The Virgo Interferometer
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Gravitational Waves: First Joint LIGO-Virgo Detection
PRESS RELEASE I PARIS I 27 SEPTEMBER 2017 Gravitational waves: first joint LIGO-Virgo detection Scientists in the LIGO and Virgo collaborations have achieved the first ever three-detector observation of the gravitational waves emitted by the merger of two black holes. This is the first signal detected by the Advanced Virgo instrument, which joined observing runs by the two LIGO detectors on 1 August, and confirms that it is fully operational. It opens the way to considerably more accurate localization of the sources of gravitational waves. The discovery is published by the international collaboration that runs the three detectors, including teams from the CNRS, in the journal Physical Review Letters. The announcement was made at a press briefing during a meeting of the G7-science1 in Turin, Italy. On the very same day, the CNRS awarded two Gold Medals to physicists Alain Brillet and Thibault Damour for their major contributions to the detection of gravitational waves2. Black holes are the final stage in the evolution of the most massive stars. Some black holes form a pair, orbiting around each other and gradually getting closer while losing energy in the form of gravitational waves, until a point is reached where the process suddenly accelerates. They then end up coalescing into a single black hole. Merging black holes have already been observed three times by the LIGO detectors, in 2015 and early 20173. This time, three instruments detected the event on 14 August 2017 at 10:30 UTC, enabling vastly improved localization in the sky. This new event confirms that pairs of black holes are relatively common, and will contribute towards the study of such objects. -
5 Optical Design
ET-0106A-10 issue :2 ET Design Study date :January27,2011 page :204of315 5 Optical design 5.1 Description Responsible: WP3 coordinator, A. Freise Put here the description of the content of the section . 5.2 Executive Summary Responsible: WP3 coordinator, A. Freise Put here a summary of the main achievement/statements of this section . 5.3 Review on the geometry of the observatory Author(s): Andreas Freise,StefanHild This section briefly reviews the reasoning behind the shape of current gravitational wave detectors and then discusses alternative geometries which can be of interest for third-generation detectors. We will use the ter- minology introduced in the review of a triangular configuration [220] and discriminate between the geometry, topology and configuration of a detector as follows: The geometry describes the position information of one or several interferometers, defined by the number of interferometers, their location and relative orientation. The topology describes the optical system formed by its core elements. The most common examples are the Michelson, Sagnac and Mach–Zehnder topologies. Finally the configuration describes the detail of the optical layout and the set of parameters that can be changed for a given topology, ranging from the specifications of the optical core elements to the control systems, including the operation point of the main interferometer. Please note that the addition of optical components to a given topology is often referred to as a change in configuration. 5.3.1 The L-shape Current gravitational wave detectors represent the most precise instruments for measuring length changes. They are laser interferometers with km-long arms and are operated differently from many precision instruments built for measuring an absolute length. -
Determining the Hubble Constant with Black Hole Mergers in Active Galactic Nuclei
Determining the Hubble Constant with AGN-assisted Black Hole Mergers Y. Yang,1 V. Gayathri,1 S. M´arka,2 Z. M´arka,2 and I. Bartos1, ∗ 1Department of Physics, University of Florida, PO Box 118440, Gainesville, FL 32611, USA 2Department of Physics, Columbia University in the City of New York, New York, NY 10027, USA Gravitational waves from neutron star mergers have long been considered a promising way to mea- sure the Hubble constant, H0, which describes the local expansion rate of the Universe. While black hole mergers are more abundantly observed, their expected lack of electromagnetic emission and poor gravitational-wave localization makes them less suited for measuring H0. Black hole mergers within the disks of Active Galactic Nuclei (AGN) could be an exception. Accretion from the AGN disk may produce an electromagnetic signal, pointing observers to the host galaxy. Alternatively, the low number density of AGNs could help identify the host galaxy of 1 − 5% of mergers. Here we show that black hole mergers in AGN disks may be the most sensitive way to determine H0 with gravitational waves. If 1% of LIGO/Virgo's observations occur in AGN disks with identified host galaxies, we could measure H0 with 1% uncertainty within five years, likely beyond the sensitivity of neutrons star mergers. I. INTRODUCTION Multi-messenger gravitational-wave observations rep- resent a valuable, independent probe of the expansion of the Universe [1]. The Hubble constant, which de- scribes the rate of expansion, can measured using Type Ia supernovae, giving a local expansion rate of H0 = 74:03 ± 1:42 km s−1 Mpc−1 [2]. -
The Einstein Telescope (ET) Is a Proposed Underground Infrastructure to Host a Third- Generation, Gravitational-Wave Observatory
The Einstein Telescope (ET) is a proposed underground infrastructure to host a third- generation, gravitational-wave observatory. It builds on the success of current, second-generation laser- interferometric detectors Advanced Virgo and Advanced LIGO, whose breakthrough discoveries of merging black holes (BHs) and neutron stars over the past 5 years have ushered scientists into the new era of gravitational-wave astronomy. The Einstein Telescope will achieve a greatly improved sensitivity by increasing the size of the interferometer from the 3km arm length of the Virgo detector to 10km, and by implementing a series of new technologies. These include a cryogenic system to cool some of the main optics to 10 – 20K, new quantum technologies to reduce the fluctuations of the light, and a set of infrastructural and active noise-mitigation measures to reduce environmental perturbations. The Einstein Telescope will make it possible, for the first time, to explore the Universe through gravitational waves along its cosmic history up to the cosmological dark ages, shedding light on open questions of fundamental physics and cosmology. It will probe the physics near black-hole horizons (from tests of general relativity to quantum gravity), help understanding the nature of dark matter (such as primordial BHs, axion clouds, dark matter accreting on compact objects), and the nature of dark energy and possible modifications of general relativity at cosmological scales. Exploiting the ET sensitivity and frequency band, the entire population of stellar and intermediate mass black holes will be accessible over the entire history of the Universe, enabling to understand their origin (stellar versus primordial), evolution, and demography. -
Status of Advanced Virgo
EPJ Web of Conferences will be set by the publisher EPJDOI: Web will of beConferences set by the publisher182, 02003 (2018) https://doi.org/10.1051/epjconf/201818202003 ICNFPc Owned 2017 by the authors, published by EDP Sciences, 2017 Status of Advanced Virgo F. Acernese51,17, T. Adams26, K. Agatsuma31, L. Aiello10,16, A. Allocca47,21,,a A. Amato28, S. Antier25, N. Arnaud25,8, S. Ascenzi50,23, P. Astone22, P. Bacon1, M. K. M. Bader31, F. Baldaccini46,20, G. Ballardin8, F. Barone51,17, M. Barsuglia1, D. Barta34, A. Basti47,21, M. Bawaj38,20, M. Bazzan44,18, M. Bejger5, I. Belahcene25, D. Bersanetti15, A. Bertolini31, M. Bitossi8,21, M. A. Bizouard25, S. Bloemen33, M. Boer2, G. Bogaert2, F. Bondu48, R. Bonnand26, B. A. Boom31, V. Boschi8,21, Y. Bouffanais1, A. Bozzi8, C. Bradaschia21, M. Branchesi10,16, T. Briant27, A. Brillet2, V. Brisson25, T. Bulik3, H. J. Bulten36,31, D. Buskulic26, C. Buy1, G. Cagnoli28,42, E. Calloni43,17, M. Canepa39,15, P. Canizares33, E. Capocasa1, F. Carbognani8, J. Casanueva Diaz21, C. Casentini50,23, S. Caudill31, F. Cavalier25, R. Cavalieri8, G. Cella21, P. Cerdá-Durán55, G. Cerretani47,21, E. Cesarini6,23, E. Chassande-Mottin1, A. Chincarini15, A. Chiummo8, N. Christensen2, S. Chua27, G. Ciani44,18, R. Ciolfi13,24, A. Cirone39,15, F. Cleva2, E. Coccia10,16, P.-F. Cohadon27, D. Cohen25, A. Colla49,22, L. Conti18, I. Cordero-Carrión56, S. Cortese8, J.-P. Coulon2, E. Cuoco8, S. D’Antonio23, V. Dattilo8, M. Davier25, C. De Rossi28,8, J. Degallaix28, M. De Laurentis10,17, S. Deléglise27, W. Del Pozzo47,21, R. De Pietri45,19, R. -
Advanced Virgo: Status of the Detector, Latest Results and Future Prospects
universe Review Advanced Virgo: Status of the Detector, Latest Results and Future Prospects Diego Bersanetti 1,* , Barbara Patricelli 2,3 , Ornella Juliana Piccinni 4 , Francesco Piergiovanni 5,6 , Francesco Salemi 7,8 and Valeria Sequino 9,10 1 INFN, Sezione di Genova, I-16146 Genova, Italy 2 European Gravitational Observatory (EGO), Cascina, I-56021 Pisa, Italy; [email protected] 3 INFN, Sezione di Pisa, I-56127 Pisa, Italy 4 INFN, Sezione di Roma, I-00185 Roma, Italy; [email protected] 5 Dipartimento di Scienze Pure e Applicate, Università di Urbino, I-61029 Urbino, Italy; [email protected] 6 INFN, Sezione di Firenze, I-50019 Sesto Fiorentino, Italy 7 Dipartimento di Fisica, Università di Trento, Povo, I-38123 Trento, Italy; [email protected] 8 INFN, TIFPA, Povo, I-38123 Trento, Italy 9 Dipartimento di Fisica “E. Pancini”, Università di Napoli “Federico II”, Complesso Universitario di Monte S. Angelo, I-80126 Napoli, Italy; [email protected] 10 INFN, Sezione di Napoli, Complesso Universitario di Monte S. Angelo, I-80126 Napoli, Italy * Correspondence: [email protected] Abstract: The Virgo detector, based at the EGO (European Gravitational Observatory) and located in Cascina (Pisa), played a significant role in the development of the gravitational-wave astronomy. From its first scientific run in 2007, the Virgo detector has constantly been upgraded over the years; since 2017, with the Advanced Virgo project, the detector reached a high sensitivity that allowed the detection of several classes of sources and to investigate new physics. This work reports the Citation: Bersanetti, D.; Patricelli, B.; main hardware upgrades of the detector and the main astrophysical results from the latest five years; Piccinni, O.J.; Piergiovanni, F.; future prospects for the Virgo detector are also presented. -
Seismic Characterization of the Euregio Meuse-Rhine in View of Einstein Telescope
SEISMIC CHARACTERIZATION OF THE EUREGIO MEUSE-RHINE IN VIEW OF EINSTEIN TELESCOPE 13 September 2019 First results of seismic studies of the Belgian-Dutch-German site for Einstein Telescope Soumen Koley1, Maria Bader1, Alessandro Bertolini1, Jo van den Brand1,2, Henk Jan Bulten1,3, Stefan Hild1,2, Frank Linde1,4, Bas Swinkels1, Bjorn Vink5 1. Nikhef, National Institute for Subatomic Physics, Amsterdam, The Netherlands 2. Maastricht University, Maastricht, The Netherlands 3. VU University Amsterdam, Amsterdam, The Netherlands 4. University of Amsterdam, Amsterdam, The Netherlands 5. Antea Group, Maastricht, The Netherlands CONFIDENTIAL Figure 1: Artist impression of the Einstein Telescope gravitational wave observatory situated at a depth of 200-300 meters in the Euregio Meuse-Rhine landscape. The triangular topology with 10 kilometers long arms allows for the installation of multiple so-called laser interferometers. Each of which can detect ripples in the fabric of space-time – the unique signature of a gravitational wave – as minute relative movements of the mirrors hanging at the bottom of the red and white towers indicated in the illustration at the corners of the triangle. 1 SEISMIC CHARACTERIZATION OF THE EUREGIO MEUSE-RHINE IN VIEW OF EINSTEIN TELESCOPE Figure 2: Drill rig for the 2018-2019 campaign used for the completion of the 260 meters deep borehole near Terziet on the Dutch-Belgian border in South Limburg. Two broadband seismic sensors were installed: one at a depth of 250 meters and one just below the surface. Both sensors are accessible via the KNMI portal: http://rdsa.knmi.nl/dataportal/. 2 SEISMIC CHARACTERIZATION OF THE EUREGIO MEUSE-RHINE IN VIEW OF EINSTEIN TELESCOPE Executive summary The European 2011 Conceptual Design Report for Einstein Telescope identified the Euregio Meuse-Rhine and in particular the South Limburg border region as one of the prospective sites for this next generation gravitational wave observatory. -
The Hunt for Environmental Noise in Virgo During the Third Observing Run
galaxies Article The Hunt for Environmental Noise in Virgo during the Third Observing Run Irene Fiori 1 , Federico Paoletti 2 , Maria Concetta Tringali 1,3,* , Kamiel Janssens 4 , Christos Karathanasis 5 , Alexis Menéndez-Vázquez 5 , Alba Romero-Rodríguez 5 , Ryosuke Sugimoto 6, Tatsuki Washimi 7, Valerio Boschi 2 , Antonino Chiummo 1 , Marek Cie´slar 8 , Rosario De Rosa 9,10 , Camilla De Rossi 1, Francesco Di Renzo 2,11 , Ilaria Nardecchia 12,13 , Antonio Pasqualetti 1, Barbara Patricelli 2,11 and Paolo Ruggi 1 and Neha Singh 3 1 European Gravitational Observatory (EGO), Cascina, I-56021 Pisa, Italy; irene.fi[email protected] (I.F.); [email protected] (A.C.); [email protected] (C.D.R.); [email protected] (A.P.); [email protected] (P.R.) 2 INFN, Sezione di Pisa, I-56127 Pisa, Italy; [email protected] (F.P.); [email protected] (V.B.); [email protected] (F.D.R.); [email protected] (B.P.) 3 Astronomical Observatory, Warsaw University, 00-478 Warsaw, Poland; [email protected] 4 Faculty of Science, Universiteit Antwerpen, 2000 Antwerpen, Belgium; [email protected] 5 Institut de Fìsica d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, 08193 Bellaterra (Barcelona), Spain; [email protected] (C.K.); [email protected] (A.M.-V.); [email protected] (A.R.-R.) 6 Department of Physics, University of Toyama, Toyama City, Toyama 930-8555, Japan; [email protected] 7 National Astronomical Observatory of Japan (NAOJ), Mitaka City, Tokyo 181-8588, Japan; [email protected] 8 Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, Bartycka 18, 00-716 Warsaw, Poland; [email protected] 9 Dipartimento di Fisica, Università di Napoli Federico II, Complesso Universitario di Monte S.Angelo, I-80126 Napoli, Italy; [email protected] 10 INFN, Sezione di Napoli, Complesso Universitario di Monte S. -
Searching for the Neutron Star Or Black Hole Resulting from Gw170817
SEARCHING FOR THE NEUTRON STAR OR BLACK HOLE RESULTING FROM GW170817 With the detection of a binary neutron star merger by the Advanced Laser Interferometer Gravitational Wave Observatory (LIGO) and Virgo, a natural question to ask is: what happened to the resulting object that was formed? The merger of two neutron stars can lead to four ultimate outcomes: (i) the prompt formation of a black hole, (ii) the formation of a "hypermassive" neutron star that collapses to a black hole in less than a second, (iii) the formation of a "supramassive" neutron star that collapses to a black hole on much longer timescales, (iv) the formation of a stable neutron star. Which of these four possibilities occurs depends on how much mass remains in the resulting object, as well as the composition and properties of matter inside neutron stars. Knowing the masses of the original two neutron stars before they merged, which can be measured from the gravitational wave signal detected, and under some assumptions about the compactness of neutron stars, it seems most likely that the resulting object was a hypermassive neutron star, although the other options cannot be excluded either. In this analysis, we search for gravitational waves from the post-merger object, and although we do not find anything, we set the groundwork for future searches when we have further improved the sensitivity of our detectors and where we might also observe a merger even closer to us. WHAT MIGHT WE EXPECT TO OBSERVE? Simulations tell us that the remnant object that results from merging binary neutron stars also emits gravitational waves. -
Probing the Nuclear Equation of State from the Existence of a 2.6 M Neutron Star: the GW190814 Puzzle
S S symmetry Article Probing the Nuclear Equation of State from the Existence of a ∼2.6 M Neutron Star: The GW190814 Puzzle Alkiviadis Kanakis-Pegios †,‡ , Polychronis S. Koliogiannis ∗,†,‡ and Charalampos C. Moustakidis †,‡ Department of Theoretical Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; [email protected] (A.K.P.); [email protected] (C.C.M.) * Correspondence: [email protected] † Current address: Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece. ‡ These authors contributed equally to this work. Abstract: On 14 August 2019, the LIGO/Virgo collaboration observed a compact object with mass +0.08 2.59 0.09 M , as a component of a system where the main companion was a black hole with mass ∼ − 23 M . A scientific debate initiated concerning the identification of the low mass component, as ∼ it falls into the neutron star–black hole mass gap. The understanding of the nature of GW190814 event will offer rich information concerning open issues, the speed of sound and the possible phase transition into other degrees of freedom. In the present work, we made an effort to probe the nuclear equation of state along with the GW190814 event. Firstly, we examine possible constraints on the nuclear equation of state inferred from the consideration that the low mass companion is a slow or rapidly rotating neutron star. In this case, the role of the upper bounds on the speed of sound is revealed, in connection with the dense nuclear matter properties. Secondly, we systematically study the tidal deformability of a possible high mass candidate existing as an individual star or as a component one in a binary neutron star system. -
Universit`A Degli Studi Di Pisa
Universita` degli Studi di Pisa Facolta` di Scienze Matematiche, Fisiche e Naturali PhD Thesis in Applied Physics April 2006 The control of the Virgo interferometer for gravitational wave detection Supervisors: Prof. Francesco Fidecaro Dr. Matteo Barsuglia Author: Lisa Barsotti 1 2 ...e ho scritto nemmeno la met`adi ci`oche ho visto. Marco Polo 3 4 Acknowledgments My ¯rst idea was to use this space to thank one by one all the people who somehow helped me in my 3 years long journey. I realize only now that this would imply to write some other tens of pages, and the dimension of this thesis would become quite embarrassing. So, I need to change strategy. To Francesco, the I.N.F.N Pisa group and the Virgo collaboration, thank you for believing in me and giving me the possibility to present our results to the interna- tional scienti¯c community. To Edwige and all the commissioning group, thanks for the time spent together in control room (e in particolare per le cene a base di pizza e cinque e cinque). To Giovanni, thank you for all your useful suggestions. To Ra®aele, thank you for always being around. To Paolo, thank you for answering to all my daily questions. To Adalberto, thank you for showing me the enthusiasm with which this work should be done. To Maddalena, thanks for your encouragement and all the nice ¯gures you did for me (and all the pictures you took when I was sleeping on my chair..). To Gary and Matt, for your patience with my poor English. -
Stochastic Gravitational Wave Backgrounds
Stochastic Gravitational Wave Backgrounds Nelson Christensen1;2 z 1ARTEMIS, Universit´eC^oted'Azur, Observatoire C^oted'Azur, CNRS, 06304 Nice, France 2Physics and Astronomy, Carleton College, Northfield, MN 55057, USA Abstract. A stochastic background of gravitational waves can be created by the superposition of a large number of independent sources. The physical processes occurring at the earliest moments of the universe certainly created a stochastic background that exists, at some level, today. This is analogous to the cosmic microwave background, which is an electromagnetic record of the early universe. The recent observations of gravitational waves by the Advanced LIGO and Advanced Virgo detectors imply that there is also a stochastic background that has been created by binary black hole and binary neutron star mergers over the history of the universe. Whether the stochastic background is observed directly, or upper limits placed on it in specific frequency bands, important astrophysical and cosmological statements about it can be made. This review will summarize the current state of research of the stochastic background, from the sources of these gravitational waves, to the current methods used to observe them. Keywords: stochastic gravitational wave background, cosmology, gravitational waves 1. Introduction Gravitational waves are a prediction of Albert Einstein from 1916 [1,2], a consequence of general relativity [3]. Just as an accelerated electric charge will create electromagnetic waves (light), accelerating mass will create gravitational waves. And almost exactly arXiv:1811.08797v1 [gr-qc] 21 Nov 2018 a century after their prediction, gravitational waves were directly observed [4] for the first time by Advanced LIGO [5, 6].