Lecture 13 – Humidity and Cloud Formation

Total Page:16

File Type:pdf, Size:1020Kb

Lecture 13 – Humidity and Cloud Formation Lecture 13 – Humidity and cloud formation Reading for today: P.335-340 Quiz 4 review Learning Outcomes • Humidity on Earth. Be able to: – explain/read graphs/carry out calculations of how we quantify atmospheric water vapor (dew point temperature and relative humidity) • Cloudiness on Earth. Be able to: – describe/explain/draw diagrams to explain the processes involved in cloud formation – draw feedback loops to explain the effects of clouds on climate – explain why clouds don’t always lead to precipitation Atmosphere “the gaseous envelope that surrounds a planet or other celestial body” Weather – the state of the atmosphere a given time & place: • temperature • air pressure • humidity • cloudiness • wind speed & direction Climate – average weather over a long period of time Evaporation and Condensation Vapor pressure: pressure of a gas above a liquid Equilibrium: rate of evaporation equals rate of condensation Saturation: maximum amount of water in gaseous phase Saturation Vapor Pressure: maximum vapor pressure at a given temp How we quantify atmospheric moisture Indices of water vapor content: 1. Vapor pressure 2. Relative humidity Indices of water vapor content 1. Vapor pressure What happens if temperature increases? = Undersaturated (more evaporation can take place if water available) What happens if temperature decreases? = Supersaturated (condensation will take place until reach saturation) What happens if you add more water vapor? = Supersaturated (condensation will take place until reach saturation) Indices of water vapor content 1. Vapor pressure At what temperature would this air become saturated? a) -10 oC b) 10 oC = dew point temperature c) 25 oC d) 40 oC Temp of saturation for a parcel of air = dew point temperature How we quantify atmospheric moisture Indices of water vapor content: 1. Vapor pressure 2. Relative humidity – amount of water in air expressed as a percentage of the maximum amount possible – Relative humidity = actual vapor pressure x 100% saturation vapor pressure Indices of water vapor content 2. Relative humidity Relative humidity = actual vapor pressure x 100 % = 10 mb x 100 % = 50 % saturation vapor pressure 20 mb Saturation vapor pressure Actual vapor pressure iClicker Question The parcel of air is at 30 oC and vapor pressure is 10mb. What is the relative humidity? a) 5 % b) 25 % c) 33 % d) 50 % Why does high humidity feel uncomfortable? • Evaporation of sweat requires energy so absorbs energy from your skin, cooling you down (latent heat flux) • At high relative humidity, evaporation is very slow so you cannot cool down so quickly • At the same temperature, places with low humidity (e.g. Irvine) feel nicer! Atmosphere “the gaseous envelope that surrounds a planet or other celestial body” Weather – the state of the atmosphere a given time & place: • temperature • air pressure • humidity • cloudiness • wind speed & direction Climate – average weather over a long period of time How to saturate air with water vapor 1. Add water vapor to the air (i.e. increase vapor pressure) 2. Decrease the temperature of the air How to change air temperature 1. Absorption/loss of energy (by radiation, conduction, sensible heat) 2. Mixing warm and cold air (by convection) 3. Changing the phase of water (e.g., condensing water vapor releases latent heat to surrounding molecules of air in parcel and warms them) = Diabatic processes – energy is removed from or added to a system 4. New category of process that change temperature… = Adiabatic processes – energy is NOT added or removed, involve changes in pressure Compressing air heats up Expanding air cools down Demonstration of adiabatic processes! Review: Pressure decreases with altitude • Rising air expands so cools down • Sinking air compresses so warms up Cloud formation Adiabatic lapse rate = change in temperature with altitude -15oC As unsaturated air rises… -10oC 1.Temperature drops at: -5oC Dry adiabatic lapse rate = 10 oC/km 2.Relative humidity increases 3.Air becomes saturated (dew point) Saturated adiabatic 4.Condensation starts at this altitude lapse rate 5 oC/km 5.Condensation releases latent heat 6.Heat released decreases rate of cooling: Saturated adiabatic lapse rate = 5 oC/km Where does the rising air in this photo reach its dew point temperature? A B C Natural mechanisms for lifting air Cloud types - Lots of different cloud types - For now we only care that some are high and some are low. Clouds and global temperature • Clouds reflect solar radiation effectively (i.e. increase albedo) – thicker clouds reflect more so cool • Clouds absorb and emit terrestrial (infrared) radiation – how much radiation a cloud absorbs and emits depends on its height • High clouds result in net warming, low clouds result in net cooling. Water vapor, clouds and global climate Temperature Absorption of Albedo outgoing terrestrial radiation Clouds Water vapor in An increase in clouds will result in: a)Increased global temperatures atmosphere b)Decreased global temperatures c)Ummm – difficult to say… On Wednesday: Global circulation patterns Reading: P. 355-361 (ignore “the Basics: Air Masses”), 364-365 NASA.
Recommended publications
  • How to Read a METAR
    How to read a METAR A METAR will look something like this: PHNY 202124Z AUTO 27009KT 1 1/4SM BR BKN016 BKN038 22/21 A3018 RMK AO2 Let’s decipher what each bit of the METAR means. PHNY The first part of the METAR is the airport identifier for the facility which produced the METAR. In this case, this is Lanai Airport in Hawaii. 202124Z Next comes the time and date of issue. The first two digits correspond to the date of the month, and the last 4 digits correspond to the time of issue (in Zulu time). In the example, the METAR was issued on the 20th of the month at 21:24 Zulu time. AUTO This part indicates that the METAR was generated automatically. 27009KT Next comes the wind information. The first 3 digits represent the heading from which the wind is blowing, and the next digits indicate speed in knots. In this case, the wind is coming from a heading of 270 relative to magnetic north, and the speed is 9 knots. Some other wind-related notation you might see: • 27009G15KT – the G indicates gusting. In this case, the wind comes from 270 at 9 knots, and gusts to 15 knots. • VRB09KT – the VRB indicates the wind direction is variable; the wind speed is 9 knots. 1 1/4SM This section of the METAR indicates visibility in statute miles. In this case, visibility is 1 ¼ statute miles. Note that the range is typically limited to 10 statute miles, so a report with 10 statute mile visibility could well indicate a situation with more than 10 statute miles of visibility.
    [Show full text]
  • Forecasting of Thunderstorms in the Pre-Monsoon Season at Delhi
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Publications of the IAS Fellows Meteorol. Appl. 6, 29–38 (1999) Forecasting of thunderstorms in the pre-monsoon season at Delhi N Ravi1, U C Mohanty1, O P Madan1 and R K Paliwal2 1Centre for Atmospheric Sciences, Indian Institute of Technology, New Delhi 110 016, India 2National Centre for Medium Range Weather Forecasting, Mausam Bhavan Complex, Lodi Road, New Delhi 110 003, India Accurate prediction of thunderstorms during the pre-monsoon season (April–June) in India is essential for human activities such as construction, aviation and agriculture. Two objective forecasting methods are developed using data from May and June for 1985–89. The developed methods are tested with independent data sets of the recent years, namely May and June for the years 1994 and 1995. The first method is based on a graphical technique. Fifteen different types of stability index are used in combinations of different pairs. It is found that Showalter index versus Totals total index and Jefferson’s modified index versus George index can cluster cases of occurrence of thunderstorms mixed with a few cases of non-occurrence along a zone. The zones are demarcated and further sub-zones are created for clarity. The probability of occurrence/non-occurrence of thunderstorms in each sub-zone is then calculated. The second approach uses a multiple regression method to predict the occurrence/non- occurrence of thunderstorms. A total of 274 potential predictors are subjected to stepwise screening and nine significant predictors are selected to formulate a multiple regression equation that gives the forecast in probabilistic terms.
    [Show full text]
  • Lecture 18 Condensation And
    Lecture 18 Condensation and Fog Cloud Formation by Condensation • Mixed into air are myriad submicron particles (sulfuric acid droplets, soot, dust, salt), many of which are attracted to water molecules. As RH rises above 80%, these particles bind more water and swell, producing haze. • When the air becomes supersaturated, the largest of these particles act as condensation nucleii onto which water condenses as cloud droplets. • Typical cloud droplets have diameters of 2-20 microns (diameter of a hair is about 100 microns). • There are usually 50-1000 droplets per cm3, with highest droplet concentra- tions in polluted continental regions. Why can you often see your breath? Condensation can occur when warm moist (but unsaturated air) mixes with cold dry (and unsat- urated) air (also contrails, chimney steam, steam fog). Temp. RH SVP VP cold air (A) 0 C 20% 6 mb 1 mb(clear) B breath (B) 36 C 80% 63 mb 55 mb(clear) C 50% cold (C)18 C 140% 20 mb 28 mb(fog) 90% cold (D) 4 C 90% 8 mb 6 mb(clear) D A • The 50-50 mix visibly condenses into a short- lived cloud, but evaporates as breath is EOM 4.5 diluted. Fog Fog: cloud at ground level Four main types: radiation fog, advection fog, upslope fog, steam fog. TWB p. 68 • Forms due to nighttime longwave cooling of surface air below dew point. • Promoted by clear, calm, long nights. Common in Seattle in winter. • Daytime warming of ground and air ‘burns off’ fog when temperature exceeds dew point. • Fog may lift into a low cloud layer when it thickens or dissipates.
    [Show full text]
  • Chapter 4: Fog
    CHAPTER 4: FOG Fog is a double threat to boaters. It not only reduces visibility but also distorts sound, making collisions with obstacles – including other boats – a serious hazard. 1. Introduction Fog is a low-lying cloud that forms at or near the surface of the Earth. It is made up of tiny water droplets or ice crystals suspended in the air and usually gets its moisture from a nearby body of water or the wet ground. Fog is distinguished from mist or haze only by its density. In marine forecasts, the term “fog” is used when visibility is less than one nautical mile – or approximately two kilometres. If visibility is greater than that, but is still reduced, it is considered mist or haze. It is important to note that foggy conditions are reported on land only if visibility is less than half a nautical mile (about one kilometre). So boaters may encounter fog near coastal areas even if it is not mentioned in land-based forecasts – or particularly heavy fog, if it is. Fog Caused Worst Maritime Disaster in Canadian History The worst maritime accident in Canadian history took place in dense fog in the early hours of the morning on May 29, 1914, when the Norwegian coal ship Storstadt collided with the Canadian Pacific ocean liner Empress of Ireland. More than 1,000 people died after the Liverpool-bound liner was struck in the side and sank less than 15 minutes later in the frigid waters of the St. Lawrence River near Rimouski, Quebec. The Captain of the Empress told an inquest that he had brought his ship to a halt and was waiting for the weather to clear when, to his horror, a ship emerged from the fog, bearing directly upon him from less than a ship’s length away.
    [Show full text]
  • ESCI 241 – Meteorology Lesson 8 - Thermodynamic Diagrams Dr
    ESCI 241 – Meteorology Lesson 8 - Thermodynamic Diagrams Dr. DeCaria References: The Use of the Skew T, Log P Diagram in Analysis And Forecasting, AWS/TR-79/006, U.S. Air Force, Revised 1979 An Introduction to Theoretical Meteorology, Hess GENERAL Thermodynamic diagrams are used to display lines representing the major processes that air can undergo (adiabatic, isobaric, isothermal, pseudo- adiabatic). The simplest thermodynamic diagram would be to use pressure as the y-axis and temperature as the x-axis. The ideal thermodynamic diagram has three important properties The area enclosed by a cyclic process on the diagram is proportional to the work done in that process As many of the process lines as possible be straight (or nearly straight) A large angle (90 ideally) between adiabats and isotherms There are several different types of thermodynamic diagrams, all meeting the above criteria to a greater or lesser extent. They are the Stuve diagram, the emagram, the tephigram, and the skew-T/log p diagram The most commonly used diagram in the U.S. is the Skew-T/log p diagram. The Skew-T diagram is the diagram of choice among the National Weather Service and the military. The Stuve diagram is also sometimes used, though area on a Stuve diagram is not proportional to work. SKEW-T/LOG P DIAGRAM Uses natural log of pressure as the vertical coordinate Since pressure decreases exponentially with height, this means that the vertical coordinate roughly represents altitude. Isotherms, instead of being vertical, are slanted upward to the right. Adiabats are lines that are semi-straight, and slope upward to the left.
    [Show full text]
  • Thunderstorm Predictors and Their Forecast Skill for the Netherlands
    Atmospheric Research 67–68 (2003) 273–299 www.elsevier.com/locate/atmos Thunderstorm predictors and their forecast skill for the Netherlands Alwin J. Haklander, Aarnout Van Delden* Institute for Marine and Atmospheric Sciences, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands Accepted 28 March 2003 Abstract Thirty-two different thunderstorm predictors, derived from rawinsonde observations, have been evaluated specifically for the Netherlands. For each of the 32 thunderstorm predictors, forecast skill as a function of the chosen threshold was determined, based on at least 10280 six-hourly rawinsonde observations at De Bilt. Thunderstorm activity was monitored by the Arrival Time Difference (ATD) lightning detection and location system from the UK Met Office. Confidence was gained in the ATD data by comparing them with hourly surface observations (thunder heard) for 4015 six-hour time intervals and six different detection radii around De Bilt. As an aside, we found that a detection radius of 20 km (the distance up to which thunder can usually be heard) yielded an optimum in the correlation between the observation and the detection of lightning activity. The dichotomous predictand was chosen to be any detected lightning activity within 100 km from De Bilt during the 6 h following a rawinsonde observation. According to the comparison of ATD data with present weather data, 95.5% of the observed thunderstorms at De Bilt were also detected within 100 km. By using verification parameters such as the True Skill Statistic (TSS) and the Heidke Skill Score (Heidke), optimal thresholds and relative forecast skill for all thunderstorm predictors have been evaluated.
    [Show full text]
  • Proper Moisture Measurement… Its the Dew Point Stupid
    Page 1 of 6 Measuring The Right Thing For Humidity Control… It’s the Dew Point Stupid! By Mike Schell, AirTest Technologies Corp. portion of sensible and latent removal that is A version of this article appeared in the June 2004 provided by a particular system. Most systems edition of Indoor Air Connections and in the August today operate with a sensible heat ratio of 0.8 to edition of the Automated Buildings Webzine. Mike 0.95 meaning that the larger portion of energy can be reached at [email protected] or at 805 consumption of the system is devoted to sensible 687-3175 cooling (80 –95%) while the remaining 0.05 to 0.5 of the ratio (5-20%) is dedicated to latent heat Introduction removal or humidity control. The old quality mantra “if you can’t measure it, you The S/LR report points out that buildings, to be can’t control it” is one of those universal truisms that properly cooled and dehumidified have their own can easily be applied to moisture control and sensible heat ratio requirement. The report shows dehumidification in buildings. The proliferation of how over the past 30 years how a perfect match mold and moisture related problems in buildings between the SHR of cooling equipment and SHR today is significantly due to the fact that we do not requirements of buildings has drastically changed. have the proper measurement feedback in buildings This divergence of equipment vs building SHR to properly control moisture. This should not be a forms the foundation for many of the moisture surprise.
    [Show full text]
  • Preventing Condensation
    Preventing condensation Preventing condensation Consider conditions of condensation, for example, a room or warehouse where the air is 27°C (80°F) and • What causes condensation? the relative humidity is 75%. In this room, any object • How can conditions of condensation be anticipated? with a temperature of 22°C (71°F) or lower will become • What can be done to prevent condensation? covered by condensation. Unwanted condensation on products or equipment How can conditions of condensation be anticipated? can have consequences. Steel and other metals stored The easiest way to anticipate condensing conditions in warehouses can corrode or suffer surface damage as is to measure the dew point temperature in the area a result of condensation. Condensation on packaged of interest. This can be done simply with a portable beverage containers can damage labels or cardboard indicator, or a fixed transmitter can be used to track packaging materials. Water-cooled equipment, such dew point temperature full-time. The second piece of as blow molding machinery, can form condensation information required is the temperature of the object on critical surfaces that impair product quality or the that is to be protected from condensation. In all cases, productivity of the equipment. How can we get a grip as the dew point temperature reaches the object’s on this potential problem? temperature, condensation on the object is imminent. The best way to capture an object’s temperature is dependent on the specific application. For example, What causes condensation? water-cooled machinery may already provide a display or output of coolant temperature (and therefore, a Condensation will form on any object when the close approximation of the temperature of the object temperature of the object is at or below the dew that is being cooled).
    [Show full text]
  • Information Contained in a METAR Example METAR Codes
    METAR METAR is a format for reporting weather information. A METAR weather report is predominantly used by pilots in fulfillment of a part of a pre-flight weather briefing, and by meteorologists, who use aggregated METAR information to assist in weather forecasting. Raw METAR is the most common format in the world for the transmission of observational weather data. [citation needed] It is highly standardized through the International Civil Aviation Organization (ICAO), which allows it to be understood throughout most of the world. Information contained in a METAR A typical METAR contains data for the temperature, dew point, wind speed and direction, precipitation, cloud cover and heights, visibility, and barometric pressure. A METAR may also contain information on precipitation amounts, lightning, and other information that would be of interest to pilots or meteorologists such as a pilot report or PIREP, colour states and runway visual range (RVR). In addition, a short period forecast called a TRED may be added at the end of the METAR covering likely changes in weather conditions in the two hours following the observation. These are in the same format as a Terminal Aerodrome Forecast (TAF). The complement to METARs, reporting forecast weather rather than current weather, are TAFs. METARs and TAFs are used in VOLMET broadcasts. Example METAR codes International METAR codes The following is an example METAR from Burgas Airport in Burgas, Bulgaria. It was taken on 4 February 2005 at 16:00 Coordinated Universal Time (UTC). METAR LBBG 041600Z 12003MPS 310V290 1400 R04/P1500 R22/P1500U +S BK022 OVC050 M04/M07 Q1020 OSIG 9949//91= • METAR indicates that the following is a standard hourly observation.
    [Show full text]
  • Key to Aerodrome Forecast (TAF) and Aviation Routine Weather Report (METAR) (Front)
    Key to Aerodrome Forecast (TAF) and Aviation Routine Weather Report (METAR) (Front) KEY to AERODROME FORECAST (TAF) and U.S. Department of Transportation AVIATION ROUTINE WEATHER REPORT Federal Aviation (METAR) (FRONT) Administration TAF KPIT 091730Z 091818 15005KT 5SM HZ FEW020 WS010/31022KT FM 1930 30015G25KT 3SM SHRA OVC015 TEMPO 2022 1/2SM +TSRA OVC008CB FM0100 27008KT 5SM SHRA BKN020 OVC040 PROB40 0407 1SM -RA BR FM1015 18005KT 6SM -SHRA OVC020 BECMG 1315 P6SM NSW SKC METAR KPIT 091955Z COR 22015G25KT 3/4SM R28L/2600FT TSRA OVC010CB 18/16 A2992 RMK SLP045 T01820159 FORECAST EXPLANATION REPORT TAF Message type : TAF-routine or TAF AMD-amended forecast, METAR METAR-hourly, SPECI-special or TESTM-non-commissioned ASOS report KPIT ICAO location indicator KPIT 091730Z Issuance time: ALL times in UTC “Z”, 2-digit date, 4-digit time 091955Z 091818 Valid period: 2-digit date, 2-digit beginning, 2-digit ending times In U.S. METAR: CORrected of; or AUTOmated ob for automated COR report with no human intervention; omitted when observer logs on 15005KT Wind: 3 digit true-north direction , nearest 10 degrees (or VaRiaBle); 22015G25KT next 2-3 digits for speed and unit, KT (KMH or MPS); as needed, Gust and maximum speed; 00000KT for calm; for METAR, if direction varies 60 degrees or more, Variability appended, e.g., 180V260 5SM Prevailing visibility; in U.S., Statute Miles & fractions; above 6 miles in 3/4SM TAF Plus6SM. (Or, 4-digit minimum visibility in meters and as required, lowest value with direction) Runway Visual Range: R; 2-digit runway designator Left, Center, or R28L/2600FT Right as needed; “/”, Minus or Plus in U.S., 4-digit value, FeeT in U.S., (usually meters elsewhere); 4-digit value Variability 4-digit value (and tendency Down, Up or No change) HZ Significant present, forecast and recent weather: see table (on back) TSRA FEW020 Cloud amount, height and type: SKy Clear 0/8, FEW >0/8-2/8, OVC 010CB SCaTtered 3/8-4/8, BroKeN 5/8-7/8, OVerCast 8/8; 3-digit height in hundreds of ft; Towering CUmulus or CumulonimBus in METAR; in TAF, only CB.
    [Show full text]
  • Humidity, Condensation, and Clouds-I
    Humidity, Condensation, and Clouds-I GEOL 1350: Introduction To Meteorology 1 Overview • Water Circulation in the Atmosphere • Properties of Water • Measures of Water Vapor in the Atmosphere (Vapor Pressure, Absolute Humidity, Specific Humidity, Mixing Ratio, Relative Humidity, Dew Point) 2 Where does the moisture in the atmosphere come from ? Major Source Major sink Evaporation from ocean Precipitation 3 Earth’s Water Distribution 4 Fresh vs. salt water • Most of the earth’s water is found in the oceans • Only 3% is fresh water and 3/4 of that is ice • The atmosphere contains only ~ 1 week supply of precipitation! 5 Properties of Water • Physical States only substance that are present naturally in three states • Density liquid : ~ 1.0 g / cm3 , solid: ~ 0.9 g / cm3 , vapor: ~10-5 g / cm3 6 Properties of Water (cont’) • Radiative Properties – transparent to visible wavelengths – virtually opaque to many infrared wavelengths – large range of albedo possible • water 10 % (daily average) • Ice 30 to 40% • Snow 20 to 95% • Cloud 30 to 90% 7 Three phases of water • Evaporation liquid to vapor • Condensation vapor to liquid • Sublimation solid to vapor • Deposition vapor to solid • Melting solid to liquid • Freezing liquid to solid 8 Heat exchange with environment during phase change As water moves toward vapor it absorbs latent heat to keep the molecules in rapid mo9ti on Energy associated with phase change Sublimation Deposition 10 Sublimation – evaporate ice directly to water vapor Take one gram of ice at zero degrees centigrade Energy required
    [Show full text]
  • Metar Abbreviations Metar/Taf List of Abbreviations and Acronyms
    METAR ABBREVIATIONS http://www.alaska.faa.gov/fai/afss/metar%20taf/metcont.htm METAR/TAF LIST OF ABBREVIATIONS AND ACRONYMS $ maintenance check indicator - light intensity indicator that visual range data follows; separator between + heavy intensity / temperature and dew point data. ACFT ACC altocumulus castellanus aircraft mishap MSHP ACSL altocumulus standing lenticular cloud AO1 automated station without precipitation discriminator AO2 automated station with precipitation discriminator ALP airport location point APCH approach APRNT apparent APRX approximately ATCT airport traffic control tower AUTO fully automated report B began BC patches BKN broken BL blowing BR mist C center (with reference to runway designation) CA cloud-air lightning CB cumulonimbus cloud CBMAM cumulonimbus mammatus cloud CC cloud-cloud lightning CCSL cirrocumulus standing lenticular cloud cd candela CG cloud-ground lightning CHI cloud-height indicator CHINO sky condition at secondary location not available CIG ceiling CLR clear CONS continuous COR correction to a previously disseminated observation DOC Department of Commerce DOD Department of Defense DOT Department of Transportation DR low drifting DS duststorm DSIPTG dissipating DSNT distant DU widespread dust DVR dispatch visual range DZ drizzle E east, ended, estimated ceiling (SAO) FAA Federal Aviation Administration FC funnel cloud FEW few clouds FG fog FIBI filed but impracticable to transmit FIRST first observation after a break in coverage at manual station Federal Meteorological Handbook No.1, Surface
    [Show full text]