Fisheries-Induced Selection Against Schooling Behaviour in Marine Fishes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dispersal, Philopatry, and the Role of Fissionfusion Dynamics In
MARINE MAMMAL SCIENCE, **(*): ***–*** (*** 2012) C 2012 by the Society for Marine Mammalogy DOI: 10.1111/j.1748-7692.2011.00559.x Dispersal, philopatry, and the role of fission-fusion dynamics in bottlenose dolphins YI-JIUN JEAN TSAI and JANET MANN,1 Reiss Science Building, Rm 406, Department of Biology, Georgetown University, Washington, DC 20057, U.S.A. ABSTRACT In this quantitative study of locational and social dispersal at the individual level, we show that bottlenose dolphins (Tursiops sp.) continued to use their na- tal home ranges well into adulthood. Despite substantial home range overlap, mother–offspring associations decreased after weaning, particularly for sons. These data provide strong evidence for bisexual locational philopatry and mother–son avoidance in bottlenose dolphins. While bisexual locational philopatry offers the benefits of familiar social networks and foraging habitats, the costs of philopatry may be mitigated by reduced mother–offspring association, in which the risk of mother–daughter resource competition and mother–son mating is reduced. Our study highlights the advantages of high fission–fusion dynamics and longitudinal studies, and emphasizes the need for clarity when describing dispersal in this and other species. Key words: bottlenose dolphin, Tursiops sp., association, juvenile, philopatry, locational dispersal, mother-offspring, ranging, site fidelity, social dispersal. Dispersal is a key life history process that affects population demography, spatial distribution, and genetic structure, as well as individual -
Forage Fishes of the Southeastern Bering Sea Conference Proceedings
a OCS Study MMS 87-0017 Forage Fishes of the Southeastern Bering Sea Conference Proceedings 1-1 July 1987 Minerals Management Service Alaska OCS Region OCS Study MMS 87-0017 FORAGE FISHES OF THE SOUTHEASTERN BERING SEA Proceedings of a Conference 4-5 November 1986 Anchorage Hilton Hotel Anchorage, Alaska Prepared f br: U.S. Department of the Interior Minerals Management Service Alaska OCS Region 949 East 36th Avenue, Room 110 Anchorage, Alaska 99508-4302 Under Contract No. 14-12-0001-30297 Logistical Support and Report Preparation By: MBC Applied Environmental Sciences 947 Newhall Street Costa Mesa, California 92627 July 1987 CONTENTS Page ACKNOWLEDGMENTS .............................. iv INTRODUCTION PAPERS Dynamics of the Southeastern Bering Sea Oceanographic Environment - H. Joseph Niebauer .................................. The Bering Sea Ecosystem as a Predation Controlled System - Taivo Laevastu .... Marine Mammals and Forage Fishes in the Southeastern Bering Sea - Kathryn J. Frost and Lloyd Lowry. ............................. Trophic Interactions Between Forage Fish and Seabirds in the Southeastern Bering Sea - Gerald A. Sanger ............................ Demersal Fish Predators of Pelagic Forage Fishes in the Southeastern Bering Sea - M. James Allen ................................ Dynamics of Coastal Salmon in the Southeastern Bering Sea - Donald E. Rogers . Forage Fish Use of Inshore Habitats North of the Alaska Peninsula - Jonathan P. Houghton ................................. Forage Fishes in the Shallow Waters of the North- leut ti an Shelf - Peter Craig ... Population Dynamics of Pacific Herring (Clupea pallasii), Capelin (Mallotus villosus), and Other Coastal Pelagic Fishes in the Eastern Bering Sea - Vidar G. Wespestad The History of Pacific Herring (Clupea pallasii) Fisheries in Alaska - Fritz Funk . Environmental-Dependent Stock-Recruitment Models for Pacific Herring (Clupea pallasii) - Max Stocker. -
The Influence of Density in Population Dynamics with Strong and Weak Allee Effect
Keya et al. J Egypt Math Soc (2021) 29:4 https://doi.org/10.1186/s42787-021-00114-x Journal of the Egyptian Mathematical Society ORIGINAL RESEARCH Open Access The infuence of density in population dynamics with strong and weak Allee efect Kamrun Nahar Keya1, Md. Kamrujjaman2* and Md. Shafqul Islam3 *Correspondence: [email protected] Abstract 2 Department In this paper, we consider a reaction–difusion model in population dynamics and of Mathematics, University of Dhaka, Dhaka 1000, study the impact of diferent types of Allee efects with logistic growth in the hetero- Bangladesh geneous closed region. For strong Allee efects, usually, species unconditionally die out Full list of author information and an extinction-survival situation occurs when the efect is weak according to the is available at the end of the article resource and sparse functions. In particular, we study the impact of the multiplicative Allee efect in classical difusion when the sparsity is either positive or negative. Nega- tive sparsity implies a weak Allee efect, and the population survives in some domain and diverges otherwise. Positive sparsity gives a strong Allee efect, and the popula- tion extinct without any condition. The infuence of Allee efects on the existence and persistence of positive steady states as well as global bifurcation diagrams is presented. The method of sub-super solutions is used for analyzing equations. The stability condi- tions and the region of positive solutions (multiple solutions may exist) are presented. When the difusion is absent, we consider the model with and without harvesting, which are initial value problems (IVPs) and study the local stability analysis and present bifurcation analysis. -
Conservation and Ecology of Marine Forage Fishes— Proceedings of a Research Symposium, September 2012
Conservation and Ecology of Marine Forage Fishes— Proceedings of a Research Symposium, September 2012 Open-File Report 2013–1035 U.S. Department of the Interior U.S. Geological Survey Cover: Upper Left: Herring spawn, BC coast – Milton Love, “Certainly More Than You Want to Know About the Fishes of the Pacific Coast,” reproduced with permission. Left Center: Tufted Puffin and sand lance (Smith Island, Puget Sound) – Joseph Gaydos, SeaDoc Society. Right Center: Symposium attendants – Tami Pokorny, Jefferson County Water Resources. Upper Right: Buried sand lance – Milton Love, “Certainly More Than You Want to Know About the Fishes of the Pacific Coast,” reproduced with permission. Background: Pacific sardine, CA coast – Milton Love, “Certainly More Than You Want to Know About the Fishes of the Pacific Coast,” reproduced with permission. Conservation and Ecology of Marine Forage Fishes— Proceedings of a Research Symposium, September 2012 Edited by Theresa Liedtke, U.S. Geological Survey; Caroline Gibson, Northwest Straits Commission; Dayv Lowry, Washington State Department of Fish and Wildlife; and Duane Fagergren, Puget Sound Partnership Open-File Report 2013–1035 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2013 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov or call 1–888–ASK–USGS For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Suggested citation: Liedtke, Theresa, Gibson, Caroline, Lowry, Dayv, and Fagergren, Duane, eds., 2013, Conservation and Ecology of Marine Forage Fishes—Proceedings of a Research Symposium, September 2012: U.S. -
Forage Fish Management Plan
Oregon Forage Fish Management Plan November 19, 2016 Oregon Department of Fish and Wildlife Marine Resources Program 2040 SE Marine Science Drive Newport, OR 97365 (541) 867-4741 http://www.dfw.state.or.us/MRP/ Oregon Department of Fish & Wildlife 1 Table of Contents Executive Summary ....................................................................................................................................... 4 Introduction .................................................................................................................................................. 6 Purpose and Need ..................................................................................................................................... 6 Federal action to protect Forage Fish (2016)............................................................................................ 7 The Oregon Marine Fisheries Management Plan Framework .................................................................. 7 Relationship to Other State Policies ......................................................................................................... 7 Public Process Developing this Plan .......................................................................................................... 8 How this Document is Organized .............................................................................................................. 8 A. Resource Analysis .................................................................................................................................... -
The Blue Paradox: Preemptive Overfishing in Marine Reserves
PAPER The blue paradox: Preemptive overfishing in COLLOQUIUM marine reserves Grant R. McDermotta,1,2, Kyle C. Mengb,c,d,1,2, Gavin G. McDonaldb,e, and Christopher J. Costellob,c,d,e aDepartment of Economics, University of Oregon, Eugene, OR 97403; bBren School of Environmental Science & Management, University of California, Santa Barbara, CA 93106; cDepartment of Economics, University of California, Santa Barbara, CA 93106; dNational Bureau of Economic Research, Cambridge, MA 02138; and eMarine Science Institute, University of California, Santa Barbara, CA 93106 Edited by Jane Lubchenco, Oregon State University, Corvallis, OR, and approved July 25, 2018 (received for review March 9, 2018) Most large-scale conservation policies are anticipated or an- This line of reasoning suggests that the anticipation of a new nounced in advance. This risks the possibility of preemptive conservation policy may give rise to a set of incentives that is resource extraction before the conservation intervention goes distinct from—but possibly just as important as—the incentives into force. We use a high-resolution dataset of satellite-based fish- arising from the policy’s implementation. While this kind of pre- ing activity to show that anticipation of an impending no-take emptive behavior has been well-documented for landowners, gun marine reserve undermines the policy by triggering an unin- owners, and owners of natural resource extraction rights, it has tended race-to-fish. We study one of the world’s largest marine not been studied in the commons. For vast swaths of the ocean, reserves, the Phoenix Islands Protected Area (PIPA), and find that no single owner has exclusive rights and so must compete against fishers more than doubled their fishing effort once this area was others for extraction. -
Marine Protected Areas (Mpas) in Management 1 of Coral Reefs
ISRS BRIEFING PAPER 1 MARINE PROTECTED AREAS (MPAS) IN MANAGEMENT 1 OF CORAL REEFS SYNOPSIS Marine protected areas (MPAs) may stop all extractive uses, protect particular species or locally prohibit specific kinds of fishing. These areas may be established for reasons of conservation, tourism or fisheries management. This briefing paper discusses the potential uses of MPAs, factors that have affected their success and the conditions under which they are likely to be effective. ¾ MPAs are often established as a conservation tool, allowing protection of species sensitive to fishing and thus preserving intact ecosystems, their processes and biodiversity and ultimately their resilience to perturbations. ¾ Increases in charismatic species such as large groupers in MPAs combined with the perception that the reefs there are relatively pristine mean that MPAs can play a significant role in tourism. ¾ By reducing fishing mortality, effective MPAs have positive effects locally on abundances, biomass, sizes and reproductive outputs of many exploitable site- attached reef species. ¾ Because high biomass of focal species is sought but this is quickly depleted and is slow to recover, poaching is a problem in most reef MPAs. ¾ Target-species ‘spillover’ into fishing areas is likely occurring close to the MPA boundaries and benefits will often be related to MPA size. Evidence for MPAs acting as a source of larval export remains weak. ¾ The science of MPAs is at an early stage of its development and MPAs will rarely suffice alone to address the main objectives of fisheries management; concomitant control of effort and other measures are needed to reduce fishery impacts, sustain yields or help stocks to recover. -
Comparative Methods Offer Powerful Insights Into Social Evolution in Bees Sarah Kocher, Robert Paxton
Comparative methods offer powerful insights into social evolution in bees Sarah Kocher, Robert Paxton To cite this version: Sarah Kocher, Robert Paxton. Comparative methods offer powerful insights into social evolution in bees. Apidologie, Springer Verlag, 2014, 45 (3), pp.289-305. 10.1007/s13592-014-0268-3. hal- 01234748 HAL Id: hal-01234748 https://hal.archives-ouvertes.fr/hal-01234748 Submitted on 27 Nov 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie (2014) 45:289–305 Review article * INRA, DIB and Springer-Verlag France, 2014 DOI: 10.1007/s13592-014-0268-3 Comparative methods offer powerful insights into social evolution in bees 1 2 Sarah D. KOCHER , Robert J. PAXTON 1Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA 2Institute for Biology, Martin-Luther-University Halle-Wittenberg, Halle, Germany Received 9 September 2013 – Revised 8 December 2013 – Accepted 2 January 2014 Abstract – Bees are excellent models for studying the evolution of sociality. While most species are solitary, many form social groups. The most complex form of social behavior, eusociality, has arisen independently four times within the bees. -
Interactive Robots in Experimental Biology 3 4 5 6 Jens Krause1,2, Alan F.T
1 2 Interactive Robots in Experimental Biology 3 4 5 6 Jens Krause1,2, Alan F.T. Winfield3 & Jean-Louis Deneubourg4 7 8 9 10 11 12 1Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Department of Biology and 13 Ecology of Fishes, 12587 Berlin, Germany; 14 2Humboldt-University of Berlin, Department for Crop and Animal Sciences, Philippstrasse 15 13, 10115 Berlin, Germany; 16 3Bristol Robotics Laboratory, University of the West of England, Coldharbour Lane, Bristol 17 BS16 1QY, UK; 18 4Unit of Social Ecology, Campus Plaine - CP 231, Université libre de Bruxelles, Bd du 19 Triomphe, B-1050 Brussels - Belgium 20 21 22 23 24 25 26 27 28 Corresponding author: Krause, J. ([email protected]), Leibniz Institute of Freshwater 29 Ecology and Inland Fisheries, Department of the Biology and Ecology of Fishes, 30 Müggelseedamm 310, 12587 Berlin, Germany. 31 32 33 1 33 Interactive robots have the potential to revolutionise the study of social behaviour because 34 they provide a number of methodological advances. In interactions with live animals the 35 behaviour of robots can be standardised, morphology and behaviour can be decoupled (so that 36 different morphologies and behavioural strategies can be combined), behaviour can be 37 manipulated in complex interaction sequences and models of behaviour can be embodied by 38 the robot and thereby be tested. Furthermore, robots can be used as demonstrators in 39 experiments on social learning. The opportunities that robots create for new experimental 40 approaches have far-reaching consequences for research in fields such as mate choice, 41 cooperation, social learning, personality studies and collective behaviour. -
Global Patterns in Marine Mammal Distributions
SUPPLEMENTARY INFORMATION I. TAXONOMIC DECISIONS In this work we followed Wilson and Reeder (2005) and Reeves, Stewart, and Clapham’s (2002) taxonomy. In the last 20 years several new species have been described such as Mesoplodon perrini (Dalebout 2002), Orcaella heinsohni (Beasley 2005), and the recognition of several species have been proposed for orcas (Perrin 1982, Pitman et al. 2007), Bryde's whales (Kanda et al. 2007), Blue whales (Garrigue et al. 2003, Ichihara 1996), Tucuxi dolphin (Cunha et al. 2005, Caballero et al. 2008), and other marine mammals. Since we used the conservation status of all species following IUCN (2011), this work is based on species recognized by this IUCN to keep a standardized baseline. II. SPECIES LIST List of the species included in this paper, indicating their conservation status according to IUCN (2010.4) and its range area. Order Family Species IUCN 2010 Freshwater Range area km2 Enhydra lutris EN A2abe 1,084,750,000,000 Mustelidae Lontra felina EN A3cd 996,197,000,000 Odobenidae Odobenus rosmarus DD 5,367,060,000,000 Arctocephalus australis LC 1,674,290,000,000 Arctocephalus forsteri LC 1,823,240,000,000 Arctocephalus galapagoensis EN A2a 167,512,000,000 Arctocephalus gazella LC 39,155,300,000,000 Arctocephalus philippii NT 163,932,000,000 Arctocephalus pusillus LC 1,705,430,000,000 Arctocephalus townsendi NT 1,045,950,000,000 Carnivora Otariidae Arctocephalus tropicalis LC 39,249,100,000,000 Callorhinus ursinus VU A2b 12,935,900,000,000 Eumetopias jubatus EN A2a 3,051,310,000,000 Neophoca cinerea -
The Role of Marine Protected Areas in Sustaining Fisheries
The role of marine protected areas in sustaining fisheries Callum Roberts University of York, UK After World War II there was much optimism that fisheries could feed the World. But at the beginning of the 21st century, we are not so sure. Quota management of fisheries in the European Union has failed to deliver sustainability 100 80 60 40 20 Percentage of Quota Fish Stocks of Quota Percentage 0 1970 1975 1980 1985 1990 1995 2000 Year Healthy At risk In danger Data from ICES Cod decline in the Kattegat, North Sea Extinction is the ultimate in unsustainable fishing, whether or not the species of concern are targets of the fishery What is missing from fishery management? • Real provision for habitat protection and recovery • Precautionary targets • Resolute enforcement Objectives of marine reserves Maintaining ecosystem processes and services Conservation Sustaining fisheries Tree cover www.worldwildlife.org/oceans/pdfs/fishery_effects.pdf Spillover Reproduction & Dispersal Colonization & Growth Abundance Diversity What is the evidence that reserves work? Reserves all over the world show dramatic increases in spawning stocks Usually by at least 2-3 times in 5-10 years Long-term studies in New Zealand, Philippines, Florida and many other countries show strong responses to reserve protection Fish in reserves do live longer, grow larger and produce more eggs Egg production from protected fish stocks increases by much more than stock biomass Catches do increase Soufrière Marine Management Area, St. Lucia: Established 1995 35% of reef area closed -
Breeding Site Fidelity in Southern Elephant Seals of the Falkland Islands
Filippo Galimberti 1 and Simona Sanvito 1,2 1 Elephant Seal Research Group, Sea Lion Island, Falkland Islands 2 Dept. of Biology, Memorial University of Newfoundland, St. John’s NF A1B 3X9, Canada ESRG technical report no. 3 Breeding site fidelity in southern elephant seals of the Falkland Islands Milano, 25th April 2000 © Elephant Seal Research Group – 2000 No part of this report can be cited without written permission from the authors. Address for correspondence: Dr. Filippo Galimberti – Via Buonarroti 35 – 20145 Milano – Italy Phone +39 02 4980504 – Fax +39 02 48008145 – Email [email protected] ABSTRACT Breeding site fidelity, i.e., the tendency to return to the same breeding site for consecutive breeding attempts, is an important component of mammal life history strategies, and seems almost ubiquitous in Pinnipedia species, at least for land breeding ones. Site fidelity may entail significant somatic benefits and costs, and, if coupled with return for first breeding attempt to birth site, may produce a genetic sub-structuring of populations. We present data on female and male site fidelity, together with preliminary information on female phylopatry, of southern elephant seals (Mirounga leonina) of Sea Lion Island, the main breeding site of the species in the Falkland Islands. We found a high level of site fidelity at small scale (hundred of metres) in both sexes, although higher in females, even when considering up to five consecutive breeding seasons of the same individual. We discuss the behavioural and genetic implications of site fidelity, emphasizing that it may affect mating tactics, breeding success, and genetic sub-structuring of local populations.