Generalized Factorials and Taylor Expansions

Total Page:16

File Type:pdf, Size:1020Kb

Generalized Factorials and Taylor Expansions Factorials Examples Taylor Series Expansions Extensions Generalized Factorials and Taylor Expansions Michael R. Pilla Winona State University April 16, 2010 Michael R. Pilla Generalizations of the Factorial Function (n−0)(n−1)(n−2)···(n−(n−2))(n−(n−1)): For S = fa0; a1; a2; a3; :::g ⊆ N, Define n!S = (an − a0)(an − a1) ··· (an − an−1). Cons: Pros: It is not theoretically We have a nice formula. useful. It works on subsets of N. What about the order of the subset? Factorials Examples Taylor Series Expansions Extensions Factorials Recall the definition of a factorial n! = n·(n−1)···2·1 = Michael R. Pilla Generalizations of the Factorial Function For S = fa0; a1; a2; a3; :::g ⊆ N, Define n!S = (an − a0)(an − a1) ··· (an − an−1). Cons: Pros: It is not theoretically We have a nice formula. useful. It works on subsets of N. What about the order of the subset? Factorials Examples Taylor Series Expansions Extensions Factorials Recall the definition of a factorial n! = n·(n−1)···2·1 = (n−0)(n−1)(n−2)···(n−(n−2))(n−(n−1)): Michael R. Pilla Generalizations of the Factorial Function Cons: Pros: It is not theoretically We have a nice formula. useful. It works on subsets of N. What about the order of the subset? Factorials Examples Taylor Series Expansions Extensions Factorials Recall the definition of a factorial n! = n·(n−1)···2·1 = (n−0)(n−1)(n−2)···(n−(n−2))(n−(n−1)): For S = fa0; a1; a2; a3; :::g ⊆ N, Define n!S = (an − a0)(an − a1) ··· (an − an−1). Michael R. Pilla Generalizations of the Factorial Function Cons: It is not theoretically We have a nice formula. useful. It works on subsets of N. What about the order of the subset? Factorials Examples Taylor Series Expansions Extensions Factorials Recall the definition of a factorial n! = n·(n−1)···2·1 = (n−0)(n−1)(n−2)···(n−(n−2))(n−(n−1)): For S = fa0; a1; a2; a3; :::g ⊆ N, Define n!S = (an − a0)(an − a1) ··· (an − an−1). Pros: Michael R. Pilla Generalizations of the Factorial Function Cons: It is not theoretically useful. It works on subsets of N. What about the order of the subset? Factorials Examples Taylor Series Expansions Extensions Factorials Recall the definition of a factorial n! = n·(n−1)···2·1 = (n−0)(n−1)(n−2)···(n−(n−2))(n−(n−1)): For S = fa0; a1; a2; a3; :::g ⊆ N, Define n!S = (an − a0)(an − a1) ··· (an − an−1). Pros: We have a nice formula. Michael R. Pilla Generalizations of the Factorial Function Cons: It is not theoretically useful. What about the order of the subset? Factorials Examples Taylor Series Expansions Extensions Factorials Recall the definition of a factorial n! = n·(n−1)···2·1 = (n−0)(n−1)(n−2)···(n−(n−2))(n−(n−1)): For S = fa0; a1; a2; a3; :::g ⊆ N, Define n!S = (an − a0)(an − a1) ··· (an − an−1). Pros: We have a nice formula. It works on subsets of N. Michael R. Pilla Generalizations of the Factorial Function It is not theoretically useful. What about the order of the subset? Factorials Examples Taylor Series Expansions Extensions Factorials Recall the definition of a factorial n! = n·(n−1)···2·1 = (n−0)(n−1)(n−2)···(n−(n−2))(n−(n−1)): For S = fa0; a1; a2; a3; :::g ⊆ N, Define n!S = (an − a0)(an − a1) ··· (an − an−1). Cons: Pros: We have a nice formula. It works on subsets of N. Michael R. Pilla Generalizations of the Factorial Function What about the order of the subset? Factorials Examples Taylor Series Expansions Extensions Factorials Recall the definition of a factorial n! = n·(n−1)···2·1 = (n−0)(n−1)(n−2)···(n−(n−2))(n−(n−1)): For S = fa0; a1; a2; a3; :::g ⊆ N, Define n!S = (an − a0)(an − a1) ··· (an − an−1). Cons: Pros: It is not theoretically We have a nice formula. useful. It works on subsets of N. Michael R. Pilla Generalizations of the Factorial Function Factorials Examples Taylor Series Expansions Extensions Factorials Recall the definition of a factorial n! = n·(n−1)···2·1 = (n−0)(n−1)(n−2)···(n−(n−2))(n−(n−1)): For S = fa0; a1; a2; a3; :::g ⊆ N, Define n!S = (an − a0)(an − a1) ··· (an − an−1). Cons: Pros: It is not theoretically We have a nice formula. useful. It works on subsets of N. What about the order of the subset? Michael R. Pilla Generalizations of the Factorial Function Theorem If S = fai g is p-ordered for all primes simultaneously then n!S = j(an − a0)(an − a1) ··· (an − an−1)j: If the ordering works for all primes simultaneosly, then we can achieve nice formulas. If a subset cannot be simultaneously ordered, the formulas are ugly (if and when they exist) and the factorials difficult to calculate. Goal: Extend factorials to \nice", \natural" subsets of N that have closed formulas. Factorials Examples Taylor Series Expansions Extensions Generalized Factorials Bhargava: Let's look at prime factorizations and play a game called p-ordering for each prime p. Michael R. Pilla Generalizations of the Factorial Function Theorem If S = fai g is p-ordered for all primes simultaneously then n!S = j(an − a0)(an − a1) ··· (an − an−1)j: If a subset cannot be simultaneously ordered, the formulas are ugly (if and when they exist) and the factorials difficult to calculate. Goal: Extend factorials to \nice", \natural" subsets of N that have closed formulas. Factorials Examples Taylor Series Expansions Extensions Generalized Factorials Bhargava: Let's look at prime factorizations and play a game called p-ordering for each prime p. If the ordering works for all primes simultaneosly, then we can achieve nice formulas. Michael R. Pilla Generalizations of the Factorial Function If a subset cannot be simultaneously ordered, the formulas are ugly (if and when they exist) and the factorials difficult to calculate. Goal: Extend factorials to \nice", \natural" subsets of N that have closed formulas. Factorials Examples Taylor Series Expansions Extensions Generalized Factorials Bhargava: Let's look at prime factorizations and play a game called p-ordering for each prime p. If the ordering works for all primes simultaneosly, then we can achieve nice formulas. Theorem If S = fai g is p-ordered for all primes simultaneously then n!S = j(an − a0)(an − a1) ··· (an − an−1)j: Michael R. Pilla Generalizations of the Factorial Function Goal: Extend factorials to \nice", \natural" subsets of N that have closed formulas. Factorials Examples Taylor Series Expansions Extensions Generalized Factorials Bhargava: Let's look at prime factorizations and play a game called p-ordering for each prime p. If the ordering works for all primes simultaneosly, then we can achieve nice formulas. Theorem If S = fai g is p-ordered for all primes simultaneously then n!S = j(an − a0)(an − a1) ··· (an − an−1)j: If a subset cannot be simultaneously ordered, the formulas are ugly (if and when they exist) and the factorials difficult to calculate. Michael R. Pilla Generalizations of the Factorial Function Factorials Examples Taylor Series Expansions Extensions Generalized Factorials Bhargava: Let's look at prime factorizations and play a game called p-ordering for each prime p. If the ordering works for all primes simultaneosly, then we can achieve nice formulas. Theorem If S = fai g is p-ordered for all primes simultaneously then n!S = j(an − a0)(an − a1) ··· (an − an−1)j: If a subset cannot be simultaneously ordered, the formulas are ugly (if and when they exist) and the factorials difficult to calculate. Goal: Extend factorials to \nice", \natural" subsets of N that have closed formulas. Michael R. Pilla Generalizations of the Factorial Function = 711! = 722! = 733! 1!A = (9 − 2) = 7 2!A = (16 − 2)(16 − 9) = 98 3!A = (23 − 2)(23 − 9)(23 − 16) = 2058 n n!A = 7 n! Example Let S = aN + b of all integers b mod a. The natural ordering is p-ordered for all primes simultaneously. Thus n n!aN+b = a n! Factorials Examples Taylor Series Expansions Extensions Arithmetic Sets Example Consider the arithmetic set A = f2; 9; 16; 23; :::g (i.e. all integers 2 mod 7). This is p-ordered for all primes simultaneously. Thus Michael R. Pilla Generalizations of the Factorial Function = 722! = 733! = 711! 2!A = (16 − 2)(16 − 9) = 98 3!A = (23 − 2)(23 − 9)(23 − 16) = 2058 n n!A = 7 n! Example Let S = aN + b of all integers b mod a. The natural ordering is p-ordered for all primes simultaneously. Thus n n!aN+b = a n! Factorials Examples Taylor Series Expansions Extensions Arithmetic Sets Example Consider the arithmetic set A = f2; 9; 16; 23; :::g (i.e. all integers 2 mod 7). This is p-ordered for all primes simultaneously. Thus 1!A = (9 − 2) = 7 Michael R. Pilla Generalizations of the Factorial Function = 733! = 711! = 722! 3!A = (23 − 2)(23 − 9)(23 − 16) = 2058 n n!A = 7 n! Example Let S = aN + b of all integers b mod a. The natural ordering is p-ordered for all primes simultaneously. Thus n n!aN+b = a n! Factorials Examples Taylor Series Expansions Extensions Arithmetic Sets Example Consider the arithmetic set A = f2; 9; 16; 23; :::g (i.e. all integers 2 mod 7). This is p-ordered for all primes simultaneously. Thus 1!A = (9 − 2) = 7 2!A = (16 − 2)(16 − 9) = 98 Michael R. Pilla Generalizations of the Factorial Function = 711! = 722! = 733! n n!A = 7 n! Example Let S = aN + b of all integers b mod a.
Recommended publications
  • Methods of Measuring Population Change
    Methods of Measuring Population Change CDC 103 – Lecture 10 – April 22, 2012 Measuring Population Change • If past trends in population growth can be expressed in a mathematical model, there would be a solid justification for making projections on the basis of that model. • Demographers developed an array of models to measure population growth; four of these models are usually utilized. 1 Measuring Population Change Arithmetic (Linear), Geometric, Exponential, and Logistic. Arithmetic Change • A population growing arithmetically would increase by a constant number of people in each period. • If a population of 5000 grows by 100 annually, its size over successive years will be: 5100, 5200, 5300, . • Hence, the growth rate can be calculated by the following formula: • (100/5000 = 0.02 or 2 per cent). 2 Arithmetic Change • Arithmetic growth is the same as the ‘simple interest’, whereby interest is paid only on the initial sum deposited, the principal, rather than on accumulating savings. • Five percent simple interest on $100 merely returns a constant $5 interest every year. • Hence, arithmetic change produces a linear trend in population growth – following a straight line rather than a curve. Arithmetic Change 3 Arithmetic Change • The arithmetic growth rate is expressed by the following equation: Geometric Change • Geometric population growth is the same as the growth of a bank balance receiving compound interest. • According to this, the interest is calculated each year with reference to the principal plus previous interest payments, thereby yielding a far greater return over time than simple interest. • The geometric growth rate in demography is calculated using the ‘compound interest formula’.
    [Show full text]
  • Topic 7 Notes 7 Taylor and Laurent Series
    Topic 7 Notes Jeremy Orloff 7 Taylor and Laurent series 7.1 Introduction We originally defined an analytic function as one where the derivative, defined as a limit of ratios, existed. We went on to prove Cauchy's theorem and Cauchy's integral formula. These revealed some deep properties of analytic functions, e.g. the existence of derivatives of all orders. Our goal in this topic is to express analytic functions as infinite power series. This will lead us to Taylor series. When a complex function has an isolated singularity at a point we will replace Taylor series by Laurent series. Not surprisingly we will derive these series from Cauchy's integral formula. Although we come to power series representations after exploring other properties of analytic functions, they will be one of our main tools in understanding and computing with analytic functions. 7.2 Geometric series Having a detailed understanding of geometric series will enable us to use Cauchy's integral formula to understand power series representations of analytic functions. We start with the definition: Definition. A finite geometric series has one of the following (all equivalent) forms. 2 3 n Sn = a(1 + r + r + r + ::: + r ) = a + ar + ar2 + ar3 + ::: + arn n X = arj j=0 n X = a rj j=0 The number r is called the ratio of the geometric series because it is the ratio of consecutive terms of the series. Theorem. The sum of a finite geometric series is given by a(1 − rn+1) S = a(1 + r + r2 + r3 + ::: + rn) = : (1) n 1 − r Proof.
    [Show full text]
  • 1 Approximating Integrals Using Taylor Polynomials 1 1.1 Definitions
    Seunghee Ye Ma 8: Week 7 Nov 10 Week 7 Summary This week, we will learn how we can approximate integrals using Taylor series and numerical methods. Topics Page 1 Approximating Integrals using Taylor Polynomials 1 1.1 Definitions . .1 1.2 Examples . .2 1.3 Approximating Integrals . .3 2 Numerical Integration 5 1 Approximating Integrals using Taylor Polynomials 1.1 Definitions When we first defined the derivative, recall that it was supposed to be the \instantaneous rate of change" of a function f(x) at a given point c. In other words, f 0 gives us a linear approximation of f(x) near c: for small values of " 2 R, we have f(c + ") ≈ f(c) + "f 0(c) But if f(x) has higher order derivatives, why stop with a linear approximation? Taylor series take this idea of linear approximation and extends it to higher order derivatives, giving us a better approximation of f(x) near c. Definition (Taylor Polynomial and Taylor Series) Let f(x) be a Cn function i.e. f is n-times continuously differentiable. Then, the n-th order Taylor polynomial of f(x) about c is: n X f (k)(c) T (f)(x) = (x − c)k n k! k=0 The n-th order remainder of f(x) is: Rn(f)(x) = f(x) − Tn(f)(x) If f(x) is C1, then the Taylor series of f(x) about c is: 1 X f (k)(c) T (f)(x) = (x − c)k 1 k! k=0 Note that the first order Taylor polynomial of f(x) is precisely the linear approximation we wrote down in the beginning.
    [Show full text]
  • A Quotient Rule Integration by Parts Formula Jennifer Switkes ([email protected]), California State Polytechnic Univer- Sity, Pomona, CA 91768
    A Quotient Rule Integration by Parts Formula Jennifer Switkes ([email protected]), California State Polytechnic Univer- sity, Pomona, CA 91768 In a recent calculus course, I introduced the technique of Integration by Parts as an integration rule corresponding to the Product Rule for differentiation. I showed my students the standard derivation of the Integration by Parts formula as presented in [1]: By the Product Rule, if f (x) and g(x) are differentiable functions, then d f (x)g(x) = f (x)g(x) + g(x) f (x). dx Integrating on both sides of this equation, f (x)g(x) + g(x) f (x) dx = f (x)g(x), which may be rearranged to obtain f (x)g(x) dx = f (x)g(x) − g(x) f (x) dx. Letting U = f (x) and V = g(x) and observing that dU = f (x) dx and dV = g(x) dx, we obtain the familiar Integration by Parts formula UdV= UV − VdU. (1) My student Victor asked if we could do a similar thing with the Quotient Rule. While the other students thought this was a crazy idea, I was intrigued. Below, I derive a Quotient Rule Integration by Parts formula, apply the resulting integration formula to an example, and discuss reasons why this formula does not appear in calculus texts. By the Quotient Rule, if f (x) and g(x) are differentiable functions, then ( ) ( ) ( ) − ( ) ( ) d f x = g x f x f x g x . dx g(x) [g(x)]2 Integrating both sides of this equation, we get f (x) g(x) f (x) − f (x)g(x) = dx.
    [Show full text]
  • Appendix a Short Course in Taylor Series
    Appendix A Short Course in Taylor Series The Taylor series is mainly used for approximating functions when one can identify a small parameter. Expansion techniques are useful for many applications in physics, sometimes in unexpected ways. A.1 Taylor Series Expansions and Approximations In mathematics, the Taylor series is a representation of a function as an infinite sum of terms calculated from the values of its derivatives at a single point. It is named after the English mathematician Brook Taylor. If the series is centered at zero, the series is also called a Maclaurin series, named after the Scottish mathematician Colin Maclaurin. It is common practice to use a finite number of terms of the series to approximate a function. The Taylor series may be regarded as the limit of the Taylor polynomials. A.2 Definition A Taylor series is a series expansion of a function about a point. A one-dimensional Taylor series is an expansion of a real function f(x) about a point x ¼ a is given by; f 00ðÞa f 3ðÞa fxðÞ¼faðÞþf 0ðÞa ðÞþx À a ðÞx À a 2 þ ðÞx À a 3 þÁÁÁ 2! 3! f ðÞn ðÞa þ ðÞx À a n þÁÁÁ ðA:1Þ n! © Springer International Publishing Switzerland 2016 415 B. Zohuri, Directed Energy Weapons, DOI 10.1007/978-3-319-31289-7 416 Appendix A: Short Course in Taylor Series If a ¼ 0, the expansion is known as a Maclaurin Series. Equation A.1 can be written in the more compact sigma notation as follows: X1 f ðÞn ðÞa ðÞx À a n ðA:2Þ n! n¼0 where n ! is mathematical notation for factorial n and f(n)(a) denotes the n th derivation of function f evaluated at the point a.
    [Show full text]
  • Math Club: Recurrent Sequences Nov 15, 2020
    MATH CLUB: RECURRENT SEQUENCES NOV 15, 2020 In many problems, a sequence is defined using a recurrence relation, i.e. the next term is defined using the previous terms. By far the most famous of these is the Fibonacci sequence: (1) F0 = 0;F1 = F2 = 1;Fn+1 = Fn + Fn−1 The first several terms of this sequence are below: 0; 1; 1; 2; 3; 5; 8; 13; 21; 34;::: For such sequences there is a method of finding a general formula for nth term, outlined in problem 6 below. 1. Into how many regions do n lines divide the plane? It is assumed that no two lines are parallel, and no three lines intersect at a point. Hint: denote this number by Rn and try to get a recurrent formula for Rn: what is the relation betwen Rn and Rn−1? 2. The following problem is due to Leonardo of Pisa, later known as Fibonacci; it was introduced in his 1202 book Liber Abaci. Suppose a newly-born pair of rabbits, one male, one female, are put in a field. Rabbits are able to mate at the age of one month so that at the end of its second month a female can produce another pair of rabbits. Suppose that our rabbits never die and that the female always produces one new pair (one male, one female) every month from the second month on. How many pairs will there be in one year? 3. Daniel is coming up the staircase of 20 steps. He can either go one step at a time, or skip a step, moving two steps at a time.
    [Show full text]
  • Operations on Power Series Related to Taylor Series
    Operations on Power Series Related to Taylor Series In this problem, we perform elementary operations on Taylor series – term by term differen­ tiation and integration – to obtain new examples of power series for which we know their sum. Suppose that a function f has a power series representation of the form: 1 2 X n f(x) = a0 + a1(x − c) + a2(x − c) + · · · = an(x − c) n=0 convergent on the interval (c − R; c + R) for some R. The results we use in this example are: • (Differentiation) Given f as above, f 0(x) has a power series expansion obtained by by differ­ entiating each term in the expansion of f(x): 1 0 X n−1 f (x) = a1 + a2(x − c) + 2a3(x − c) + · · · = nan(x − c) n=1 • (Integration) Given f as above, R f(x) dx has a power series expansion obtained by by inte­ grating each term in the expansion of f(x): 1 Z a1 a2 X an f(x) dx = C + a (x − c) + (x − c)2 + (x − c)3 + · · · = C + (x − c)n+1 0 2 3 n + 1 n=0 for some constant C depending on the choice of antiderivative of f. Questions: 1. Find a power series representation for the function f(x) = arctan(5x): (Note: arctan x is the inverse function to tan x.) 2. Use power series to approximate Z 1 2 sin(x ) dx 0 (Note: sin(x2) is a function whose antiderivative is not an elementary function.) Solution: 1 For question (1), we know that arctan x has a simple derivative: , which then has a power 1 + x2 1 2 series representation similar to that of , where we subsitute −x for x.
    [Show full text]
  • Derivative of Power Series and Complex Exponential
    LECTURE 4: DERIVATIVE OF POWER SERIES AND COMPLEX EXPONENTIAL The reason of dealing with power series is that they provide examples of analytic functions. P1 n Theorem 1. If n=0 anz has radius of convergence R > 0; then the function P1 n F (z) = n=0 anz is di®erentiable on S = fz 2 C : jzj < Rg; and the derivative is P1 n¡1 f(z) = n=0 nanz : Proof. (¤) We will show that j F (z+h)¡F (z) ¡ f(z)j ! 0 as h ! 0 (in C), whenever h ¡ ¢ n Pn n k n¡k jzj < R: Using the binomial theorem (z + h) = k=0 k h z we get F (z + h) ¡ F (z) X1 (z + h)n ¡ zn ¡ hnzn¡1 ¡ f(z) = a h n h n=0 µ ¶ X1 a Xn n = n ( hkzn¡k) h k n=0 k=2 µ ¶ X1 Xn n = a h( hk¡2zn¡k) n k n=0 k=2 µ ¶ X1 Xn¡2 n = a h( hjzn¡2¡j) (by putting j = k ¡ 2): n j + 2 n=0 j=0 ¡ n ¢ ¡n¡2¢ By using the easily veri¯able fact that j+2 · n(n ¡ 1) j ; we obtain µ ¶ F (z + h) ¡ F (z) X1 Xn¡2 n ¡ 2 j ¡ f(z)j · jhj n(n ¡ 1)ja j( jhjjjzjn¡2¡j) h n j n=0 j=0 X1 n¡2 = jhj n(n ¡ 1)janj(jzj + jhj) : n=0 P1 n¡2 We already know that the series n=0 n(n ¡ 1)janjjzj converges for jzj < R: Now, for jzj < R and h ! 0 we have jzj + jhj < R eventually.
    [Show full text]
  • Calculus Terminology
    AP Calculus BC Calculus Terminology Absolute Convergence Asymptote Continued Sum Absolute Maximum Average Rate of Change Continuous Function Absolute Minimum Average Value of a Function Continuously Differentiable Function Absolutely Convergent Axis of Rotation Converge Acceleration Boundary Value Problem Converge Absolutely Alternating Series Bounded Function Converge Conditionally Alternating Series Remainder Bounded Sequence Convergence Tests Alternating Series Test Bounds of Integration Convergent Sequence Analytic Methods Calculus Convergent Series Annulus Cartesian Form Critical Number Antiderivative of a Function Cavalieri’s Principle Critical Point Approximation by Differentials Center of Mass Formula Critical Value Arc Length of a Curve Centroid Curly d Area below a Curve Chain Rule Curve Area between Curves Comparison Test Curve Sketching Area of an Ellipse Concave Cusp Area of a Parabolic Segment Concave Down Cylindrical Shell Method Area under a Curve Concave Up Decreasing Function Area Using Parametric Equations Conditional Convergence Definite Integral Area Using Polar Coordinates Constant Term Definite Integral Rules Degenerate Divergent Series Function Operations Del Operator e Fundamental Theorem of Calculus Deleted Neighborhood Ellipsoid GLB Derivative End Behavior Global Maximum Derivative of a Power Series Essential Discontinuity Global Minimum Derivative Rules Explicit Differentiation Golden Spiral Difference Quotient Explicit Function Graphic Methods Differentiable Exponential Decay Greatest Lower Bound Differential
    [Show full text]
  • 20-Finding Taylor Coefficients
    Taylor Coefficients Learning goal: Let’s generalize the process of finding the coefficients of a Taylor polynomial. Let’s find a general formula for the coefficients of a Taylor polynomial. (Students complete worksheet series03 (Taylor coefficients).) 2 What we have discovered is that if we have a polynomial C0 + C1x + C2x + ! that we are trying to match values and derivatives to a function, then when we differentiate it a bunch of times, we 0 get Cnn!x + Cn+1(n+1)!x + !. Plugging in x = 0 and everything except Cnn! goes away. So to (n) match the nth derivative, we must have Cn = f (0)/n!. If we want to match the values and derivatives at some point other than zero, we will use the 2 polynomial C0 + C1(x – a) + C2(x – a) + !. Then when we differentiate, we get Cnn! + Cn+1(n+1)!(x – a) + !. Now, plugging in x = a makes everything go away, and we get (n) Cn = f (a)/n!. So we can generate a polynomial of any degree (well, as long as the function has enough derivatives!) that will match the function and its derivatives to that degree at a particular point a. We can also extend to create a power series called the Taylor series (or Maclaurin series if a is specifically 0). We have natural questions: • For what x does the series converge? • What does the series converge to? Is it, hopefully, f(x)? • If the series converges to the function, we can use parts of the series—Taylor polynomials—to approximate the function, at least nearby a.
    [Show full text]
  • Arithmetic and Geometric Progressions
    Arithmetic and geometric progressions mcTY-apgp-2009-1 This unit introduces sequences and series, and gives some simple examples of each. It also explores particular types of sequence known as arithmetic progressions (APs) and geometric progressions (GPs), and the corresponding series. In order to master the techniques explained here it is vital that you undertake plenty of practice exercises so that they become second nature. After reading this text, and/or viewing the video tutorial on this topic, you should be able to: • recognise the difference between a sequence and a series; • recognise an arithmetic progression; • find the n-th term of an arithmetic progression; • find the sum of an arithmetic series; • recognise a geometric progression; • find the n-th term of a geometric progression; • find the sum of a geometric series; • find the sum to infinity of a geometric series with common ratio r < 1. | | Contents 1. Sequences 2 2. Series 3 3. Arithmetic progressions 4 4. The sum of an arithmetic series 5 5. Geometric progressions 8 6. The sum of a geometric series 9 7. Convergence of geometric series 12 www.mathcentre.ac.uk 1 c mathcentre 2009 1. Sequences What is a sequence? It is a set of numbers which are written in some particular order. For example, take the numbers 1, 3, 5, 7, 9, .... Here, we seem to have a rule. We have a sequence of odd numbers. To put this another way, we start with the number 1, which is an odd number, and then each successive number is obtained by adding 2 to give the next odd number.
    [Show full text]
  • Sequences, Series and Taylor Approximation (Ma2712b, MA2730)
    Sequences, Series and Taylor Approximation (MA2712b, MA2730) Level 2 Teaching Team Current curator: Simon Shaw November 20, 2015 Contents 0 Introduction, Overview 6 1 Taylor Polynomials 10 1.1 Lecture 1: Taylor Polynomials, Definition . .. 10 1.1.1 Reminder from Level 1 about Differentiable Functions . .. 11 1.1.2 Definition of Taylor Polynomials . 11 1.2 Lectures 2 and 3: Taylor Polynomials, Examples . ... 13 x 1.2.1 Example: Compute and plot Tnf for f(x) = e ............ 13 1.2.2 Example: Find the Maclaurin polynomials of f(x) = sin x ...... 14 2 1.2.3 Find the Maclaurin polynomial T11f for f(x) = sin(x ) ....... 15 1.2.4 QuestionsforChapter6: ErrorEstimates . 15 1.3 Lecture 4 and 5: Calculus of Taylor Polynomials . .. 17 1.3.1 GeneralResults............................... 17 1.4 Lecture 6: Various Applications of Taylor Polynomials . ... 22 1.4.1 RelativeExtrema .............................. 22 1.4.2 Limits .................................... 24 1.4.3 How to Calculate Complicated Taylor Polynomials? . 26 1.5 ExerciseSheet1................................... 29 1.5.1 ExerciseSheet1a .............................. 29 1.5.2 FeedbackforSheet1a ........................... 33 2 Real Sequences 40 2.1 Lecture 7: Definitions, Limit of a Sequence . ... 40 2.1.1 DefinitionofaSequence .......................... 40 2.1.2 LimitofaSequence............................. 41 2.1.3 Graphic Representations of Sequences . .. 43 2.2 Lecture 8: Algebra of Limits, Special Sequences . ..... 44 2.2.1 InfiniteLimits................................ 44 1 2.2.2 AlgebraofLimits.............................. 44 2.2.3 Some Standard Convergent Sequences . .. 46 2.3 Lecture 9: Bounded and Monotone Sequences . ..... 48 2.3.1 BoundedSequences............................. 48 2.3.2 Convergent Sequences and Closed Bounded Intervals . .... 48 2.4 Lecture10:MonotoneSequences .
    [Show full text]