The Diversity of Thick Galactic Discs

Total Page:16

File Type:pdf, Size:1020Kb

The Diversity of Thick Galactic Discs MNRAS 000, 1–6 (2016) Preprint 9 July 2021 Compiled using MNRAS LATEX style file v3.0 The Diversity of Thick Galactic Discs Anastasia V. Kasparova,1⋆, Ivan Yu. Katkov,1 Igor V. Chilingarian,2,1 Olga K. Silchenko,1,3 Alexey V. Moiseev4,1 and Svyatoslav B. Borisov1,5. 1Sternberg Astronomical Institute, Moscow M.V. Lomonosov State University, Universitetskij pr., 13, Moscow, 119992, Russia 2Smithsonian Astrophysical Observatory, Harvard-Smithsonian Center for Astrophysics, 60 Garden St. MS09, Cambridge, MA 02138 USA 3Isaac Newton Institute of Chile, Moscow Branch, Universitetskij pr., 13, Moscow, 119992, Russia 4Special Astrophysical Observatory, Russian Academy of Sciences, Nizhnij Arkhyz, 369167, Russia 5Department of Physics, Moscow M.V. Lomonosov State University, 1, Leninskie Gory, Moscow, Russia, 119991 9 July 2021 ABSTRACT Although thick stellar discs are detected in nearly all edge-on disc galaxies, their formation scenarios still remain a matter of debate. Due to observational difficulties, there is a lack of information about their stellar populations. Using the Russian 6- m telescope BTA we collected deep spectra of thick discs in three edge-on S0-a disc galaxies located in different environments: NGC 4111 in a dense group, NGC 4710 in the Virgo cluster, and NGC 5422 in a sparse group. We see intermediate age (4−5 Gyr) metal rich ([Fe/H] ∼−0.2 ... 0.0 dex) stellar populations in NGC 4111 and NGC 4710. On the other hand, NGC 5422 does not harbour young stars, its disc is thick and old (10 Gyr), without evidence for a second component, and its α-element abundance suggests a 1.5 − 2 Gyr long formation epoch implying its formation at high redshift. Our results suggest the diversity of thick disc formation scenarios. Key words: galaxies: evolution; galaxies: structure; galaxies: stellar content 1 INTRODUCTION gas in the early Universe (Elmegreen & Elmegreen 2006; Bournaud et al. 2009), and thin discs formed consequently Many important aspects of galaxy evolution remain not fully by gas accretion from filaments (see Chiappini et al. 1997; understood despite the great progress in the astronomical in- Combes 2014 and references therein) or minor wet merg- strumentation and increasing resolution and complexity of ers (Robertson et al. 2006; Sil’chenko et al. 2011). This sce- numerical simulations. One such unsolved problem is the for- nario should produce old α-enhanced thick discs without mation of thick discs, important and widespread structural notable metallicity gradients. (ii) Thick discs can be formed elements of spiral and lenticular galaxies (Burstein 1979). via secular thin disc flaring as a result of radial migration Manifested by the exponential excess of light in edge-on disc of stars (Sch¨onrich & Binney 2009; Loebman et al. 2011; galaxies at large distances above the main disc plane, they Roˇskar et al. 2013). Some scenarios predict specific radial are found in most if not all cases (Dalcanton & Bernstein arXiv:1604.07624v1 [astro-ph.GA] 26 Apr 2016 and vertical stellar population patterns, for example, a neg- 2002). The Milky Way contains a thick stellar disc compo- ative radial age gradient above the principal disc plane nent with the scale-height of ∼ 1 kpc that harbours older (Minchev et al. 2015). (iii) Primordially thin discs can get and more metal poor stars compared to the starforming thin dynamically heated by satellite flybys (Quinn et al. 1993; disc. Lenticular galaxies sometimes possess only old thick Qu et al. 2011) and/or minor mergers. discs (McDermid et al. 2015) being consistent with a sce- Detailed studies of internal kinematics and stellar pop- nario where they formed thick discs at high redshifts (see de- ulations in thin and thick discs will help us to choose the tails in Sil’chenko et al. 2012) and then have never acquired scenario. In external galaxies which cannot be resolved into thin discs and become normal spirals in contrast to the for- stars, integrated light spectroscopy remains the only obser- mation scenario of the lenticular galaxies through quenching vational technique for thick disc studies. However, it repre- of spirals (Larson et al. 1980). sents a significant challenge because of typical low surface Several thick disc formation scenarios have been pro- brightnesses of thick discs. posed. (i) Thick discs formed rapidly at high redshifts We carried out deep long-slit spectroscopic observations as a result of high density and velocity dispersion of for a sample of edge-on disc galaxies and derived spatially resolved stellar kinematics and star formation histories. In ⋆ Contact e-mail: [email protected] this letter we present the first results on three S0-a galax- c 2016 The Authors 2 A.Kasparova et al. Table 1. Long-slit spectroscopy of the sample galaxies. We reduced our spectroscopic observations with our own idl-based reduction pipeline. We estimated the night NGC Date z-offset P A Sp. range Texp Seeing sky background from outer slit regions not covered by our arcsec/pc deg A˚ sec arcsec target galaxies and an optimized sky subtraction technique 4111 21/05/09 0/0 150 4825-5500 8400 1.3 that takes into account spectral resolution variations along 4111 24/04/15 5/364 150 3600-7070 5600 1.0 the slit (Katkov & Chilingarian 2011; Katkov et al. 2014). 4710 24/04/15 0/0 27.5 3600-7070 3600 1.2 4710 24/04/15 7/560 27.5 3600-7070 7200 1.1 All three galaxies were observed with the Infrared Array 5422 24/04/12 0/0 151.4 3600-7070 3600 2.5 Camera (IRAC) at Spitzer Space Telescope in the imaging 5422 25/04/15 7/1049 151.4 3600-7070 8400 1.5 mode at wavelengths 3.6 µm and 4.5 µm. We fetched fully reduced 3.6 µm images from the Spitzer Heritage Archive1. ies which, as we show, prove the diversity of the thick disc formation scenarios. 2 THE SAMPLE AND THE DATA 2.1 The Sample We chose three edge-on galaxies in different environments: NGC 4111, NGC 4710 and NGC 5422 morphologically clas- 2.3 Data Analysis sified as S0-a by Hyperleda (Makarov et al. 2014). Van der Kruit & Searle (1981) have shown that in case an • NGC 4111 (MJ = −22.40 mag) is a member of the isothermal disc in the equilibrium state the vertical disc den- 2 Ursa Major galaxy group that is known to contain a com- sity profiles are described by the law I = I0 sech (z/z0), mon extended HI envelope (Wolfinger et al. 2013). The dis- where I0 is the central intensity and z0 is the disc scale- tances from NGC 4111 to the nearest neighbours are about height. We fitted vertical profiles obtained by averaging 30 − 40 kpc (Pak et al. 2014; Karachentsev et al. 2013). We Spitzer IRAC images along the radius using models includ- adopt the distance 15 Mpc that corresponds to the spatial ing one and two components. We set central positions of both −1 scale 72.7 pc arcsec (Tonry et al. 2001). components to be the same in the case of two-component • NGC 4710 (MJ = −22.56 mag) is located in the Virgo fitting but left the position itself a free parameter. Our re- cluster outskirts (d = 16.5 Mpc by Mei et al. (2007), spatial sults for NGC 4111 and NGC 5422 quantitatively agree with −1 scale 80.0 pc arcsec ). Its projected distance to M 87 is those presented in the S4G survey (Salo et al. 2015), how- about 5.4 deg or 1.6 Mpc (Koopmann et al. 2001). A dusty ever the results for NGC 4710 decomposition were not pre- disc is observed in the central 2 kpc region dominated by sented there. an X-shaped structure, that is traditionally explained as an To derive internal kinematics and stellar population edge-on bar (Bureau & Freeman 1999). properties (mean ages and metallicities [Fe/H]) of thick and • − NGC 5422 (MJ = 22.81 mag) is a member of the thin discs we first binned our long slit spectra in the spa- sparse NGC 5485 galaxy group dominated by lenticular tial direction with the adaptive binning algorithm in or- galaxies. It is the most luminous and the most distant ob- der to reach the minimal signal-to-noise ratio S/N = 30 ject in our sample (d = 30.9 Mpc by Theureau et al. (2007), per bin per spectral pixel in the middle of the wavelength −1 spatial scale 150 pc arcsec ). It possesses a large gaseous range. Then, in every bin we applied the nbursts full spec- ∼ disc tilted by some 5 deg with respect to the stellar disc. tral fitting technique (Chilingarian et al. 2007a,b) with a grid of high resolution stellar pegase.hr (Le Borgne et al. 2004) simple stellar population (SSP) models based on the 2.2 New Observations and Archival Data ELODIE3.1 empirical stellar library (Prugniel et al. 2007). We obtained deep spectroscopic observations of all The nbursts technique implements a pixel space χ2 min- three galaxies with the universal spectrographs SCOR- imization algorithm where observed spectrum is approxi- PIO (Afanasiev & Moiseev 2005) and SCORPIO-2 mated by a stellar population model broadened with para- (Afanasiev & Moiseev 2011) at the Russian 6-m BTA metric line-of-sight velocity distribution (LOSVD) and mul- telescope using the 1 arcsec wide 6 arcmin long slit. For tiplied by polynomial continuum (10th degree in our case) to every galaxy we observed: (i) a major axis in order to take into account dust attenuation and/or possible flux cal- get the information on a thin disc for NGC 4111 and ibration imperfections in both observations and models.
Recommended publications
  • 7.5 X 11.5.Threelines.P65
    Cambridge University Press 978-0-521-19267-5 - Observing and Cataloguing Nebulae and Star Clusters: From Herschel to Dreyer’s New General Catalogue Wolfgang Steinicke Index More information Name index The dates of birth and death, if available, for all 545 people (astronomers, telescope makers etc.) listed here are given. The data are mainly taken from the standard work Biographischer Index der Astronomie (Dick, Brüggenthies 2005). Some information has been added by the author (this especially concerns living twentieth-century astronomers). Members of the families of Dreyer, Lord Rosse and other astronomers (as mentioned in the text) are not listed. For obituaries see the references; compare also the compilations presented by Newcomb–Engelmann (Kempf 1911), Mädler (1873), Bode (1813) and Rudolf Wolf (1890). Markings: bold = portrait; underline = short biography. Abbe, Cleveland (1838–1916), 222–23, As-Sufi, Abd-al-Rahman (903–986), 164, 183, 229, 256, 271, 295, 338–42, 466 15–16, 167, 441–42, 446, 449–50, 455, 344, 346, 348, 360, 364, 367, 369, 393, Abell, George Ogden (1927–1983), 47, 475, 516 395, 395, 396–404, 406, 410, 415, 248 Austin, Edward P. (1843–1906), 6, 82, 423–24, 436, 441, 446, 448, 450, 455, Abbott, Francis Preserved (1799–1883), 335, 337, 446, 450 458–59, 461–63, 470, 477, 481, 483, 517–19 Auwers, Georg Friedrich Julius Arthur v. 505–11, 513–14, 517, 520, 526, 533, Abney, William (1843–1920), 360 (1838–1915), 7, 10, 12, 14–15, 26–27, 540–42, 548–61 Adams, John Couch (1819–1892), 122, 47, 50–51, 61, 65, 68–69, 88, 92–93,
    [Show full text]
  • Ngc Catalogue Ngc Catalogue
    NGC CATALOGUE NGC CATALOGUE 1 NGC CATALOGUE Object # Common Name Type Constellation Magnitude RA Dec NGC 1 - Galaxy Pegasus 12.9 00:07:16 27:42:32 NGC 2 - Galaxy Pegasus 14.2 00:07:17 27:40:43 NGC 3 - Galaxy Pisces 13.3 00:07:17 08:18:05 NGC 4 - Galaxy Pisces 15.8 00:07:24 08:22:26 NGC 5 - Galaxy Andromeda 13.3 00:07:49 35:21:46 NGC 6 NGC 20 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 7 - Galaxy Sculptor 13.9 00:08:21 -29:54:59 NGC 8 - Double Star Pegasus - 00:08:45 23:50:19 NGC 9 - Galaxy Pegasus 13.5 00:08:54 23:49:04 NGC 10 - Galaxy Sculptor 12.5 00:08:34 -33:51:28 NGC 11 - Galaxy Andromeda 13.7 00:08:42 37:26:53 NGC 12 - Galaxy Pisces 13.1 00:08:45 04:36:44 NGC 13 - Galaxy Andromeda 13.2 00:08:48 33:25:59 NGC 14 - Galaxy Pegasus 12.1 00:08:46 15:48:57 NGC 15 - Galaxy Pegasus 13.8 00:09:02 21:37:30 NGC 16 - Galaxy Pegasus 12.0 00:09:04 27:43:48 NGC 17 NGC 34 Galaxy Cetus 14.4 00:11:07 -12:06:28 NGC 18 - Double Star Pegasus - 00:09:23 27:43:56 NGC 19 - Galaxy Andromeda 13.3 00:10:41 32:58:58 NGC 20 See NGC 6 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 21 NGC 29 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 22 - Galaxy Pegasus 13.6 00:09:48 27:49:58 NGC 23 - Galaxy Pegasus 12.0 00:09:53 25:55:26 NGC 24 - Galaxy Sculptor 11.6 00:09:56 -24:57:52 NGC 25 - Galaxy Phoenix 13.0 00:09:59 -57:01:13 NGC 26 - Galaxy Pegasus 12.9 00:10:26 25:49:56 NGC 27 - Galaxy Andromeda 13.5 00:10:33 28:59:49 NGC 28 - Galaxy Phoenix 13.8 00:10:25 -56:59:20 NGC 29 See NGC 21 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 30 - Double Star Pegasus - 00:10:51 21:58:39
    [Show full text]
  • Albanyà Dark Sky Park
    ALBANYÀ DARK SKY PARK Application to the International Dark Sky Association 24/03/2017 Index 1-AUTHORSHIP & ACKNOWLEDGEMENTS ................................................................................................... 3 2- ABOUT THE MUNICIPALITY OF ALBANYÀ ................................................................................................. 3 2.1 LOCATION ........................................................................................................................................... 3 2.2 DESCRIPTION OF THE MUNICIPALITY ................................................................................................. 4 2.3 SURROUNDINGS: EMPORDÀ AND COSTA BRAVA .............................................................................. 7 3-ALBANYÀ DARK SKY PARK ......................................................................................................................... 8 3.1 BASSEGODA PARK .............................................................................................................................. 9 3.1.1 Camp de l’Illa (Albanyà) .............................................................................................................. 9 3.1.2 The Bassegoda Park Observatory ............................................................................................. 12 3.2 EL CASALOT (LLIURONA) .................................................................................................................. 13 3.3 EL COLL DE LA CREU (LLIURONA) ....................................................................................................
    [Show full text]
  • Ursa Maior Deutscher Name: Großer Bär Uma Atlas
    Lateinischer Name: Deutscher Name: UMa Ursa Maior Großer Bär Atlas Karte (2000.0) Kulmination um Cambridge Star Mitternacht: 1, 4 Atlas Benachbarte 11. März Sternbilder: 1, 2, 5, 6, Sky Atlas Boo Cam CVn Com Dra 7 Leo LMi Lyn Deklinationsbereich: 28° ... 73° Fläche am Himmel: 1280° 2 Mythologie und Geschichte: Der König der Götter, Zeus (Jupiter), verliebte sich - wie schon so viele Male - in eine schöne Frau. Seine neue Liebe war diesmal die hübsche Kallisto, die Tochter des grausamen Königs Lykaon von Arkadien . Kallisto wurde daraufhin schwanger und gebar einen Sohn, den Arkas . Eines Tages war Zeus im Palast des Lykaon zum Essen eingeladen, doch Lykaon wollte prüfen, ob sein Gast tatsächlich der mächtige Zeus sei. Er zerstückelte seinen Enkel Arkas und setzte ihn dann Zeus als Mahlzeit vor. Dieser erkannte jedoch sofort das Fleisch seines armen Sohnes. In rasendem Zorn tötete er Lykaons Söhne mit einem Blitz und verwandelte Lykaon selbst in einen Wolf , den er an den Himmel versetzte, wo er von dem Zentauren in Schach gehalten wird. Dann fügte Zeus die Teile seines Sohnes wieder zusammen und übergab ihn der Plejade Maia , die ihn aufzog. Als Zeus' eifersüchtige Gattin Hera von der erneuten Beziehung ihres Mannes erfuhr, verwandelte sie die arme Kallisto in eine Bärin. Arkas wuchs zu einem jungen, geschickten Jäger heran. Eines Tages begegnete er während der Jagd der Bärin. Kallisto erkannte ihren Sohn, konnte ihn aber nur mit einem Brummen begrüßen. Sie richtete sich auf, um ihn vor Freude zu umarmen. Arkas sah aber nur eine Bärin, deren Klauen und scharfe Zähne und wie sich bedrohlich aufrichtete.
    [Show full text]
  • DSO List V2 Current
    7000 DSO List (sorted by name) 7000 DSO List (sorted by name) - from SAC 7.7 database NAME OTHER TYPE CON MAG S.B. SIZE RA DEC U2K Class ns bs Dist SAC NOTES M 1 NGC 1952 SN Rem TAU 8.4 11 8' 05 34.5 +22 01 135 6.3k Crab Nebula; filaments;pulsar 16m;3C144 M 2 NGC 7089 Glob CL AQR 6.5 11 11.7' 21 33.5 -00 49 255 II 36k Lord Rosse-Dark area near core;* mags 13... M 3 NGC 5272 Glob CL CVN 6.3 11 18.6' 13 42.2 +28 23 110 VI 31k Lord Rosse-sev dark marks within 5' of center M 4 NGC 6121 Glob CL SCO 5.4 12 26.3' 16 23.6 -26 32 336 IX 7k Look for central bar structure M 5 NGC 5904 Glob CL SER 5.7 11 19.9' 15 18.6 +02 05 244 V 23k st mags 11...;superb cluster M 6 NGC 6405 Opn CL SCO 4.2 10 20' 17 40.3 -32 15 377 III 2 p 80 6.2 2k Butterfly cluster;51 members to 10.5 mag incl var* BM Sco M 7 NGC 6475 Opn CL SCO 3.3 12 80' 17 53.9 -34 48 377 II 2 r 80 5.6 1k 80 members to 10th mag; Ptolemy's cluster M 8 NGC 6523 CL+Neb SGR 5 13 45' 18 03.7 -24 23 339 E 6.5k Lagoon Nebula;NGC 6530 invl;dark lane crosses M 9 NGC 6333 Glob CL OPH 7.9 11 5.5' 17 19.2 -18 31 337 VIII 26k Dark neb B64 prominent to west M 10 NGC 6254 Glob CL OPH 6.6 12 12.2' 16 57.1 -04 06 247 VII 13k Lord Rosse reported dark lane in cluster M 11 NGC 6705 Opn CL SCT 5.8 9 14' 18 51.1 -06 16 295 I 2 r 500 8 6k 500 stars to 14th mag;Wild duck cluster M 12 NGC 6218 Glob CL OPH 6.1 12 14.5' 16 47.2 -01 57 246 IX 18k Somewhat loose structure M 13 NGC 6205 Glob CL HER 5.8 12 23.2' 16 41.7 +36 28 114 V 22k Hercules cluster;Messier said nebula, no stars M 14 NGC 6402 Glob CL OPH 7.6 12 6.7' 17 37.6 -03 15 248 VIII 27k Many vF stars 14..
    [Show full text]
  • Abenteuer Astronomie 8 | April/Mai 2017 Fokussiert
    Abenteuer Astronomie 8 | April/Mai 2017 fokussiert Titelbild: Der Krebsnebel im Sternbild Stier ist das erste Objekt im Katalog von Charles Messier. Die Aufnahme stammt vom Weltraumteleskop Hubb- le. NASA, ESA, J. Hester und A. Loll (Arizona State University) REDAKTION IM EINSATZ Polarlicht-Jagd per Schiff In der Arktis Polarlichter jagen, ist immer ein Glücksspiel: Das Erdmagnetfeld muss schon ein wenig in Unruhe geraten, da- Stefan Deiters mit es nicht nur müde grün glüht, sondern auch mal helle- Chefredakteur re und interessante Leuchtgebilde am Himmel erscheinen – und das Wetter muss auch stimmen. Das gilt für Reisen an feste Standorte in Nordeuropa ebenso wie für die immer be- Liebe Leserinnen, liebe Leser, liebteren elftägigen Winterfahrten auf der Hurtigruten ent- lang der norwegischen Küste. Eine Woche war die »Richard den Namen Messier hat sicherlich jeder, der sich zumindest With« Ende Januar schon unterwegs gewesen und bereits ein wenig für Astronomie interessiert, schon einmal gehört: wieder auf Südkurs, als just in der Nähe der erklärten Nord- Der französische Astronom, der den ersten Deep-Sky-Katalog licht-Hochburg Tromsø – nach nur mäßig interessanter Auro- zusammenstellte, ist vor fast genau 200 Jahren, am 12. April 1817, ra an den Vortagen – mit einem Mal wirklich alles zusammen- in Paris gestorben. Aus diesem Grund finden Sie den Namen passte. Direkt über dem mit 15 Knoten durch den Nordatlantik Messier gleich an mehreren Stellen in diesem Heft wieder: Wir pflügenden Schiff breiteten sich immer komplexere leuchten- stellen Ihnen spannende Messier-Objekte vor (Seite 14), nehmen de Bänder aus – und mit einem Mal wurde das »Display«, wie Messier-Krater auf dem Mond (Seite 38) und Messier-Objekte für Einsteiger (Seite 42) ins Visier und laden Sie zu einer Himmels- wanderung rund um die Feuerradgalaxie Messier 101 (Seite 44) ein.
    [Show full text]
  • Age Consistency Between Exoplanet Hosts and Field Stars
    A&A 585, A5 (2016) Astronomy DOI: 10.1051/0004-6361/201527297 & c ESO 2015 Astrophysics Age consistency between exoplanet hosts and field stars A. Bonfanti1;2, S. Ortolani1;2, and V. Nascimbeni2 1 Dipartimento di Fisica e Astronomia, Università degli Studi di Padova, Vicolo dell’Osservatorio 3, 35122 Padova, Italy e-mail: [email protected] 2 Osservatorio Astronomico di Padova, INAF, Vicolo dell’Osservatorio 5, 35122 Padova, Italy Received 2 September 2015 / Accepted 3 November 2015 ABSTRACT Context. Transiting planets around stars are discovered mostly through photometric surveys. Unlike radial velocity surveys, photo- metric surveys do not tend to target slow rotators, inactive or metal-rich stars. Nevertheless, we suspect that observational biases could also impact transiting-planet hosts. Aims. This paper aims to evaluate how selection effects reflect on the evolutionary stage of both a limited sample of transiting-planet host stars (TPH) and a wider sample of planet-hosting stars detected through radial velocity analysis. Then, thanks to uniform deriva- tion of stellar ages, a homogeneous comparison between exoplanet hosts and field star age distributions is developed. Methods. Stellar parameters have been computed through our custom-developed isochrone placement algorithm, according to Padova evolutionary models. The notable aspects of our algorithm include the treatment of element diffusion, activity checks in terms of 0 log RHK and v sin i, and the evaluation of the stellar evolutionary speed in the Hertzsprung-Russel diagram in order to better constrain age. Working with TPH, the observational stellar mean density ρ? allows us to compute stellar luminosity even if the distance is not available, by combining ρ? with the spectroscopic log g.
    [Show full text]
  • Astronomy Magazine, Kalmbach Publishing Co., 21027 Crossroads Circle, P.O
    EXCLUSIVE Buzz Aldrin on America’s space future WIN May 2005 AN ORION Astronomy.com TELESCOPE! Explore and Discover Stellar archaeology Star clusters reveal secrets of galactic history – p. 34 Explore the Moon’s hidden seas Caught: fugitive moons p. 46 PROFILE Sir Patrick Moore, Britain’s Mr. Astronomy $5.95 l $6.95 CANADA 05 Vol. 33 • Small scopes + webcams = great photos 5 Issue A rich cluster’s blazing stars off er a key 0172246 46770 to the Milky Way’s past *OUSPEVDJOHUIF 'FBUVSFGPS'FBUVSF5IFSFJT 13&.*6..&"%&¥ -9% 015*$4 0QUJDBM 5VCF $POTUSVDUJPO 5EJOKFV0GYVQPKCP CPF 5EJOKFV 'BTUG3BUJPT /GCFG¶U5EJOKFV0GYVQPKCPUJCXGGZVTGOGN[HCUV %CUUGITCKP QRVKEU CTG OQWPVGF KP RTGEKUKQPOCEJKPGF CNWOKPWO YGNN EQTTGEVGF H4CVKQU HQT UJQTV RJQVQITCRJKE GZRQUWTG VKOGU CPF EGNNU CPF OQWPVGF KP UVWTF[ UVGGN VWDGU YJKEJ CTG DCMGF YKVJ JKIJ YKFGHKGNFUQHXKGY ITCFG VGZVWTGF GPCOGN RCKPV 6JG QRVKECN VWDG CUUGODN[ KU ENQUGF 'PDVTFS 4CEMCPFRKPKQPHQEWUGTCNNQYUVJGWUGTVQCEJKGXG TGFWEKPICKTEWTTGPVUKPUKFGVJGVWDG6JKURTGXGPVUFKUVQTVKQPQHCPQVJ CRTGEKUGHQEWU #EEGRVUDQVJ'[GRKGEGU GTYKUG UJCTR KOCIG 2NWU C ENQUGF VWDG UKIPKHKECPVN[ JGNRU MGGR VJG QRVKEUENGCP .BEF JO UIF 64" BOE 1FSGPSNBODF 5FTUFE #NN /GCFG 5EJOKFV0GYVQPKCP CPF 5EJOKFV%CUUGITCKP QRVKEU CTG OCPWHCE $PSSFDUPS -FOT (WNN[ EQTTGEVU HQT URJGTKECN CDGTTCVKQP CPF VWTGF CV /GCFG¶U UVCVGQHVJGCTV HCEKNKV[ KP +TXKPG %CNKHQTPKC² VJGP RTQXKFGU RKPRQKPV UVCT KOCIGU 9CVGT YJKVG INCUU KU WUGF KP CNN RGTHQTOCPEGVGUVGF QPCP+PVGTHGTQOGVGT 5EJOKFV0GYVQPKCP CPF 5EJOKFV%CUUGITCKP EQTTGEVQT NGPUGU VQ OCZKOK\G NKIJV VTCPUOKUUKQP6JG
    [Show full text]
  • Age Consistency Between Exoplanet Hosts and Field Stars
    Astronomy & Astrophysics manuscript no. AAtransitsCitet c ESO 2021 September 16, 2021 Age consistency between exoplanet hosts and field stars A. Bonfanti1; 2, S. Ortolani1; 2, and V. Nascimbeni2 1 Dipartimento di Fisica e Astronomia, Università degli Studi di Padova, Vicolo dell’Osservatorio 3, I-35122 Padova, Italy 2 Osservatorio Astronomico di Padova, INAF, Vicolo dell’Osservatorio 5, I-35122 Padova, Italy ABSTRACT Context. Transiting planets around stars are discovered mostly through photometric surveys. Unlike radial velocity surveys, photo- metric surveys do not tend to target slow rotators, inactive or metal-rich stars. Nevertheless, we suspect that observational biases could also impact transiting-planet hosts. Aims. This paper aims to evaluate how selection effects reflect on the evolutionary stage of both a limited sample of transiting- planet host stars (TPH) and a wider sample of planet-hosting stars detected through radial velocity analysis. Then, thanks to uniform derivation of stellar ages, a homogeneous comparison between exoplanet hosts and field star age distributions is developed. Methods. Stellar parameters have been computed through our custom-developed isochrone placement algorithm, according to Padova evolutionary models. The notable aspects of our algorithm include the treatment of element diffusion, activity checks in terms of 0 log RHK and v sin i, and the evaluation of the stellar evolutionary speed in the Hertzsprung-Russel diagram in order to better constrain age. Working with TPH, the observational stellar mean density ρ? allows us to compute stellar luminosity even if the distance is not available, by combining ρ? with the spectroscopic log g. Results. The median value of the TPH ages is ∼ 5 Gyr.
    [Show full text]
  • Revised Shapley Ames.Pdf
    A REVISED SHAPLEY-AMES CATALOG OF BRIGHT GALAXIES The Las Canspanas ridge iii Chile during the last stages of construction of the dome for the du Pont 2.5-meter reflector. The du Pout instrument is at the north end of'thr long escarpment. The Swope 1-meter reflector is in the left foreground. Photu courtesy oi'R, J. Bruuito ; 1*<7*J-. A Revised Shapley-Ames Catalog of Bright Galaxies Containing Data on Magnitudes, Types, and Redshifts for Galaxies in the Original Harvard Survey, Updated to Summer 1980. Also Contains a Selection of Photographs Illustrating the Luminosity Classification and a List of Additional Galaxies that Satisfy the Magnitude Limit of the Original Catalog. Allan Sandage and G. A. Tammann CARNEGIE INSTITUTION OF WASHINGTON PUBLICATION 635 WASHINGTON, D.C. • 198 1 ISBN:0-87U79-<i52-:i Libran oi'CongrrssCatalog Card No. 80-6H146 (JompoMtion. Printing, and Binding by Mmden-Stinehour. Inr. ('<»p\ritiht C ]'M\, (Jariit'^it* Institution nf Washington ACKNOWLEDGMENTS We are indebted to Miss B. Flach and Mrs. R. C. Kraan- Korteweg for their help in compiling part of the data. We also owe special thanks to Basil Katem for his large effort in de- termining revised coordinates by measurement of National Geo- graphic-Palomar Sky Survey prints and Uppsala Schmidt plates for most of the listed galaxies, and to John Bedke for his skill in reproducing the photographs. We are especially grateful to R. J. Brucato for his important help in obtaining the most recent plates at Las Campanas. We greatly appreciate the help of several observers for provid- ing prepublication redshift data.
    [Show full text]
  • Spring 07 Ursa Major
    Spring 07 Ursa Major (90 objects) Object Type Mag Size Information NGC 2639 GX 11.7 1.8'x1.1' R08:43:37.8 D+50:12:22 Ursa Major Type: Sa, SB: 12.3, mag_b: 12.6 NGC 2654 GX 11.9 4.2'x0.8' R08:49:12.0 D+60:13:15 Ursa Major Type: SBab, SB: 13.1, mag_b: 12.7 NGC 2681 GX 10.2 3.6'x3.3' R08:53:32.5 D+51:18:47 Ursa Major Type: SB0-a, SB: 12.7, mag_b: 11.1 Helix Galaxy GX 11.2 4.6'x2.5' R08:55:34.9 D+58:44:05 Ursa Major NGC 2685 Type: SB0-a, SB: 13.7, mag_b: 12.1 NGC 2693 GX 11.7 2.6'x1.8' R08:56:59.4 D+51:20:52 Ursa Major Type: E1, SB: 13.4, mag_b: 12.7 NGC 2701 GX 12.0 2.2'x1.6' R08:59:05.5 D+53:46:14 Ursa Major Type: SBc, SB: 13.2, mag_b: 12.7 NGC 2742 GX 11.4 3.0'x1.5' R09:07:33.2 D+60:28:46 Ursa Major Type: Sc, SB: 12.9, mag_b: 12.1 NGC 2768 GX 9.9 6.4'x3.0' R09:11:37.4 D+60:02:11 Ursa Major Type: E6, SB: 13.2, mag_b: 10.9 NGC 2787 GX 10.9 3.1'x1.8' R09:19:18.4 D+69:12:13 Ursa Major Type: SB0-a, SB: 12.6, mag_b: 11.8 NGC 2841 GX 9.3 8.1'x3.5' R09:22:02.3 D+50:58:35 Ursa Major Type: Sb, SB: 12.8, mag_b: 10.1 NGC 2880 GX 11.5 2.0'x1.2' R09:29:34.6 D+62:29:28 Ursa Major Type: E/SB0, SB: 12.5, mag_b: 12.5 NGC 2950 GX 10.9 2.7'x1.8' R09:42:34.8 D+58:51:05 Ursa Major Type: SB0, SB: 12.5, mag_b: 11.9 NGC 2976 GX 10.1 5.9'x2.7' R09:47:14.7 D+67:55:03 Ursa Major Type: Sc/P, SB: 13.0, mag_b: 10.8 NGC 2985 GX 10.4 4.6'x3.4' R09:50:21.4 D+72:16:43 Ursa Major Type: Sb, SB: 13.2, mag_b: 11.2 Bode's Nebulae GX 7.0 24.9'x11.5' R09:55:33.5 D+69:04:02 Ursa Major M 81 Type: Sb, SB: 13.0, mag_b: 7.8 Bode's Nebulae GX 8.6 11.2'x4.3' R09:55:54.0 D+69:40:59 Ursa
    [Show full text]
  • THE MASSIVE SURVEY. IV. the X-RAY HALOS of the MOST MASSIVE EARLY-TYPE GALAXIES in the NEARBY UNIVERSE Andy D
    The Astrophysical Journal, 826:167 (22pp), 2016 August 1 doi:10.3847/0004-637X/826/2/167 © 2016. The American Astronomical Society. All rights reserved. THE MASSIVE SURVEY. IV. THE X-RAY HALOS OF THE MOST MASSIVE EARLY-TYPE GALAXIES IN THE NEARBY UNIVERSE Andy D. Goulding1, Jenny E. Greene1, Chung-Pei Ma2, Melanie Veale2, Akos Bogdan3, Kristina Nyland4, John P. Blakeslee5, Nicholas J. McConnell5, and Jens Thomas6 1 Department of Astrophysics, Princeton University, Princeton, NJ 08544, USA; [email protected] 2 Department of Astronomy, University of California, Berkeley, CA 94720, USA 3 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA 4 National Radio Astronomy Observatory, Charlottesville, VA 22903, USA 5 Dominion Astrophysical Observatory, NRC Herzberg Institute of Astrophysics, Victoria, BC V9E 2E7, Canada 6 Max Planck-Institute for Extraterrestrial Physics, Giessenbachstr. 1, D-85741 Garching, Germany Received 2016 January 27; revised 2016 April 20; accepted 2016 April 20; published 2016 July 28 ABSTRACT Studies of the physical properties of local elliptical galaxies are shedding new light on galaxy formation. Here we present the hot-gas properties of 33 early-type systems within the MASSIVE galaxy survey that have archival Chandra X-ray observations, and we use these data to derive X-ray luminosities (LX,gas) and plasma temperatures 3D (Tgas) for the diffuse gas components. We combine this with the ATLAS survey to investigate the X-ray–optical properties of a statistically significant sample of early-type galaxies across a wide range of environments. When X-ray measurements are performed consistently in apertures set by the galaxy stellar content, we deduce that all early types (independent of galaxy mass, environment, and rotational support) follow a universal scaling law such ~4.5 ( ) that LX,gas µ Tgas .
    [Show full text]