opportunities, and unique laboratory capabilities 2 Craig Hogan | Particle Astrophysics Program 1/8/15 Fermilab Center for Par0cle Astrophysics Strategic Plan - January 2015 P5 Driver Experiments Dark Maer G1: SuperCDMS Soudan, COUPP/PICO, Darkside, DAMIC G2: SuperCDMS SNOLAB, LZ, ADMX G3: R&D towards advanced WIMP and Axion experiments Dark Energy DES, DESI, LSST CMB SPT-3G, CMB-S4 Exploring the Holometer, Pierre Auger Unknown Detector R&D R&D on new techniques for par0cle astrophysics experiments Astrophysics Strong coupling with par0cle astrophysics experiments Theory Dark Matter Astrophysical evidence suggests that most of our Galaxy is made of a new form of matter Theory suggests that it may be detectable in this decade Weakly Interacting Massive Particles (WIMPs) Axions (solution to CP problem of strong interactions) P5: diverse program for direct detection of WIMPs and axions
    [Show full text]
  • DEUTSCHES ELEKTRONEN-SYNCHROTRON Ein Forschungszentrum Der Helmholtz-Gemeinschaft DESY 20-187 TUM-HEP-1293-20 Arxiv:2011.04731 November 2020
    DEUTSCHES ELEKTRONEN-SYNCHROTRON Ein Forschungszentrum der Helmholtz-Gemeinschaft DESY 20-187 TUM-HEP-1293-20 arXiv:2011.04731 November 2020 Gravitational Waves as a Big Bang Thermometer A. Ringwald Deutsches Elektronen-Synchrotron DESY, Hamburg J. Sch¨utte-Engel Fachbereich Physik, Universit¨atHamburg and Department of Physics, University of Illinois at Urbana-Champaign, Urbana, USA and Illinois Center for Advanced Studies of the Universe, University of Illinois at Urbana-Champaign, Urbana, USA C. Tamarit Physik-Department T70, Technische Universit¨atM¨unchen,Garching ISSN 0418-9833 NOTKESTRASSE 85 - 22607 HAMBURG DESY behält sich alle Rechte für den Fall der Schutzrechtserteilung und für die wirtschaftliche Verwertung der in diesem Bericht enthaltenen Informationen vor. DESY reserves all rights for commercial use of information included in this report, especially in case of filing application for or grant of patents. To be sure that your reports and preprints are promptly included in the HEP literature database send them to (if possible by air mail): DESY DESY Zentralbibliothek Bibliothek Notkestraße 85 Platanenallee 6 22607 Hamburg 15738 Zeuthen Germany Germany DESY 20-187 TUM-HEP-1293-20 Gravitational Waves as a Big Bang Thermometer Andreas Ringwald1, Jan Sch¨utte-Engel2;3;4 and Carlos Tamarit5 1 Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany 2 Department of Physics, Universit¨atHamburg, Luruper Chaussee 149, D-22761 Hamburg, Germany 3 Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A. 4 Illinois Center for Advanced Studies of the Universe, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A. 5 Physik-Department T70, Technische Universit¨atM¨unchen, James-Franck-Straße, D-85748 Garching, Germany Abstract There is a guaranteed background of stochastic gravitational waves produced in the thermal plasma in the early universe.
    [Show full text]
  • 2015MRM Scientific Program.Pdf
    Thursday, October 1 Afternoon Welcoming Remarks 1:00 p.m. – 1:10 p.m. Vicky Kalogera, Center for Interdisciplinary Exploration and Research in Astrophysics Special General Relativity Invited Talks 1:10 p.m. – 5:10 p.m. Chair: Vicky Kalogera 1:10 2:00 Stu Shapiro, University of Illinois Compact Binary Mergers as Multimessenger Sources of Gravitational Waves 2:00 2:50 Lydia Bieri, University of Michigan Mathematical Relativity Chair: Shane Larson 3:30 4:20 Eva Silverstein, Stanford University Quantum gravity in the early universe and at horizons 4:20 5:10 Rainer Weiss, MIT A brief history of gravitational waves: theoretical insight to measurement Public lecture 7:30 p.m. – 9:00 p.m. 7:30 9:00 John D. Norton, University of Pittsburgh Einstein’s Discovery of the General Theory of Relativity Friday, October 2 Morning, Session One Gravitational Wave Sources 9:00 a.m. – 10:30 a.m. Chair: Vicky Kalogera 9:00 9:12 Carl Rodriguez*, Northwestern University Binary Black Hole Mergers from Globular Clusters: Implications for Advanced LIGO 9:12 9:24 Thomas Osburn*, UNC Chapel Hill Computing extreme mass ratio inspirals at high accuracy and large eccentricity using a hybrid method 9:24 9:36 Eliu Huerta, NCSA, University of Illinois at Urbana-Champaign Detection of eccentric supermassive black hole binaries with pulsar timing arrays: Signal-to-noise ratio calculations 9:36 9:48 Katelyn Breivik*, Northwestern University Exploring galactic binary population variance with population synthesis 9:48 10:00 Eric Poisson, University of Guelph Fluid resonances and self-force 10:00 10:12 John Poirier, University of Notre Dame Gravitomagnetic acceleration of accretion disk matter to polar jets John Poirier and Grant Mathews 10:12 10:24 Philippe Landry*, University of Guelph Tidal Deformation of a Slowly Rotating Material Body *Student 2015 Midwest Relativity Meeting 1 Friday, October 2 Morning, Session Two Gravitational Wave/Electromagnetic Detections 11:00 a.m.
    [Show full text]
  • 1 Laboratory 8: Michelson Interferometer 1.1 Theory: References:Optics,E.Hecht,Sec 9.4
    1051-232-20033 Imaging Systems Laboratory II Week of 5/3/2004, Writeup Due 5/18/2004 (T) 1 Laboratory 8: Michelson Interferometer 1.1 Theory: References:Optics,E.Hecht,sec 9.4 1.1.1 Division-of-Wavefront Interferometry In the last lab, you saw that coherent (single-wavelength) light from point sources two different locations in an optical beam could be combined after having traveled along two different paths. The recombined light exhibited sinusoidal fringes whose spatial frequency depended on the difference in angle of the light beams when recombined. The regular variation in relative phase of the light beams resulted in constructive interference (when the relative phase difference is 2πn,wheren is an integer) and destructive interference where the relative phase difference is 2πn + π. The centers of the “bright” fringes occur where the optical paths differ by an integer multiple of λ0. “Division-of-Wavefront” Interferometry via Young’s Two-Slit Experiment. The period of the intensity fringes at the observation plane is D Lλ . ' d 1.1.2 Division-of-Amplitude Interferometry This laboratory will introduce a second class of interferometer where the amplitude of the light is separated into two (or more) parts at the same point in space via partial reflection by a beamsplitter. The beamsplitter is the light-dividing element in several types of interferometers. This lab will demostrate the action of the Michelson interferometer for both coherent light from a laser and for white light (with some luck!). Coherence of a Light Source If two points within the same beam of light exhibit a consistent and measurable phase difference, then the light at the two points is said to be coherent, and thus 1 the light at these two locations may be combined to create interference.
    [Show full text]
  • Mhz Gravitational Wave Constraints with Decameter Michelson Interferometers
    MHz gravitational wave constraints with decameter Michelson interferometers The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Chou, Aaron S. et al. “MHz Gravitational Wave Constraints with Decameter Michelson Interferometers.” Physical Review D 95.6 (2017): n. pag. © 2017 American Physical Society As Published http://dx.doi.org/10.1103/PhysRevD.95.063002 Publisher American Physical Society Version Final published version Citable link http://hdl.handle.net/1721.1/107214 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. PHYSICAL REVIEW D 95, 063002 (2017) MHz gravitational wave constraints with decameter Michelson interferometers Aaron S. Chou,1 Richard Gustafson,2 Craig Hogan,1,3 Brittany Kamai,1,3,4,* Ohkyung Kwon,3,5 Robert Lanza,3,6 Shane L. Larson,7,8 Lee McCuller,3,6 Stephan S. Meyer,3 Jonathan Richardson,2,3 Chris Stoughton,1 Raymond Tomlin,1 and Rainer Weiss6 (Holometer Collaboration) 1Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA 2University of Michigan, Ann Arbor, Michigan 48109, USA 3University of Chicago, Chicago, Illinois 60637, USA 4Vanderbilt University, Nashville, Tennessee 37235, USA 5Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea 6Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA 7Northwestern University, Evanston, Illinois 60208, USA 8Adler Planetarium, Chicago, Illinois 60605, USA (Received 16 November 2016; published 3 March 2017) A new detector, the Fermilab Holometer, consists of separatepffiffiffiffiffiffi yet identical 39-meter Michelson interferometers.
    [Show full text]