Diet Analysis of Native and Non-Native Juvenile Salmonids in a Lake Superior Tributary" (2016)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Forage Fishes of the Southeastern Bering Sea Conference Proceedings
a OCS Study MMS 87-0017 Forage Fishes of the Southeastern Bering Sea Conference Proceedings 1-1 July 1987 Minerals Management Service Alaska OCS Region OCS Study MMS 87-0017 FORAGE FISHES OF THE SOUTHEASTERN BERING SEA Proceedings of a Conference 4-5 November 1986 Anchorage Hilton Hotel Anchorage, Alaska Prepared f br: U.S. Department of the Interior Minerals Management Service Alaska OCS Region 949 East 36th Avenue, Room 110 Anchorage, Alaska 99508-4302 Under Contract No. 14-12-0001-30297 Logistical Support and Report Preparation By: MBC Applied Environmental Sciences 947 Newhall Street Costa Mesa, California 92627 July 1987 CONTENTS Page ACKNOWLEDGMENTS .............................. iv INTRODUCTION PAPERS Dynamics of the Southeastern Bering Sea Oceanographic Environment - H. Joseph Niebauer .................................. The Bering Sea Ecosystem as a Predation Controlled System - Taivo Laevastu .... Marine Mammals and Forage Fishes in the Southeastern Bering Sea - Kathryn J. Frost and Lloyd Lowry. ............................. Trophic Interactions Between Forage Fish and Seabirds in the Southeastern Bering Sea - Gerald A. Sanger ............................ Demersal Fish Predators of Pelagic Forage Fishes in the Southeastern Bering Sea - M. James Allen ................................ Dynamics of Coastal Salmon in the Southeastern Bering Sea - Donald E. Rogers . Forage Fish Use of Inshore Habitats North of the Alaska Peninsula - Jonathan P. Houghton ................................. Forage Fishes in the Shallow Waters of the North- leut ti an Shelf - Peter Craig ... Population Dynamics of Pacific Herring (Clupea pallasii), Capelin (Mallotus villosus), and Other Coastal Pelagic Fishes in the Eastern Bering Sea - Vidar G. Wespestad The History of Pacific Herring (Clupea pallasii) Fisheries in Alaska - Fritz Funk . Environmental-Dependent Stock-Recruitment Models for Pacific Herring (Clupea pallasii) - Max Stocker. -
Conservation and Ecology of Marine Forage Fishes— Proceedings of a Research Symposium, September 2012
Conservation and Ecology of Marine Forage Fishes— Proceedings of a Research Symposium, September 2012 Open-File Report 2013–1035 U.S. Department of the Interior U.S. Geological Survey Cover: Upper Left: Herring spawn, BC coast – Milton Love, “Certainly More Than You Want to Know About the Fishes of the Pacific Coast,” reproduced with permission. Left Center: Tufted Puffin and sand lance (Smith Island, Puget Sound) – Joseph Gaydos, SeaDoc Society. Right Center: Symposium attendants – Tami Pokorny, Jefferson County Water Resources. Upper Right: Buried sand lance – Milton Love, “Certainly More Than You Want to Know About the Fishes of the Pacific Coast,” reproduced with permission. Background: Pacific sardine, CA coast – Milton Love, “Certainly More Than You Want to Know About the Fishes of the Pacific Coast,” reproduced with permission. Conservation and Ecology of Marine Forage Fishes— Proceedings of a Research Symposium, September 2012 Edited by Theresa Liedtke, U.S. Geological Survey; Caroline Gibson, Northwest Straits Commission; Dayv Lowry, Washington State Department of Fish and Wildlife; and Duane Fagergren, Puget Sound Partnership Open-File Report 2013–1035 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2013 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov or call 1–888–ASK–USGS For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Suggested citation: Liedtke, Theresa, Gibson, Caroline, Lowry, Dayv, and Fagergren, Duane, eds., 2013, Conservation and Ecology of Marine Forage Fishes—Proceedings of a Research Symposium, September 2012: U.S. -
Forage Fish Management Plan
Oregon Forage Fish Management Plan November 19, 2016 Oregon Department of Fish and Wildlife Marine Resources Program 2040 SE Marine Science Drive Newport, OR 97365 (541) 867-4741 http://www.dfw.state.or.us/MRP/ Oregon Department of Fish & Wildlife 1 Table of Contents Executive Summary ....................................................................................................................................... 4 Introduction .................................................................................................................................................. 6 Purpose and Need ..................................................................................................................................... 6 Federal action to protect Forage Fish (2016)............................................................................................ 7 The Oregon Marine Fisheries Management Plan Framework .................................................................. 7 Relationship to Other State Policies ......................................................................................................... 7 Public Process Developing this Plan .......................................................................................................... 8 How this Document is Organized .............................................................................................................. 8 A. Resource Analysis .................................................................................................................................... -
ECOLOGY of NORTH AMERICAN FRESHWATER FISHES
ECOLOGY of NORTH AMERICAN FRESHWATER FISHES Tables STEPHEN T. ROSS University of California Press Berkeley Los Angeles London © 2013 by The Regents of the University of California ISBN 978-0-520-24945-5 uucp-ross-book-color.indbcp-ross-book-color.indb 1 44/5/13/5/13 88:34:34 AAMM uucp-ross-book-color.indbcp-ross-book-color.indb 2 44/5/13/5/13 88:34:34 AAMM TABLE 1.1 Families Composing 95% of North American Freshwater Fish Species Ranked by the Number of Native Species Number Cumulative Family of species percent Cyprinidae 297 28 Percidae 186 45 Catostomidae 71 51 Poeciliidae 69 58 Ictaluridae 46 62 Goodeidae 45 66 Atherinopsidae 39 70 Salmonidae 38 74 Cyprinodontidae 35 77 Fundulidae 34 80 Centrarchidae 31 83 Cottidae 30 86 Petromyzontidae 21 88 Cichlidae 16 89 Clupeidae 10 90 Eleotridae 10 91 Acipenseridae 8 92 Osmeridae 6 92 Elassomatidae 6 93 Gobiidae 6 93 Amblyopsidae 6 94 Pimelodidae 6 94 Gasterosteidae 5 95 source: Compiled primarily from Mayden (1992), Nelson et al. (2004), and Miller and Norris (2005). uucp-ross-book-color.indbcp-ross-book-color.indb 3 44/5/13/5/13 88:34:34 AAMM TABLE 3.1 Biogeographic Relationships of Species from a Sample of Fishes from the Ouachita River, Arkansas, at the Confl uence with the Little Missouri River (Ross, pers. observ.) Origin/ Pre- Pleistocene Taxa distribution Source Highland Stoneroller, Campostoma spadiceum 2 Mayden 1987a; Blum et al. 2008; Cashner et al. 2010 Blacktail Shiner, Cyprinella venusta 3 Mayden 1987a Steelcolor Shiner, Cyprinella whipplei 1 Mayden 1987a Redfi n Shiner, Lythrurus umbratilis 4 Mayden 1987a Bigeye Shiner, Notropis boops 1 Wiley and Mayden 1985; Mayden 1987a Bullhead Minnow, Pimephales vigilax 4 Mayden 1987a Mountain Madtom, Noturus eleutherus 2a Mayden 1985, 1987a Creole Darter, Etheostoma collettei 2a Mayden 1985 Orangebelly Darter, Etheostoma radiosum 2a Page 1983; Mayden 1985, 1987a Speckled Darter, Etheostoma stigmaeum 3 Page 1983; Simon 1997 Redspot Darter, Etheostoma artesiae 3 Mayden 1985; Piller et al. -
Little Fish, Big Impact: Managing a Crucial Link in Ocean Food Webs
little fish BIG IMPACT Managing a crucial link in ocean food webs A report from the Lenfest Forage Fish Task Force The Lenfest Ocean Program invests in scientific research on the environmental, economic, and social impacts of fishing, fisheries management, and aquaculture. Supported research projects result in peer-reviewed publications in leading scientific journals. The Program works with the scientists to ensure that research results are delivered effectively to decision makers and the public, who can take action based on the findings. The program was established in 2004 by the Lenfest Foundation and is managed by the Pew Charitable Trusts (www.lenfestocean.org, Twitter handle: @LenfestOcean). The Institute for Ocean Conservation Science (IOCS) is part of the Stony Brook University School of Marine and Atmospheric Sciences. It is dedicated to advancing ocean conservation through science. IOCS conducts world-class scientific research that increases knowledge about critical threats to oceans and their inhabitants, provides the foundation for smarter ocean policy, and establishes new frameworks for improved ocean conservation. Suggested citation: Pikitch, E., Boersma, P.D., Boyd, I.L., Conover, D.O., Cury, P., Essington, T., Heppell, S.S., Houde, E.D., Mangel, M., Pauly, D., Plagányi, É., Sainsbury, K., and Steneck, R.S. 2012. Little Fish, Big Impact: Managing a Crucial Link in Ocean Food Webs. Lenfest Ocean Program. Washington, DC. 108 pp. Cover photo illustration: shoal of forage fish (center), surrounded by (clockwise from top), humpback whale, Cape gannet, Steller sea lions, Atlantic puffins, sardines and black-legged kittiwake. Credits Cover (center) and title page: © Jason Pickering/SeaPics.com Banner, pages ii–1: © Brandon Cole Design: Janin/Cliff Design Inc. -
Altered Feeding Habits and Strategies of a Benthic Forage Fish () in Chronically Polluted Tidal Salt Marshes Daisuke Goto, William G
Altered feeding habits and strategies of a benthic forage fish () in chronically polluted tidal salt marshes Daisuke Goto, William G. Wallace To cite this version: Daisuke Goto, William G. Wallace. Altered feeding habits and strategies of a benthic forage fish () in chronically polluted tidal salt marshes. Marine Environmental Research, Elsevier, 2011, 72 (1-2), pp.75. 10.1016/j.marenvres.2011.06.002. hal-00720184 HAL Id: hal-00720184 https://hal.archives-ouvertes.fr/hal-00720184 Submitted on 24 Jul 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript Title: Altered feeding habits and strategies of a benthic forage fish (Fundulus heteroclitus) in chronically polluted tidal salt marshes Authors: Daisuke Goto, William G. Wallace PII: S0141-1136(11)00070-5 DOI: 10.1016/j.marenvres.2011.06.002 Reference: MERE 3531 To appear in: Marine Environmental Research Received Date: 14 August 2009 Revised Date: 18 March 2011 Accepted Date: 8 June 2011 Please cite this article as: Goto, D., Wallace, W.G. Altered feeding habits and strategies of a benthic forage fish (Fundulus heteroclitus) in chronically polluted tidal salt marshes, Marine Environmental Research (2011), doi: 10.1016/j.marenvres.2011.06.002 This is a PDF file of an unedited manuscript that has been accepted for publication. -
Acoustic Characteristics of Forage Fish Species in the Gulf of Alaska and Bering Sea Based on Kirchhoff-Approximation Models
1839 Acoustic characteristics of forage fish species in the Gulf of Alaska and Bering Sea based on Kirchhoff-approximation models Stéphane Gauthier and John K. Horne Abstract: Acoustic surveys are routinely used to assess fish abundance. To ensure accurate population estimates, the characteristics of echoes from constituent species must be quantified. Kirchhoff-ray mode (KRM) backscatter models were used to quantify acoustic characteristics of Bering Sea and Gulf of Alaska pelagic fish species: capelin (Mallotus villosus), Pacific herring (Clupea pallasii), walleye pollock (Theragra chalcogramma), Atka mackerel (Pleurogrammus monopterygius), and eulachon (Thaleichthys pacificus). Atka mackerel and eulachon do not have swimbladders. Acous- tic backscatter was estimated as a function of insonifying frequency, fish length, and body orientation relative to the incident wave front. Backscatter intensity and variance estimates were compared to examine the potential to discrimi- nate among species. Based on relative intensity differences, species could be separated in two major groups: fish with gas-filled swimbladders and fish without swimbladders. The effects of length and tilt angle on echo intensity depended on frequency. Variability in target strength (TS) resulting from morphometric differences was high for species without swimbladders. Based on our model predictions, a series of TS to length equations were developed for each species at the common frequencies used by fisheries acousticians. Résumé : Les inventaires acoustiques sont utilisés -
Fisheries-Induced Selection Against Schooling Behaviour in Marine Fishes
Fisheries-induced selection against royalsocietypublishing.org/journal/rspb schooling behaviour in marine fishes Ana Sofia Guerra1, Albert B. Kao2,3, Douglas J. McCauley1 and Andrew M. Berdahl4 Research 1Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA 2Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA Cite this article: Guerra AS, Kao AB, 3Santa Fe Institute, Santa Fe, NM 87501, USA 4 McCauley DJ, Berdahl AM. 2020 School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195, USA Fisheries-induced selection against schooling ASG, 0000-0003-3030-9765; ABK, 0000-0001-8232-8365; DJM, 0000-0002-8100-653X; behaviour in marine fishes. Proc. R. Soc. B 287: AMB, 0000-0002-5057-0103 20201752. Group living is a common strategy used by fishes to improve their fitness. http://dx.doi.org/10.1098/rspb.2020.1752 While sociality is associated with many benefits in natural environments, including predator avoidance, this behaviour may be maladaptive in the Anthropocene. Humans have become the dominant predator in many marine systems, with modern fishing gear developed to specifically target Received: 28 July 2020 groups of schooling species. Therefore, ironically, behavioural strategies Accepted: 3 September 2020 which evolved to avoid non-human predators may now actually make certain fish more vulnerable to predation by humans. Here, we use an individual-based model to explore the evolution of fish schooling behaviour in a range of environments, including natural and human-dominated preda- tion conditions. In our model, individual fish may leave or join groups Subject Category: depending on their group-size preferences, but their experienced group Behaviour size is also a function of the preferences of others in the population. -
Master Wildlife Inventory List
Wildlife Inventory List The wildlife inventory list was created from existing data, on site surveys, and/or the availability of suitable habitat. The following species could occur in the Project Area at some time during the year: Common Name Scientific Name Bird Species Bitterns, Herons, & Allies Ardeidae D, E American Bittern Botaurus lentiginosus A, E, F Great Blue Heron Ardea herodias E, F Green Heron Butorides virescens D Least bittern Ixobrychus exilis Blackbirds Icteridae B, E, F Baltimore Oriole Icterus galbula B, E, F Bobolink Dolichonyx oryzivorus B, E, F Brown-headed Cowbird Molothrus ater B, E, F Common Grackle Quiscalus quiscula B, E, F Eastern Meadowlark Sturnella magna B, E, F Red-winged Blackbird Agelaius phoeniceus Caracaras & Falcons Falconidae B, E, F, G American Kestrel Falco sparverius B Merlin Falco columbarius D Peregrine Falcon Falco peregrinus Chickadees & Titmice Paridae B, E, F, G Black-capped Chickadee Poecile atricapillus E, F, G Tufted Titmouse Baeolophus bicolor Creepers Certhiidae B, E, F Brown Creeper Certhia americana Cuckoos, Roadrunners, & Anis Cuculidae D, E, F Black-billed Cuckoo Coccyzus erythropthalmus E, F Yellow-billed Cuckoo Coccyzus americanus Finches Fringillidae B, E, F, G American Goldfinch Carduelis tristis B, E, F Chipping Sparrow Spizella passerina G Common Redpoll Acanthis flammea B, E, F Eastern Towhee Pipilo erythrophthalmus E, F, G House Finch Carpodacus mexicanus B, E Pine Siskin Spinus pinus Page 1 Eight Point Wind Energy Center E, F, G Purple Finch Carpodacus purpureus B, E Red Crossbill -
Intertidal Forage Fish Spawning Site Investigation For
Intertidal Forage Fish Spawning Site Investigation for East Jefferson, Northwestern Kitsap, and North Mason Counties 2001-2004 Final Report to: Salmon Recovery Funding Board, Washington Department of Fish and Wildlife, Jefferson County Marine Resources Committee, Jefferson County, City of Port Townsend North Olympic Salmon Coalition Kevin Long, Neil Harrington, Alisa Meany, Paula Mackrow, Phil Dinsmore June 30, 2005 Project Partners Jefferson County Washington Conservation Department of Fish District and Wildlife This report was funded in part through a cooperative agreement with the National Oceanic and Atmospheric Administration. The views expressed herein are those of the author(s) and do not necessarily reflect the views of NOAA or any of its sub-agencies. TABLE OF CONTENTS Abstract……………………………………………………………………………………………..….3 Introduction………………………………………………………………………………………...…..3 Partnerships………………………………………………………………………………………..…...5 Methods………………………………………………………………………………………………...6 Project Startup………………………………………………………………………………………6 Volunteer Training……………………………………………………………………………..…...7 Sampling and Processing…………………………………………………………………….……..7 Selecting Sampling Locations………………………………………………………………….…...8 Data Management……………………………………………………………………………….….9 End of Project Outreach…………...…………………………………………………………….… 9 Results…………………………………………………………………………………………...….….9 Spawn Timing……………………………………………………………….…………………….11 Beach Type Preferences…………………………………………………………………………...12 One-egg Sites………………………………………………………………………………………12 Substrate Selection…………………………………………………………………………………13 -
Morphological and Molecular Analyses of the Blacknose Dace Species Complex (Genus Rhinichthys) in a Large Zone of Contact in West Virginia Geoffrey D
Marshall University Marshall Digital Scholar Theses, Dissertations and Capstones 1-1-2007 Morphological and Molecular Analyses of the Blacknose Dace Species Complex (Genus Rhinichthys) in a Large Zone of Contact in West Virginia Geoffrey D. Smith [email protected] Follow this and additional works at: http://mds.marshall.edu/etd Part of the Aquaculture and Fisheries Commons, and the Ecology and Evolutionary Biology Commons Recommended Citation Smith, Geoffrey D., "Morphological and Molecular Analyses of the Blacknose Dace Species Complex (Genus Rhinichthys) in a Large Zone of Contact in West Virginia" (2007). Theses, Dissertations and Capstones. Paper 401. This Thesis is brought to you for free and open access by Marshall Digital Scholar. It has been accepted for inclusion in Theses, Dissertations and Capstones by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected]. Morphological and molecular analyses of the blacknose dace species complex (Genus Rhinichthys) in a large zone of contact in West Virginia Geoffrey D. Smith Thesis submitted to The Graduate College of Marshall University in partial fulfillment of the requirements of the degree of Master of Science in Biological Sciences Thomas G. Jones, Ph.D. (Committee Chair) Michael Little, Ph.D. Charles Somerville, Ph.D Marshall University Huntington, West Virginia April 2007 Abstract Morphological and molecular analyses of the blacknose dace species complex (Genus Rhinichthys) in a large zone of contact in West Virginia Geoffrey D. Smith The blacknose dace species complex (Rhinichthys atratulus, Rhinichthys obtusus obtusus, and Rhinichthys obtusus meleagris) are among the most common freshwater fishes in eastern North American. -
Safeguarding Forage Fish (PDF)
A brief from Feb 2015 Prey Bycatch Habitat Proceed with caution Ecosystem Safeguarding Forage Fish Conserving small fish has big benefits Forage fish provide food for recreationally and commercially important species such as tuna, salmon, and cod, as well as for seabirds, sharks, dolphins, and other animals that are integral to healthy ocean ecosystems. In some instances, no federal management plan exists for forage species, as is the case with shad and river herring. Consumer demand for these nutrient-rich species—which are used to make fertilizer, feed for livestock and farmed fish, and products such as cosmetics—is skyrocketing worldwide. Yet the importance of the little fish to healthy ecosystems and to fishing, seafood, and tourism businesses makes it critical that we use extra caution in their management. The solution As part of the reauthorization of the Magnuson-Stevens Act, Congress should improve conservation of forage fish by requiring that regional fishery managers: • Set science-based limits on how many forage fish can be caught each year in order to ensure abundant food sources for other wildlife, including managed fish species. • Apply a national definition of what species qualify as forage fish for management purposes. Forage fish: A closer look Little fish, big impact In 2012, the Lenfest Forage Fish Task Force, a panel of 13 internationally known marine scientists, found that harvesting of forage fish at levels previously thought to be sustainable could have major adverse effects on some marine ecosystems. The panel recommended cutting forage fish catch rates by half in many ecosystems and doubling the minimum required amount left in the water.