Abenteuer Astronomie 8 | April/Mai 2017 Fokussiert
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
13076197 Tanvir Tabassum Final Version of Submission.Pdf
Finding Close Encounters: Toward a consensus on the influence of the stellar flybys on the Solar System over 10 million years Supervised by: Author: Dr Fabo Feng Tabassum Shahriar Tanvir Dr James L Collett Professor Hugh Jones Centre for Astrophysics Research School of Physics, Astronomy and Mathematics University of Hertfordshire Submitted to the University of Hertfordshire in partial fulfilment of the requirements of the degree of Master of Science by Research. October 2018 Abstract This thesis is a study of possible stellar encounters of the Sun, both in the past and in the future within ±10 Myr of the current epoch. This study is based on data gleaned from the first Gaia data release (Gaia DR1). One of the components of the Gaia DR1 is the TGAS catalogue. TGAS contained five astrometric parameters for more than two million stars. Four separate catalogues were used to provide radial velocities for these stars. A linear motion approximation was used to make a cut within an initial catalogue keeping only the stars that would have perihelia within 10 pc. 1003 stars were found to have a perihelion distance less than 10 pc. Each of these stars was then cloned 1000 times from their covariance matrix from Gaia DR1. The stars’ orbits were numerically integrated through a model galactic potential. After the integration, a particularly interesting set of candidates was selected for deeper study. In particular stars with a mean perihelion distance less than 2 pc were chosen for a deeper study since they will have significant influence on the Oort cloud. 46 stars were found to have a mean perihelion distance less than 2 pc. -
Variable Star Section Circular No
The British Astronomical Association Variable Star Section Circular No. 176 June 2018 Office: Burlington House, Piccadilly, London W1J 0DU Contents Joint BAA-AAVSO meeting 3 From the Director 4 V392 Per (Nova Per 2018) - Gary Poyner & Robin Leadbeater 7 High-Cadence measurements of the symbiotic star V648 Car using a CMOS camera - Steve Fleming, Terry Moon and David Hoxley 9 Analysis of two semi-regular variables in Draco – Shaun Albrighton 13 V720 Cas and its close companions – David Boyd 16 Introduction to AstroImageJ photometry software – Richard Lee 20 Project Melvyn, May 2018 update – Alex Pratt 25 Eclipsing Binary news – Des Loughney 27 Summer Eclipsing Binaries – Christopher Lloyd 29 68u Herculis – David Conner 36 The BAAVSS Eclipsing Binary Programme lists – Christopher Lloyd 39 Section Publications 42 Contributing to the VSSC 42 Section Officers 43 Cover image V392 Per (Nova Per 2018) May 6.129UT iTelescope T11 120s. Martin Mobberley 2 Back to contents Joint BAA/AAVSO Meeting on Variable Stars Warwick University Saturday 7th & Sunday 8th July 2018 Following the last very successful joint meeting between the BAAVSS and the AAVSO at Cambridge in 2008, we are holding another joint meeting at Warwick University in the UK on 7-8 July 2018. This two-day meeting will include talks by Prof Giovanna Tinetti (University College London) Chemical composition of planets in our Galaxy Prof Boris Gaensicke (University of Warwick) Gaia: Transforming Stellar Astronomy Prof Tom Marsh (University of Warwick) AR Scorpii: a remarkable highly variable -
In-Depth Study of Photometric Variability and Radiative Timescales for Atmospheric Evolution in Four L Dwarfs
Weather on Other Worlds IV: In-Depth Study of Photometric Variability and Radiative Timescales for Atmospheric Evolution in Four L Dwarfs Item Type text; Electronic Thesis Authors Flateau, Davin C. Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 30/09/2021 07:25:39 Link to Item http://hdl.handle.net/10150/594630 WEATHER ON OTHER WORLDS IV: IN-DEPTH STUDY OF PHOTOMETRIC VARIABILITY AND RADIATIVE TIMESCALES FOR ATMOSPHERIC EVOLUTION IN FOUR L DWARFS by Davin C. Flateau A Thesis Submitted to the Faculty of the DEPARTMENT OF PLANETARY SCIENCES In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE In the Graduate College THE UNIVERSITY OF ARIZONA 2015 2 STATEMENT BY AUTHOR This thesis has been submitted in partial fulfillment of requirements for an advanced degree at the University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that accurate acknowledgment of the source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his or her judgment the proposed use of the material is in the interests of scholarship. -
Exoplanet Meteorology: Characterizing the Atmospheres Of
Exoplanet Meteorology: Characterizing the Atmospheres of Directly Imaged Sub-Stellar Objects by Abhijith Rajan A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Approved April 2017 by the Graduate Supervisory Committee: Jennifer Patience, Co-Chair Patrick Young, Co-Chair Paul Scowen Nathaniel Butler Evgenya Shkolnik ARIZONA STATE UNIVERSITY May 2017 ©2017 Abhijith Rajan All Rights Reserved ABSTRACT The field of exoplanet science has matured over the past two decades with over 3500 confirmed exoplanets. However, many fundamental questions regarding the composition, and formation mechanism remain unanswered. Atmospheres are a window into the properties of a planet, and spectroscopic studies can help resolve many of these questions. For the first part of my dissertation, I participated in two studies of the atmospheres of brown dwarfs to search for weather variations. To understand the evolution of weather on brown dwarfs we conducted a multi- epoch study monitoring four cool brown dwarfs to search for photometric variability. These cool brown dwarfs are predicted to have salt and sulfide clouds condensing in their upper atmosphere and we detected one high amplitude variable. Combining observations for all T5 and later brown dwarfs we note a possible correlation between variability and cloud opacity. For the second half of my thesis, I focused on characterizing the atmospheres of directly imaged exoplanets. In the first study Hubble Space Telescope data on HR8799, in wavelengths unobservable from the ground, provide constraints on the presence of clouds in the outer planets. Next, I present research done in collaboration with the Gemini Planet Imager Exoplanet Survey (GPIES) team including an exploration of the instrument contrast against environmental parameters, and an examination of the environment of the planet in the HD 106906 system. -
From Dinuclear Systems to Close Binary Stars: Application to Source
From Dinuclear Systems to Close Binary Stars: Application to Source of Energy in the Universe V.V. Sargsyan1,2, H. Lenske2, G.G. Adamian1, and N.V. Antonenko1 1Joint Institute for Nuclear Research, 141980 Dubna, Russia, 2Institut f¨ur Theoretische Physik der Justus–Liebig–Universit¨at, D–35392 Giessen, Germany (Dated: January 1, 2019) Abstract The evolution of close binary stars in mass asymmetry (transfer) coordinate is considered. The conditions for the formation of stable symmetric binary stars are analyzed. The role of symmetriza- tion of asymmetric binary star in the transformation of potential energy into internal energy of star and the release of a large amount of energy is revealed. PACS numbers: 26.90.+n, 95.30.-k Keywords: close binary stars, mass transfer, mass asymmetry arXiv:1812.11338v1 [astro-ph.SR] 29 Dec 2018 1 I. INTRODUCTION Because mass transfer is an important observable for close binary systems in which the two stars are nearly in contact [1–8], it is meaningful and necessary to study the evolution of these stellar systems in the mass asymmetry coordinate η = (M1 − M2)/(M1 + M2) where Mi, (i = 1, 2), are the stellar masses. In our previous work [9], we used classical Newtonian mechanics and study the evolution of the close binary stars in their center-of- mass frame by analyzing the total potential energy U(η) as a function of η at fixed total mass M = M1 + M2 and orbital angular momentum L = Li of the system. The limits for the formation and evolution of the di-star systems were derived and analyzed. -
What Can Make a Contact Binary Star Explode? Evan Cook, Kenton Greene, and Prof
What Can Make a Contact Binary Star Explode? Evan Cook, Kenton Greene, and Prof. Larry Molnar, Calvin College, Grand Rapids, Michigan, Summer 2017 Supported by the Dragt Family (EC), a VanderPlas Fellowship (KG), and the National Science Foundation (LM) Introduction Merger Mechanism What To Look For Contact binary stars orbit each other so closely that they share a common Fillout Factor: atmosphere. For millions of years, these stars orbit without significant change. L2 The degree of contact in Eventually, an as yet unknown mechanism causes them to spiral together, merge, a contact binary is called and explode. the fillout factor (Fig. 3). At the upper extreme, Three years ago, we identified a contact binary system, KIC 9832227, which we the surface approaches observe to be spiraling inwards, and which we now predict will explode in the year L (on the left in Fig. 3), 2022, give or take a year. This was the first ever prediction of a nova outburst. We 2 the point at which the are using this opportunity to try to discover the mechanism behind stellar outward centrifugal mergers. To explore this question this summer, we studied our system more Fig. 3. The black line is a cross section through force balances the intensively using both optical and X-ray telescopes. We determined a more the equator of our star. The gray lines show attractive gravitational accurate shape with the PHOEBE software package (see Fig. 1). And we began a the range of possible shapes for contact stars. Fig. 6. A Hubble Space Telescope image force. Material reaching survey of the shapes The fillout factor is a parameter from 0 to 1 of a red nova, V838 Mon, that exploded L flows away from the of other contact Fig. -
NGC -- IC Messier Type Constellation Mag Dimension Dist Al NGC
NGC -- IC Messier Type Constellation Mag Dimension Dist al NGC 1952 M 001 Vestiges de Supernovæ - Crabe Taureau 8,4 6' x 4' 6300 NGC 7089 M 002 Amas globulaire Verseau 6,5 16' 37500 NGC 5272 M 003 Amas globulaire Chiens de Chasse 6,2 18' 33900 NGC 6121 M 004 Amas globulaire Scorpion 5,6 36' 7200 NGC 5904 M 005 Amas globulaire Serpent 5,6 23' 24500 NGC 6405 M 006 Amas ouvert - Papillon Scorpion 4,2 25' 1589 NGC 6475 M 007 Amas ouvert - Ptolémée Scorpion 3,3 80' 978 NGC 6523 M 008 Nébuleuse diffuse du Lagon Sagittaire 6 90' x 40' 5200 NGC 6333 M 009 Amas globulaire Ophiuchus 7,7 12' 25800 NGC 6234 M 010 Amas globulaire Ophiuchus 6,6 20' 14300 NGC 6705 M 011 Amas ouvert - Canard Sauvage Écu de sobieski 6,3 14' 6122 NGC 6218 M 012 Amas globulaire Ophiuchus 6,7 16' 16000 NGC 6205 M 013 Amas globulaire – Grand amas d'hercul Hercule 5,8 20' 25100 NGC 6402 M 014 Amas globulaire Ophiuchus 7,6 11' 30300 NGC 7078 M 015 Amas globulaire Pégase 6,2 1' 33600 NGC 6611 M 016 Amas ouvert + nébuleuse Serpent 6,4 7' 5607 NGC 6618 M 017 Nébuleuse diffuse - Oméga Sagittaire 6 46' x 36' 5916 NGC 6613 M 018 Amas ouvert Sagittaire 7,5 9' 4227 NGC 6273 M 019 Amas globulaire Ophiuchus 6,8 17' 28000 NGC 6514 M 020 Nébuleuse diffuse - Trifide Sagittaire 6,3 28' 2661 NGC 6531 M 021 Amas ouvert Sagittaire 6,5 13' 3930 NGC 6656 M 022 Amas globulaire Sagittaire 5,1 32' 10400 NGC 6494 M 023 Amas ouvert Sagittaire 6,9 27' 2048 IC 4715 M 024 Nuage galactique Sagittaire 4,6 90' 10000 IC 4725 M 025 Amas ouvert Sagittaire 4,6 32' 2000 NGC 6694 M 026 Amas ouvert Écu de sobieski -
Stellar Encounters with the Oort Cloud Based on Hipparcos Data Joan Garciça-Saçnchez, 1 Robert A. Preston, Dayton L. Jones, and Paul R
THE ASTRONOMICAL JOURNAL, 117:1042È1055, 1999 February ( 1999. The American Astronomical Society. All rights reserved. Printed in U.S.A. STELLAR ENCOUNTERS WITH THE OORT CLOUD BASED ON HIPPARCOS DATA JOAN GARCI A-SA NCHEZ,1 ROBERT A. PRESTON,DAYTON L. JONES, AND PAUL R. WEISSMAN Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 JEAN-FRANCÓ OIS LESTRADE Observatoire de Paris-Section de Meudon, Place Jules Janssen, F-92195 Meudon, Principal Cedex, France AND DAVID W. LATHAM AND ROBERT P. STEFANIK Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 Received 1998 May 15; accepted 1998 September 4 ABSTRACT We have combined Hipparcos proper-motion and parallax data for nearby stars with ground-based radial velocity measurements to Ðnd stars that may have passed (or will pass) close enough to the Sun to perturb the Oort cloud. Close stellar encounters could deÑect large numbers of comets into the inner solar system, which would increase the impact hazard at Earth. We Ðnd that the rate of close approaches by star systems (single or multiple stars) within a distance D (in parsecs) from the Sun is given by N \ 3.5D2.12 Myr~1, less than the number predicted by a simple stellar dynamics model. However, this value is clearly a lower limit because of observational incompleteness in the Hipparcos data set. One star, Gliese 710, is estimated to have a closest approach of less than 0.4 pc 1.4 Myr in the future, and several stars come within 1 pc during a ^10 Myr interval. -
X-Ray Luminosities for a Magnitude-Limited Sample of Early-Type Galaxies from the ROSAT All-Sky Survey
Mon. Not. R. Astron. Soc. 302, 209±221 (1999) X-ray luminosities for a magnitude-limited sample of early-type galaxies from the ROSAT All-Sky Survey J. Beuing,1* S. DoÈbereiner,2 H. BoÈhringer2 and R. Bender1 1UniversitaÈts-Sternwarte MuÈnchen, Scheinerstrasse 1, D-81679 MuÈnchen, Germany 2Max-Planck-Institut fuÈr Extraterrestrische Physik, D-85740 Garching bei MuÈnchen, Germany Accepted 1998 August 3. Received 1998 June 1; in original form 1997 December 30 Downloaded from https://academic.oup.com/mnras/article/302/2/209/968033 by guest on 30 September 2021 ABSTRACT For a magnitude-limited optical sample (BT # 13:5 mag) of early-type galaxies, we have derived X-ray luminosities from the ROSATAll-Sky Survey. The results are 101 detections and 192 useful upper limits in the range from 1036 to 1044 erg s1. For most of the galaxies no X-ray data have been available until now. On the basis of this sample with its full sky coverage, we ®nd no galaxy with an unusually low ¯ux from discrete emitters. Below log LB < 9:2L( the X-ray emission is compatible with being entirely due to discrete sources. Above log LB < 11:2L( no galaxy with only discrete emission is found. We further con®rm earlier ®ndings that Lx is strongly correlated with LB. Over the entire data range the slope is found to be 2:23 60:12. We also ®nd a luminosity dependence of this correlation. Below 1 log Lx 40:5 erg s it is consistent with a slope of 1, as expected from discrete emission. -
7.5 X 11.5.Threelines.P65
Cambridge University Press 978-0-521-19267-5 - Observing and Cataloguing Nebulae and Star Clusters: From Herschel to Dreyer’s New General Catalogue Wolfgang Steinicke Index More information Name index The dates of birth and death, if available, for all 545 people (astronomers, telescope makers etc.) listed here are given. The data are mainly taken from the standard work Biographischer Index der Astronomie (Dick, Brüggenthies 2005). Some information has been added by the author (this especially concerns living twentieth-century astronomers). Members of the families of Dreyer, Lord Rosse and other astronomers (as mentioned in the text) are not listed. For obituaries see the references; compare also the compilations presented by Newcomb–Engelmann (Kempf 1911), Mädler (1873), Bode (1813) and Rudolf Wolf (1890). Markings: bold = portrait; underline = short biography. Abbe, Cleveland (1838–1916), 222–23, As-Sufi, Abd-al-Rahman (903–986), 164, 183, 229, 256, 271, 295, 338–42, 466 15–16, 167, 441–42, 446, 449–50, 455, 344, 346, 348, 360, 364, 367, 369, 393, Abell, George Ogden (1927–1983), 47, 475, 516 395, 395, 396–404, 406, 410, 415, 248 Austin, Edward P. (1843–1906), 6, 82, 423–24, 436, 441, 446, 448, 450, 455, Abbott, Francis Preserved (1799–1883), 335, 337, 446, 450 458–59, 461–63, 470, 477, 481, 483, 517–19 Auwers, Georg Friedrich Julius Arthur v. 505–11, 513–14, 517, 520, 526, 533, Abney, William (1843–1920), 360 (1838–1915), 7, 10, 12, 14–15, 26–27, 540–42, 548–61 Adams, John Couch (1819–1892), 122, 47, 50–51, 61, 65, 68–69, 88, 92–93, -
Perturbation of the Oort Cloud by Close Stellar Encounter with Gliese 710
Bachelor Thesis University of Groningen Kapteyn Astronomical Institute Perturbation of the Oort Cloud by Close Stellar Encounter with Gliese 710 August 5, 2019 Author: Rens Juris Tesink Supervisors: Kateryna Frantseva and Nickolas Oberg Abstract Context: Our Sun is thought to have an Oort cloud, a spherically symmetric shell of roughly 1011 comets orbiting with semi major axes between ∼ 5 × 103 AU and 1 × 105 AU. It is thought to be possible that other stars also possess comet clouds. Gliese 710 is a star expected to have a close encounter with the Sun in 1.35 Myrs. Aims: To simulate the comet clouds around the Sun and Gliese 710 and investigate the effect of the close encounter. Method: Two REBOUND N-body simulations were used with the help of Gaia DR2 data. Simulation 1 had a total integration time of 4 Myr, a time-step of 1 yr, and 10,000 comets in each comet cloud. And Simulation 2 had a total integration time of 80,000 yr, a time-step of 0.01 yr, and 100,000 comets in each comet cloud. Results: Simulation 2 revealed a 1.7% increase in the semi-major axis at time of closest approach and a population loss of 0.019% - 0.117% for the Oort cloud. There was no statistically significant net change of the inclination of the comets during this encounter and a 0.14% increase in the eccentricity at the time of closest approach. Contents 1 Introduction 3 1.1 Comets . .3 1.2 New comets and the Oort cloud . .5 1.3 Structure of the Oort cloud . -
Close Encounters of the Stellar Kind 31 August 2017
Close encounters of the stellar kind 31 August 2017 While this is thought to be responsible for some of the comets that appear in our skies every hundred to thousand years, it also has the potential to put comets on a collision course with Earth or other planets. Understanding the past and future motions of stars is a key goal of Gaia as it collects precise data on stellar positions and motions over its five-year mission. After 14 months, the first catalogue of more than a billion stars was recently released, which included the distances and the motions across the sky for more than two million stars. By combining the new results with existing information, astronomers began a detailed, large- scale search for stars passing close to our sun. The movements of more than 300 000 stars So far, the motions relative to the sun of more than surveyed by ESA's Gaia satellite reveal that rare 300 000 stars have been traced through the galaxy close encounters with our sun might disturb the and their closest approach determined for up to five cloud of comets at the far reaches of our solar million years in the past and future. system, sending some towards Earth in the distant future. Of them, 97 stars were found that will pass within 150 trillion kilometres, while 16 come within about As the solar system moves through the galaxy, and 60 trillion km. as other stars move on their own paths, close encounters are inevitable – though 'close' still While the 16 are considered reasonably near, a means many trillions of kilometres.