Valiant Receives 2010 Turing Award

Total Page:16

File Type:pdf, Size:1020Kb

Valiant Receives 2010 Turing Award Valiant Receives 2010 Turing Award The Association for Computing Machinery (ACM) enumeration problems can be has announced that Leslie G. Valiant of Harvard intractable even when the cor- University is the recipient of the 2010 A. M. Tur- responding decision problem is ing Award “for transformative contributions to tractable. Another fundamental the theory of computation, including the theory contribution to computational of probably approximately correct (PAC) learning, complexity was Valiant’s theory the complexity of enumeration and of algebraic of algebraic computation, in computation, and the theory of parallel and distrib- which he established a frame- uted computing.” The award carries a cash prize work for understanding which of US$250,000 and will be presented to Valiant at algebraic formulas can be evalu- the annual ACM Awards Banquet on June 4, 2011, ated efficiently. In analogy with in San Jose, California. the Boolean complexity classes P and NP, his theory character- Citation izes the difficulty of computing Over the past thirty years, Leslie Valiant has made fundamental functions in linear Leslie G. Valiant fundamental contributions to many aspects of algebra, namely the determinant theoretical computer science. His work has opened and permanent. Together with new frontiers, introduced ingenious new concepts, his work on #P, this set the stage for some of the and presented results of great originality, depth, most exciting subsequent developments in com- putational complexity, such as the development of and beauty. Time and again, Valiant’s work has interactive proofs for problems beyond NP. literally defined or transformed the computer sci- A third broad area in which Valiant has made ence research landscape. important contributions is the theory of parallel Valiant’s greatest single contribution may be and distributed computing. His design of random- his 1984 paper “A Theory of the Learnable”, which ized routing strategies laid the groundwork for a laid the foundations of computational learning rich body of research that exposed how random- theory. He introduced a general framework as well ization can be used to offset congestion effects in as concrete computational models for studying the communication networks. He proposed the bulk learning process, including the famous “probably synchronous model of parallel computation. He approximately correct” (PAC) model of machine also posed a number of influential challenges lead- learning. This has developed into a vibrant research ing to the construction of parallel algorithms for area and has had enormous influence on machine seemingly inherently sequential problems. Finally, learning, artificial intelligence, and many areas the superconcentrators constructed by Valiant in of computing practice, such as natural language the context of computational complexity estab- processing, handwriting recognition, and com- lished the fundamental role of expander graphs puter vision. in computation. Valiant has made many seminal contributions to computational complexity. He introduced the notion of complexity of enumeration, in terms Biographical Sketch of the complexity class #P. The most surpris- Leslie Valiant received his Ph.D. in computer ing consequence of this study was that natural science from the University of Warwick in 1974. JUNE/JULY 2011 NOTICES OF THE AMS 833 He taught at Carnegie Mellon University, Leeds University, and the University of Edinburgh and is currently the T. Jefferson Coolidge Professor of Computer Science and Applied Mathematics at Harvard University’s School of Engineering and Applied Sciences (SEAS). He is the recipient of the 1986 Nevanlinna Prize from the International Mathematical Union, the 1997 Knuth Prize from the ACM Special Interest Group on Algorithms and Computation Theory (SIGACT) and the IEEE Techni- cal Committee on the Mathematical Foundations of Computing, and the 2008 European Association for Theoretical Computer Science (EATCS) Award. He is a Fellow of the Royal Society (London), a Fellow of the American Association for Artificial Intelli- gence, and a member of the National Academy of Sciences of the USA. His research interests include complexity theory, computational learning, and parallel computation, as well as computational neuroscience, evolution, and artificial intelligence. About the Award The A. M. Turing Award was named for Alan M. Turing, the British mathematician who articulated the mathematical foundation and limits of comput- ing and who was a key contributor to the Allied cryptanalysis of the German Enigma cipher during World War II. Since its inception in 1966 the Turing Award has honored the computer scientists and engineers who created the systems and underlying theoretical foundations that have propelled the information technology industry. The award is given to an individual selected for contributions of a technical nature made to the com- puting community. The contributions should be of lasting and major technical importance to the com- puter field. Financial support for the Turing Award is provided by the Intel Corporation and Google Inc. — ACM announcement 834 NOTICES OF THE AMS VOLUME 58, NUMBER 6.
Recommended publications
  • Rivest, Shamir, and Adleman Receive 2002 Turing Award, Volume 50
    Rivest, Shamir, and Adleman Receive 2002 Turing Award Cryptography and Information Se- curity Group. He received a B.A. in mathematics from Yale University and a Ph.D. in computer science from Stanford University. Shamir is the Borman Profes- sor in the Applied Mathematics Department of the Weizmann In- stitute of Science in Israel. He re- Ronald L. Rivest Adi Shamir Leonard M. Adleman ceived a B.S. in mathematics from Tel Aviv University and a Ph.D. in The Association for Computing Machinery (ACM) has computer science from the Weizmann Institute. named RONALD L. RIVEST, ADI SHAMIR, and LEONARD M. Adleman is the Distinguished Henry Salvatori ADLEMAN as winners of the 2002 A. M. Turing Award, Professor of Computer Science and Professor of considered the “Nobel Prize of Computing”, for Molecular Biology at the University of Southern their contributions to public key cryptography. California. He earned a B.S. in mathematics at the The Turing Award carries a $100,000 prize, with University of California, Berkeley, and a Ph.D. in funding provided by Intel Corporation. computer science, also at Berkeley. As researchers at the Massachusetts Institute of The ACM presented the Turing Award on June 7, Technology in 1977, the team developed the RSA 2003, in conjunction with the Federated Computing code, which has become the foundation for an en- Research Conference in San Diego, California. The tire generation of technology security products. It award was named for Alan M. Turing, the British mathematician who articulated the mathematical has also inspired important work in both theoret- foundation and limits of computing and who was a ical computer science and mathematics.
    [Show full text]
  • Welcome to AI Matters 5(1)
    AI MATTERS, VOLUME 5, ISSUE 1 5(1) 2019 Welcome to AI Matters 5(1) Amy McGovern, co-editor (University of Oklahoma; [email protected]) Iolanda Leite, co-editor (Royal Institute of Technology (KTH); [email protected]) DOI: 10.1145/3320254.3320255 Issue overview receiving the 2018 ACM A.M. Turing Award! Welcome to the first issue of the fifth vol- ume of the AI Matters Newsletter! This issue opens with some news on a new SIGAI Stu- Submit to AI Matters! dent Travel Scholarship where we aim to en- Thanks for reading! Don’t forget to send courage students from traditionally underrep- your ideas and future submissions to AI resented geographic locations to apply and at- Matters! We’re accepting articles and an- tend SIGAI supported events. We also sum- nouncements now for the next issue. De- marize the fourth AAAI/ACM SIGAI Job Fair, tails on the submission process are avail- which continues to grow with the increasing able at http://sigai.acm.org/aimatters. popularity of AI. In our interview series, Marion Neumann interviews Tom Dietterich, an Emer- itus Professor at Oregon State University and one of the pioneers in Machine Learning. Amy McGovern is co- In our regular columns, we have a summary editor of AI Matters. She of recent and upcoming AI conferences and is a Professor of com- events from Michael Rovatsos. Our educa- puter science at the Uni- tional column this issue is dedicated to “biduc- versity of Oklahoma and tive computing”, one of Prolog’s most distinc- an adjunct Professor of tive features.
    [Show full text]
  • Turing's Influence on Programming — Book Extract from “The Dawn of Software Engineering: from Turing to Dijkstra”
    Turing's Influence on Programming | Book extract from \The Dawn of Software Engineering: from Turing to Dijkstra" Edgar G. Daylight∗ Eindhoven University of Technology, The Netherlands [email protected] Abstract Turing's involvement with computer building was popularized in the 1970s and later. Most notable are the books by Brian Randell (1973), Andrew Hodges (1983), and Martin Davis (2000). A central question is whether John von Neumann was influenced by Turing's 1936 paper when he helped build the EDVAC machine, even though he never cited Turing's work. This question remains unsettled up till this day. As remarked by Charles Petzold, one standard history barely mentions Turing, while the other, written by a logician, makes Turing a key player. Contrast these observations then with the fact that Turing's 1936 paper was cited and heavily discussed in 1959 among computer programmers. In 1966, the first Turing award was given to a programmer, not a computer builder, as were several subsequent Turing awards. An historical investigation of Turing's influence on computing, presented here, shows that Turing's 1936 notion of universality became increasingly relevant among programmers during the 1950s. The central thesis of this paper states that Turing's in- fluence was felt more in programming after his death than in computer building during the 1940s. 1 Introduction Many people today are led to believe that Turing is the father of the computer, the father of our digital society, as also the following praise for Martin Davis's bestseller The Universal Computer: The Road from Leibniz to Turing1 suggests: At last, a book about the origin of the computer that goes to the heart of the story: the human struggle for logic and truth.
    [Show full text]
  • Annual Report
    ANNUAL REPORT 2019FISCAL YEAR ACM, the Association for Computing Machinery, is an international scientific and educational organization dedicated to advancing the arts, sciences, and applications of information technology. Letter from the President It’s been quite an eventful year and challenges posed by evolving technology. for ACM. While this annual Education has always been at the foundation of exercise allows us a moment ACM, as reflected in two recent curriculum efforts. First, “ACM’s mission to celebrate some of the many the ACM Task Force on Data Science issued “Comput- hinges on successes and achievements ing Competencies for Undergraduate Data Science Cur- creating a the Association has realized ricula.” The guidelines lay out the computing-specific over the past year, it is also an competencies that should be included when other community that opportunity to focus on new academic departments offer programs in data science encompasses and innovative ways to ensure at the undergraduate level. Second, building on the all who work in ACM remains a vibrant global success of our recent guidelines for 4-year cybersecu- the computing resource for the computing community. rity curricula, the ACM Committee for Computing Edu- ACM’s mission hinges on creating a community cation in Community Colleges created a related cur- and technology that encompasses all who work in the computing and riculum targeted at two-year programs, “Cybersecurity arena” technology arena. This year, ACM established a new Di- Curricular Guidance for Associate-Degree Programs.” versity and Inclusion Council to identify ways to create The following pages offer a sampling of the many environments that are welcoming to new perspectives ACM events and accomplishments that occurred over and will attract an even broader membership from the past fiscal year, none of which would have been around the world.
    [Show full text]
  • Diffie and Hellman Receive 2015 Turing Award Rod Searcey/Stanford University
    Diffie and Hellman Receive 2015 Turing Award Rod Searcey/Stanford University. Linda A. Cicero/Stanford News Service. Whitfield Diffie Martin E. Hellman ernment–private sector relations, and attracts billions of Whitfield Diffie, former chief security officer of Sun Mi- dollars in research and development,” said ACM President crosystems, and Martin E. Hellman, professor emeritus Alexander L. Wolf. “In 1976, Diffie and Hellman imagined of electrical engineering at Stanford University, have been a future where people would regularly communicate awarded the 2015 A. M. Turing Award of the Association through electronic networks and be vulnerable to having for Computing Machinery for their critical contributions their communications stolen or altered. Now, after nearly to modern cryptography. forty years, we see that their forecasts were remarkably Citation prescient.” The ability for two parties to use encryption to commu- “Public-key cryptography is fundamental for our indus- nicate privately over an otherwise insecure channel is try,” said Andrei Broder, Google Distinguished Scientist. fundamental for billions of people around the world. On “The ability to protect private data rests on protocols for a daily basis, individuals establish secure online connec- confirming an owner’s identity and for ensuring the integ- tions with banks, e-commerce sites, email servers, and the rity and confidentiality of communications. These widely cloud. Diffie and Hellman’s groundbreaking 1976 paper, used protocols were made possible through the ideas and “New Directions in Cryptography,” introduced the ideas of methods pioneered by Diffie and Hellman.” public-key cryptography and digital signatures, which are Cryptography is a practice that facilitates communi- the foundation for most regularly used security protocols cation between two parties so that the communication on the Internet today.
    [Show full text]
  • 2021 ACM Awards Call for Nominations
    Turing Award The A. M. Turing Award is ACM's oldest and most prestigious award. It is presented annually to an individual or a group of individuals who have made lasting contributions of a technical nature to the computing community. The long-term influence of a candidate’s work is taken into consideration, but there should be a singular outstanding and trend-setting technical achievement that constitutes the claim of the award. The award is presented each June at the ACM Awards Banquet and is accompanied by a prize of $1,000,000 plus travel expenses to the banquet. Financial support for the award is provided by Google Inc. ACM Prize in Computing The ACM Prize in Computing recognizes an early to mid-career fundamental and innovative contribution in computing theory or practice that through, its impact, and broad implications, exemplifies the greatest achievements of the discipline. The candidate’s contribution should be relatively recent (typically within the last decade), but enough time should have passed to evaluate impact. While there are no specific requirements as to age or time since last degree requirements, the candidate typically would be approaching mid-career. The Prize carries a prize of $250,000. Financial support for the award is provided by Infosys Ltd. ACM Frances E. Allen Award for Outstanding Mentoring The Frances E. Allen Award for Outstanding Mentoring will be presented for the first time in 2021. This award will recognize individuals who have exemplified excellence and/or innovation in mentoring with particular attention to individuals who have shown outstanding leadership in promoting diversity, equity, and inclusion in computing.
    [Show full text]
  • EMBARGOED for RELEASE MARCH 9, 2011 at 9 A.M. ET, 6 A.M
    acm Association for Computing Machinery Advancing Computing as a Science & Profession EMBARGOED FOR RELEASE MARCH 9, 2011 AT 9 a.m. ET, 6 a.m. PT Contact: Virginia Gold 212-626-0505 [email protected] ACM TURING AWARD GOES TO INNOVATOR IN MACHINE LEARNING Valiant Opened New Frontiers that Transformed Learning Theory, Computational Complexity, and Parallel and Distributed Computing NEW YORK, March 9, 2011 – ACM, the Association for Computing Machinery, today named Leslie G. Valiant of Harvard University the winner of the 2010 ACM A.M. Turing Award http://www.acm.org/news/featured/turing-award-2010 for his fundamental contributions to the development of computational learning theory and to the broader theory of computer science. Valiant brought together machine learning and computational complexity, leading to advances in artificial intelligence as well as computing practices such as natural language processing, handwriting recognition, and computer vision. He also launched several subfields of theoretical computer science, and developed models for parallel computing. The Turing Award, widely considered the “Nobel Prize in Computing", is named for the British mathematician Alan M. Turing. The award carries a $250,000 prize, with financial support provided by Intel Corporation and Google Inc. “Leslie Valiant’s accomplishments over the last 30 years have provided the theoretical basis for progress in artificial intelligence and led to extraordinary achievements in machine learning. His work has produced modeling that offers computationally inspired
    [Show full text]
  • Virginia Gold 212-626-0505 [email protected]
    Contact: Virginia Gold 212-626-0505 [email protected] ACM TURING AWARD GOES TO PIONEER WHO ADVANCED RELIABILITY AND CONSISTENCY OF COMPUTING SYSTEMS Microsoft’s Lamport Contributed to Theory and Practice of Building Distributed Computing Systems that Work as Intended NEW YORK, March 18, 2014 – ACM (Association for Computing Machinery) www.acm.org today named Leslie Lamport, a Principal Researcher at Microsoft Research, as the recipient of the 2013 ACM A.M. Turing Award for imposing clear, well-defined coherence on the seemingly chaotic behavior of distributed computing systems, in which several autonomous computers communicate with each other by passing messages. He devised important algorithms and developed formal modeling and verification protocols that improve the quality of real distributed systems. These contributions have resulted in improved correctness, performance, and reliability of computer systems. The ACM Turing Award, widely considered the “Nobel Prize in Computing,” carries a $250,000 prize, with financial support provided by Intel Corporation and Google Inc. ACM President Vint Cerf noted that “as an applied mathematician, Leslie Lamport had an extraordinary sense of how to apply mathematical tools to important practical problems. By finding useful ways to write specifications and prove correctness of realistic algorithms, assuring strong foundation for complex computing operations, he helped to move verification from an academic discipline to practical tool.” Lamport’s practical and widely used algorithms and tools have applications in security, cloud computing, embedded systems and database systems as well as mission-critical computer systems that rely on secure information sharing and interoperability to prevent failure. His notions of safety, where nothing bad happens, and liveness, where something good happens, contribute to the reliability and robustness of software and hardware engineering design.
    [Show full text]
  • Equad News Fall 2019 Volume 31, Number 1 School of Engineering and Applied Science Princeton, NJ 08544-5263
    EQuad News Fall 2019 Volume 31, Number 1 School of Engineering and Applied Science Princeton, NJ 08544-5263 www.princeton.edu/engineering [email protected] 4 EQuad News DEAN’S Fall 2019 NOTE Volume 31, Number 1 Interim Dean H. Vincent Poor *77 Vice Dean Shaping Cities for People and the Planet Antoine Kahn *78 Associate Dean, As Professor Elie Bou-Zeid eloquently explains on page 14 of this magazine, the Undergraduate Affairs way we build and reshape urban areas over the coming decades will determine a lot Peter Bogucki Associate Dean, about the long-term health of society and this planet. Development Jane Maggard No small task, but Princeton excels at this kind of grand challenge. The future of Associate Dean, Diversity and Inclusion cities is a complex mix of societal, technological, environmental, economic, and Julie Yun ethical questions, and Princeton is well equipped to knit creative, effective solutions. Director of Engineering Communications More generally, the Metropolis Project that Elie introduces is just one example of Steven Schultz the high-impact work and focus on societal benefit at the School of Engineering and Senior Editor Applied Science. We have tremendous momentum and growth in data science, John Sullivan Digital Media Editor bioengineering, and robotics and cyber- Aaron Nathans physical systems, as well as in advancing Writer the overall diversity and inclusion of Molly Sharlach Communications Specialist the school. Scott Lyon Science Communication Associate All this work brings together two distinctive Amelia Herb strengths of Princeton engineers: a culture Contributors Liz Fuller-Wright of fluidly integrating diverse viewpoints Adam Hadhazy and disciplines, and the ability to distill Bennett McIntosh Melissa Moss problems to their core constraints, then Molly Seltzer develop solutions with widespread impacts.
    [Show full text]
  • Wirth All Poster V2
    COMPUTER DISTINGUISHED LECTURE SERIES SCIENCE by Prof. Niklaus Wirth, January 2015 DISTINGUISHED LECTURE 2015 LECTURE 1 “The Oberon System on a Field-Programmable 20 Gate Array (FPGA)” Tuesday RRS905, Sir Run Run Shaw Building, HSH Campus, HKBU 16:00-17:30 Distinguished Speaker LUNCHEON (Industry) 22 FSC 501, Fong Shu Chuen Library, HSH Campus, HKBU Thursday 12:00-14:00 Enquiry LECTURE 2 (PUBLIC) Tel: (852) 3411-2385 Email: [email protected] “Computers and Computing in 23 the Early Years” Website: http://www.comp.hkbu.edu.hk Friday RRS905, Sir Run Run Shaw Building, HSH Campus, HKBU 16:00-17:30 LECTURE 3 “The HDL Lola and its Translation to Verilog” 27 RRS905, Sir Run Run Shaw Building, HSH Campus, HKBU Tuesday 16:00-17:30 Biography The A.M. Turing Award, sometimes Niklaus Wirth was born in Winterthur, Switzerland, in 1934. He studied referred as the "Nobel Prize" of Computing, was electrical engineering at ETH (Federal Institute of Technology) in Zürich, graduated in named in honor of Alan Mathison Turing 1959, received an M.Sc. degree from Laval University in Quebec, and a Ph.D. from the (1912–1954) who made fundamental advances in computer architecture, algorithms, formalization of University of California at Berkeley in 1963. computing, and articial intelligence. It is the Wirth has been an Assistant Professor of Computer Science at Stanford annual prestigious technical award, given by the University (1963-67) and, after his return to Switzerland, a Professor of Informatics at Association for Computing Machinery, for major ETH from 1968 – 1999. His principal areas of contribution were programming contributions of lasting importance to computing.
    [Show full text]
  • A Debate on Teaching Computing Science
    Teaching Computing Science t the ACM Computer Science Conference last Strategic Defense Initiative. William Scherlis is February, Edsger Dijkstra gave an invited talk known for his articulate advocacy of formal methods called “On the Cruelty of Really Teaching in computer science. M. H. van Emden is known for Computing Science.” He challenged some of his contributions in programming languages and the basic assumptions on which our curricula philosophical insights into science. Jacques Cohen Aare based and provoked a lot of discussion. The edi- is known for his work with programming languages tors of Comwunications received several recommenda- and logic programming and is a member of the Edi- tions to publish his talk in these pages. His comments torial Panel of this magazine. Richard Hamming brought into the foreground some of the background received the Turing Award in 1968 and is well known of controversy that surrounds the issue of what be- for his work in communications and coding theory. longs in the core of a computer science curriculum. Richard M. Karp received the Turing Award in 1985 To give full airing to the controversy, we invited and is known for his contributions in the design of Dijkstra to engage in a debate with selected col- algorithms. Terry Winograd is well known for his leagues, each of whom would contribute a short early work in artificial intelligence and recent work critique of his position, with Dijkstra himself making in the principles of design. a closing statement. He graciously accepted this offer. I am grateful to these people for participating in We invited people from a variety of specialties, this debate and to Professor Dijkstra for creating the backgrounds, and interpretations to provide their opening.
    [Show full text]
  • Alan Mathison Turing and the Turing Award Winners
    Alan Turing and the Turing Award Winners A Short Journey Through the History of Computer TítuloScience do capítulo Luis Lamb, 22 June 2012 Slides by Luis C. Lamb Alan Mathison Turing A.M. Turing, 1951 Turing by Stephen Kettle, 2007 by Slides by Luis C. Lamb Assumptions • I assume knowlege of Computing as a Science. • I shall not talk about computing before Turing: Leibniz, Babbage, Boole, Gödel... • I shall not detail theorems or algorithms. • I shall apologize for omissions at the end of this presentation. • Comprehensive information about Turing can be found at http://www.mathcomp.leeds.ac.uk/turing2012/ • The full version of this talk is available upon request. Slides by Luis C. Lamb Alan Mathison Turing § Born 23 June 1912: 2 Warrington Crescent, Maida Vale, London W9 Google maps Slides by Luis C. Lamb Alan Mathison Turing: short biography • 1922: Attends Hazlehurst Preparatory School • ’26: Sherborne School Dorset • ’31: King’s College Cambridge, Maths (graduates in ‘34). • ’35: Elected to Fellowship of King’s College Cambridge • ’36: Publishes “On Computable Numbers, with an Application to the Entscheindungsproblem”, Journal of the London Math. Soc. • ’38: PhD Princeton (viva on 21 June) : “Systems of Logic Based on Ordinals”, supervised by Alonzo Church. • Letter to Philipp Hall: “I hope Hitler will not have invaded England before I come back.” • ’39 Joins Bletchley Park: designs the “Bombe”. • ’40: First Bombes are fully operational • ’41: Breaks the German Naval Enigma. • ’42-44: Several contibutions to war effort on codebreaking; secure speech devices; computing. • ’45: Automatic Computing Engine (ACE) Computer. Slides by Luis C.
    [Show full text]