967.Full.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Data Sheet Huil36g (152 A.A.)
Growth Factor Data Sheet GoldBio growth factors are manufactured for RESEARCH USE ONLY and cannot be sold for human consumption! Interleukin-36G (IL36G) is a pro-inflammatory cytokine that plays an important role in the pathophysiology of several diseases. IL36A, IL36B and IL36G (formerly IL1F6, IL1F8, and IL1F9) are IL1 family members that signal through the IL1 receptor family members IL1Rrp2 (IL1RL2) and IL1RAcP. IL36G is secreted when transfected into 293-T cells and could constitute part of an independent signaling system analogous to that of IL1A and IL1B receptor agonist and interleukin-1 receptor type I (IL1R1). Furthermore, IL36G also can function as an agonist of NFκB activation through the orphan IL1- receptor-related protein 2. Human IL36G (152 a.a.) shares 58%, 59%, 68% and 69% amino acid sequence identity with mouse, rat, bovine and equine IL36G, respectively, and 23-57% amino acid sequence identity with other family members. Catalog Number 1110-36F Product Name IL36G (IL-36 gamma), Human (152 a.a.) Recombinant Human Interleukin-36γ IL36G, IL36γ Interleukin 1 Homolog 1 (IL1H1) Interleukin 1-Related Protein 2 (IL1RP2) Interleukin 1 Family, Member 9 (IL1F9) Source Escherichia coli MW ~17.0 kDa (152 amino acids) Sequence SMCKPITGTI NDLNQQVWTL QGQNLVAVPR SDSVTPVTVA VITCKYPEAL EQGRGDPIYL GIQNPEMCLY CEKVGEQPTL QLKEQKIMDL YGQPEPVKPF LFYRAKTGRT STLESVAFPD WFIASSKRDQ PIILTSELGK SYNTAFELNI ND Accession Number Q9NZH8 Purity >95% by SDS-PAGE and HPLC analyses Biological Activity Fully biologically active when compared to standard. The ED50 as determined by its ability to induce IL-8 secretion by human preadipocytes is less than 10 ng/ml, corresponding to a specific activity of >1 × 105 IU/mg. -
Huil36g 169 Data Sheet
Growth Factor Data Sheet GoldBio growth factors are manufactured for RESEARCH USE ONLY and cannot be sold for human consumption! Interleukin-36G (IL36G) is a pro-inflammatory cytokine that plays an important role in the pathophysiology of several diseases. IL36A, IL36B and IL36G; (formerly IL1F6, IL1F8, and IL1F9) are IL1 family members that signal through the IL1 receptor family members IL1Rrp2 (IL1RL2) and IL1RAcP. IL36B is secreted when transfected into 293-T cells and could constitute part of an independent signaling system analogous to that of IL1A and IL1B receptor agonist and interleukin-1 receptor type I (IL1R1). Furthermore, IL36G also can function as an agonist of NFκB activation through the orphan IL1- receptor-related protein 2. Recombinant human IL36G is synthesized as a protein that contains no signal sequence, no prosegment and no potential N-linked glycosylation site.There is a 53% amino acid homology between human and mouse IL36G. IL36G also has a 25-55% amino acid homology with IL36G and IL1RN, IL1B, IL36RN, IL36A, IL37, IL36B and IL1F10. Catalog Number 1110-36E Product Name IL36G (IL-36 gamma), Human (169 a.a.) Recombinant Human Interleukin-36γ IL36G, IL36γ Interleukin 1 Homolog 1 (IL1H1) Interleukin 1-Related Protein 2 (IL1RP2) Interleukin 1 Family, Member 9 (IL1F9) Source Escherichia coli MW 18.7 kDa (169 amino acids) Sequence MRGTPGDADG GGRAVYQSMC KPITGTINDL NQQVWTLQGQ NLVAVPRSDS VTPVTVAVIT CKYPEALEQG RGDPIYLGIQ NPEMCLYCEK VGEQPTLQLK EQKIMDLYGQ PEPVKPFLFY RAKTGRTSTL ESVAFPDWFI ASSKRDQPII LTSELGKSYN TAFELNIND Accession Number Q9NZH8 Purity >95% by SDS-PAGE and HPLC analyses Biological Activity Fully biologically active when compared to standard. The specific activity is determined by its binding ability in a functional ELISA. -
Association of an Interleukin 1B Gene Polymorphism (-511) With
400 LETTER TO JMG Association of an interleukin 1B gene polymorphism (−511) with Parkinson’s disease in Finnish patients K M Mattila, J O Rinne, T Lehtimäki, M Röyttä, J-P Ahonen, M Hurme ............................................................................................................................. J Med Genet 2002;39:400–402 lzheimer’s disease (AD) and Parkinson’s disease (PD) are the two most common neurodegenerative conditions Table 1 Genotype and allele frequencies of the IL1 characterised by the presence of abnormal accumula- gene cluster polymorphisms in AD, PD, and control A patients tion of proteins and loss of neurones in specific regions of the brain. The aetiology and pathogenesis of AD and PD still Controls remain largely unknown. Evidence has emerged that immune Polymorphism AD (n=92) PD (n=52) (n=73) mediated mechanisms may be important in the development − 12 IL1A ( 889) of these disorders, and cytokine interleukin 1 (IL1) is one of *1/*1 42 (0.46) 28 (0.54) 33 (0.45) the mediators suggested to be involved. *1/*2 39 (0.42) 20 (0.38) 29 (0.40) The IL1 family comprises three proteins, the proinflamma- *2/*2 11 (0.12) 4 (0.08) 11 (0.15) tory IL1α and IL1β and their inhibitor IL1 receptor antagonist *1 123 (0.67) 76 (0.73) 95 (0.65) *2 61 (0.32) 28 (0.27) 51 (0.35) (IL1Ra), which are encoded by the IL1A, IL1B, and IL1RN − genes respectively.3 Since IL1 may have a role in AD4–8 and in IL1B ( 511) 910 *1/*1 35 (0.38) 25 (0.48) 24 (0.32) PD, variation in the IL1A, IL1B, and IL1RN genes may be of *1/*2 47 (0.51) 25 (0.48) 30 (0.41) importance in the development of these disorders. -
Genetic Determinants of Circulating Interleukin-1 Receptor Antagonist Levels and Their Association with Glycemic Traits
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Trepo - Institutional Repository of Tampere University GENETIC DETERMINANTS OF CIRCULATING INTERLEUKIN-1 RECEPTOR ANTAGONIST LEVELS AND THEIR ASSOCIATION WITH GLYCEMIC TRAITS Marja-Liisa Nuotio Syventävien opintojen kirjallinen työ Tampereen yliopisto Lääketieteen yksikkö Tammikuu 2015 Tampereen yliopisto Lääketieteen yksikkö NUOTIO MARJA-LIISA: GENETIC DETERMINANTS OF CIRCULATING INTERLEUKIN-1 RECEPTOR ANTAGONIST LEVELS AND THEIR ASSOCIATION WITH GLYCEMIC TRAITS Kirjallinen työ, 57 s. Ohjaaja: professori Mika Kähönen Tammikuu 2015 Avainsanat: sytokiinit, insuliiniresistenssi, tyypin 2 diabetes, tulehdus, glukoosimetabolia, genominlaajuinen assosiaatioanalyysi (GWAS) Tulehdusta välittäviin sytokiineihin kuuluvan interleukiini 1β (IL-1β):n kohonneen systeemisen pitoisuuden on arveltu edesauttavan insuliiniresistenssin kehittymistä ja johtavan haiman β-solujen toimintahäiriöihin. IL-1β:n sisäsyntyisellä vastavaikuttajalla, interleukiini 1 reseptoriantagonistilla (IL-1RA), on puolestaan esitetty olevan suojaava rooli mainittujen fenotyyppien kehittymisessä päinvastaisten vaikutustensa ansiosta. IL-1RA:n suojaavan roolin havainnollistamiseksi työssä Genetic determinants of circulating interleukin-1 receptor antagonist levels and their association with glycemic traits tunnistettiin veren IL-1RA- pitoisuuteen assosioituvia geneettisiä variantteja, minkä jälkeen selvitettiin näiden yhteyttä glukoosi- ja insuliinimetaboliaan liittyvien muuttujien-, sekä -
Cellular and Molecular Signatures in the Disease Tissue of Early
Cellular and Molecular Signatures in the Disease Tissue of Early Rheumatoid Arthritis Stratify Clinical Response to csDMARD-Therapy and Predict Radiographic Progression Frances Humby1,* Myles Lewis1,* Nandhini Ramamoorthi2, Jason Hackney3, Michael Barnes1, Michele Bombardieri1, Francesca Setiadi2, Stephen Kelly1, Fabiola Bene1, Maria di Cicco1, Sudeh Riahi1, Vidalba Rocher-Ros1, Nora Ng1, Ilias Lazorou1, Rebecca E. Hands1, Desiree van der Heijde4, Robert Landewé5, Annette van der Helm-van Mil4, Alberto Cauli6, Iain B. McInnes7, Christopher D. Buckley8, Ernest Choy9, Peter Taylor10, Michael J. Townsend2 & Costantino Pitzalis1 1Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. Departments of 2Biomarker Discovery OMNI, 3Bioinformatics and Computational Biology, Genentech Research and Early Development, South San Francisco, California 94080 USA 4Department of Rheumatology, Leiden University Medical Center, The Netherlands 5Department of Clinical Immunology & Rheumatology, Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands 6Rheumatology Unit, Department of Medical Sciences, Policlinico of the University of Cagliari, Cagliari, Italy 7Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK 8Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Birmingham B15 2WB, UK 9Institute of -
Growth Factor Data Sheet
Growth Factor Data Sheet GoldBio growth factors are manufactured for RESEARCH USE ONLY and cannot be sold for human consumption! Interleukin 36B (IL36B) is a pro-inflammatory cytokine which plays an important role in the pathophysiology of several diseases. IL36A, IL36B, and IL36G (formerly IL1F6, IL1F8, and IL1F9) are all IL1 family members that signal through the IL1 receptor family members IL1Rrp2 (IL1RL2) and IL1RAcP. IL36B is reported to be expressed at higher levels in psoriatic plaques than in symptomless psoriatic skin or healthy control skin. IL36B can also stimulate the production of IL6 and IL8 in synovial fibroblasts, articular chondrocytes and mature adipocytes. Catalog Number 1310-36D Product Name IL36B (IL-36 beta), Murine (153 a.a.) Recombinant Murine Interleukin-36β IL36B, IL36β Interleukin 36β Interleukin 1 Family, Member 8 (IL1F8) Source Escherichia coli MW ~17.4 kDa (153 amino acids) Sequence RAASPSLRHV QDLSSRVWIL QNNILTAVPR KEQTVPVTIT LLPCQYLDTL ETNRGDPTYM GVQRPMSCLF CTKDGEQPVL QLGEGNIMEM YNKKEPVKAS LFYHKKSGTT STFESAAFPG WFIAVCSKGS CPLILTQELG EIFITDFEMI VVH Purity >95% by SDS-PAGE and HPLC analyses Biological Activity Fully biologically active when compared to standard. The ED50 as determined by inducing IL-6 secretion in murine NIH/3T3 cells is less than 25 ng/ml, corresponding to a specific activity of >4.0 × 104 IU/mg. Formulation Sterile filtered white lyophilized powder. Purified and tested for use in cell culture. Storage/Handling This lyophilized preparation is stable at 2-8°C, but should be kept at -20°C for long term storage. The reconstituted sample can be apportioned into working aliquots and stored at -80 °C for up to 6 months. -
Comprehensive Association Study of Genetic Variants in the IL-1 Gene Family in Systemic Juvenile Idiopathic Arthritis
Genes and Immunity (2008) 9, 349–357 & 2008 Nature Publishing Group All rights reserved 1466-4879/08 $30.00 www.nature.com/gene ORIGINAL ARTICLE Comprehensive association study of genetic variants in the IL-1 gene family in systemic juvenile idiopathic arthritis CJW Stock1, EM Ogilvie1, JM Samuel1, M Fife1, CM Lewis2 and P Woo1 1Centre for Paediatric and Adolescent Rheumatology, Windeyer Institute for Medical Sciences, University College London, London, UK and 2Guy’s, Kings and St Thomas’ School of Medicine, London, UK Patients with systemic juvenile idiopathic arthritis (sJIA) have a characteristic daily spiking fever and elevated levels of inflammatory cytokines. Members of the interleukin-1 (IL-1) gene family have been implicated in various inflammatory and autoimmune diseases, and treatment with the IL-1 receptor antagonist, Anakinra, shows remarkable improvement in some patients. This work describes the most comprehensive investigation to date of the involvement of the IL-1 gene family in sJIA. A two-stage case–control association study was performed to investigate the two clusters of IL-1 family genes using a tagging single nucleotide polymorphism (SNP) approach. Genotyping data of 130 sJIA patients and 151 controls from stage 1 highlighted eight SNPs in the IL1 ligand cluster region and two SNPs in the IL1 receptor cluster region as showing a significant frequency difference between the populations. These 10 SNPs were typed in an additional 105 sJIA patients and 184 controls in stage 2. Meta-analysis of the genotypes from both stages showed that three IL1 ligand cluster SNPs (rs6712572, rs2071374 and rs1688075) and one IL1 receptor cluster SNP (rs12712122) show evidence of significant association with sJIA. -
SUPPLEMENTARY METHODS Cell Culture.-Human Peripheral Blood
SUPPLEMENTARY METHODS Cell culture.-Human peripheral blood mononuclear cells (PBMC) were isolated from buffy coats from normal donors over a Lymphoprep (Nycomed Pharma) gradient. Monocytes were purified from PBMC by magnetic cell sorting using CD14 microbeads (Miltenyi Biotech). Monocytes were cultured at 0.5 x 106 cells/ml for 7 days in RPMI 1640 (standard RPMI, which contains 1 mg/L folic acid) supplemented with 10% fetal calf serum, at 37ºC in a humidified atmosphere with 5% CO2, and containing GM-CSF (1000U/ml) or M-CSF (10 ng/ml, ImmunoTools) to generate GM-CSF- polarized macrophages (GM-MØ) or M-CSF-polarized macrophages (M-MØ). MTX pharmacokinetic studies in RA patients administered 25 mg MTX showed peak plasma levels of 1-2 µM MTX two hours after drug administration, but plasma levels decline to 10-50 nM MTX within 24-48 hours [1, 2]. MTX (50 nM), pemetrexed (PMX, 50 nM), folic acid (FA, 50 nM) [3], thymidine (dT, 10 µM), pifithrin-α (PFT, 25-50 µM), nutlin-3 (10 µM, Sigma-Aldrich) was added once on monocytes together with the indicated cytokine, or on monocytes and 7-day differentiated macrophages for 48h. Gene expression profiling.-For long-term MTX treatment, RNA was isolated from three independent preparations of monocytes either unexposed or exposed to MTX (50 nM) and differentiated to GM-MØ or M-MØ for 7-days. For short-term schedule, RNA was isolated from three independent samples of fully differentiated GM-MØ either unexposed or exposed to MTX (50 nM) for 48h, by using RNeasy Mini kit (QIAGEN). -
Evolutionary Divergence and Functions of the Human Interleukin (IL) Gene Family Chad Brocker,1 David Thompson,2 Akiko Matsumoto,1 Daniel W
UPDATE ON GENE COMPLETIONS AND ANNOTATIONS Evolutionary divergence and functions of the human interleukin (IL) gene family Chad Brocker,1 David Thompson,2 Akiko Matsumoto,1 Daniel W. Nebert3* and Vasilis Vasiliou1 1Molecular Toxicology and Environmental Health Sciences Program, Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO 80045, USA 2Department of Clinical Pharmacy, University of Colorado Denver, Aurora, CO 80045, USA 3Department of Environmental Health and Center for Environmental Genetics (CEG), University of Cincinnati Medical Center, Cincinnati, OH 45267–0056, USA *Correspondence to: Tel: þ1 513 821 4664; Fax: þ1 513 558 0925; E-mail: [email protected]; [email protected] Date received (in revised form): 22nd September 2010 Abstract Cytokines play a very important role in nearly all aspects of inflammation and immunity. The term ‘interleukin’ (IL) has been used to describe a group of cytokines with complex immunomodulatory functions — including cell proliferation, maturation, migration and adhesion. These cytokines also play an important role in immune cell differentiation and activation. Determining the exact function of a particular cytokine is complicated by the influence of the producing cell type, the responding cell type and the phase of the immune response. ILs can also have pro- and anti-inflammatory effects, further complicating their characterisation. These molecules are under constant pressure to evolve due to continual competition between the host’s immune system and infecting organisms; as such, ILs have undergone significant evolution. This has resulted in little amino acid conservation between orthologous proteins, which further complicates the gene family organisation. Within the literature there are a number of overlapping nomenclature and classification systems derived from biological function, receptor-binding properties and originating cell type. -
Np63 Regulates IL-33 and IL-31 Signaling in Atopic Dermatitis
Cell Death and Differentiation (2016) 23, 1073–1085 OPEN & 2016 Macmillan Publishers Limited All rights reserved 1350-9047/16 www.nature.com/cdd ΔNp63 regulates IL-33 and IL-31 signaling in atopic dermatitis JM Rizzo1,2, A Oyelakin3, S Min3, K Smalley1, J Bard1, W Luo1,7, J Nyquist4, E Guttman-Yassky5, T Yoshida6, A De Benedetto6, LA Beck6, S Sinha*,1 and R-A Romano*,3 Atopic dermatitis (AD) is the most common inflammatory skin disease with no well-delineated cause or effective cure. Here we show that the p53 family member p63, specifically the ΔNp63, isoform has a key role in driving keratinocyte activation in AD. We find that overexpression of ΔNp63 in transgenic mouse epidermis results in a severe skin phenotype that shares many of the key clinical, histological and molecular features associated with human AD. This includes pruritus, epidermal hyperplasia, aberrant keratinocyte differentiation, enhanced expression of selected cytokines and chemokines and the infiltration of large numbers of inflammatory cells including type 2 T-helper cells – features that are highly representative of AD dermatopathology. We further demonstrate several of these mediators to be direct transcriptional targets of ΔNp63 in keratinocytes. Of particular significance are two p63 target genes, IL-31 and IL-33, both of which are key players in the signaling pathways implicated in AD. Importantly, we find these observations to be in good agreement with elevated levels of ΔNp63 in skin lesions of human patients with AD. Our studies reveal an important role for ΔNp63 in the pathogenesis of AD and offer new insights into its etiology and possible therapeutic targets. -
Interleukin-1And Interleukin-6 Gene Polymorphisms and the Risk of Breast Cancer in Caucasian Women
Human Cancer Biology Interleukin-1 and Interleukin-6 Gene Polymorphisms and the Risk of Breast Cancer in Caucasian Women Lukas A. Hefler,1, 3 Christoph Grimm,1Tilmann Lantzsch,4 Dieter Lampe,4 Sepp Leodolter,1, 3 Heinz Koelbl,5 Georg Heinze,2 Alexander Reinthaller,1Dan Tong-Cacsire,1Clemens Tempfer,1, 3 and Robert Zeillinger1, 3 Abstract Purpose: Genetic polymorphisms of cytokine-encoding genes are known to predispose to malignant disease. Interleukin (IL)-1and IL-6 are crucially involved in breast carcinogenesis. Whether polymorphisms of the genes encoding IL-1 (IL1)andIL-6(IL6) also influence breast cancer risk is unknown. Experimental Design: In the present case-control study, we ascertained three polymorphisms of the IL1 gene cluster [À889 C/T polymorphism of the IL1agene (IL1A), À511C/T polymorphism of the IL1b promoter (IL1B promoter), a polymorphism of IL1b exon 5 (IL1B exon 5 )], an 86-bp repeat in intron 2 of the IL1 receptor antagonist gene (IL1RN), and the À174 G/C polymorphism of the IL6 gene (IL6 ) in 269 patients with breast cancer and 227 healthy controls using PCR and pyrosequencing. Results: Polymorphisms within the IL1 gene cluster and the respective haplotypes were not associated with the presence and the phenotype of breast cancer. The IL6 polymorphism was significantly associated with breast cancer. Odds ratios for women with one or two high-risk alleles versus women homozygous for the low-risk allele were 1.5 (95% confidence interval, 1.04-2.3; P = 0.04) and 2.0 (95% confidence interval, 1.1-3.6; P = 0.02), respectively. -
Interleukin 1-Α: a Modulator of Melanocyte Homeostasis in Vitiligo
nalytic A al & B y i tr o Singh et al., Biochem Anal Biochem 2016, 5:2 s c i h e m m Biochemistry & e DOI: 10.4172/2161-1009.1000273 i h s c t r o i y B ISSN: 2161-1009 Analytical Biochemistry Research Article Open Access Interleukin 1-α: A Modulator of Melanocyte Homeostasis in Vitiligo Mala Singh, Mohmmad Shoab Mansuri, Mansi A Parasrampuria and Rasheedunnisa Begum* Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat -390002, India Abstract Background: Vitiligo is a hypomelanotic autoimmune skin disorder arising from a breakdown in immunological self-tolerance, which leads to aberrant immune responses against melanocytes leading to selective destruction of melanocytes. High levels of Interleukin 1(IL1) have been reported in various autoimmune disorders including vitiligo. The aim of present study was to explore the effect of IL1-α on melanocyte biology by monitoring the melanocyte viability, IL1R1 membrane expression, melanogenesis (TYR, TYRP1 and MITF-M) and other immuno modulatory molecules (IL1A, IL1B, IL1RN,IL1R1 IL8, TNFA, IL6, and ICAM1) upon exogenous stimulation of IL1- α on primary cultured normal human melanocytes (NHM). Materials and methods: Melanocytes were isolated from normal human skin biopsies and cultured in vitro. The NHMs were treated with IL1-α (0-100 ng/ml) and cell viability was monitored by MTT assay, IL1R1 membrane expression was monitored using flow cytometry and relative gene expression was performed using semi-quantitative RT-PCR. Results: The dose dependent effect of IL1-α on melanocytes showed ~12% melanocyte death and ~22% increase in IL1R1 membrane expression upon 100 ng/ml IL1-α treatment for 48 hrs.