Mollusks from the Upper Shackleton Limestone (Cambrian Series 2), Central Transantarctic Mountains, East Antarctica

Total Page:16

File Type:pdf, Size:1020Kb

Mollusks from the Upper Shackleton Limestone (Cambrian Series 2), Central Transantarctic Mountains, East Antarctica Journal of Paleontology, page 1 of 23 Copyright © 2019, The Paleontological Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/ licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. 0022-3360/19/1937-2337 doi: 10.1017/jpa.2018.84 Mollusks from the upper Shackleton Limestone (Cambrian Series 2), Central Transantarctic Mountains, East Antarctica Thomas M. Claybourn,1,2 Sarah M. Jacquet,3 Christian B. Skovsted,4 Timothy P. Topper,4,5 Lars E. Holmer,1,5 and Glenn A. Brock2 1Department of Earth Sciences, Palaeobiology, Uppsala University, Villav. 16, SE-75236, Uppsala <[email protected]> <[email protected]> 2Department of Biological Sciences, Macquarie University, Sydney, NSW 2109 <[email protected]> 3Department of Geological Sciences, University of Missouri, Columbia, MO 65211 <[email protected]> 4Department of Palaeobiology, Swedish Museum of Natural History, Box 5007, SE-104 05, Stockholm <[email protected]> <[email protected]> 5Shaanxi Key laboratory of Early Life and Environments, State Key Laboratory of Continental Dynamics and Department of Geology, Northwest University, Xi’an 710069, China <[email protected]> Abstract.—An assemblage of Cambrian Series 2, Stages 3–4, conchiferan mollusks from the Shackleton Limestone, Transantarctic Mountains, East Antarctica, is formally described and illustrated. The fauna includes one bivalve, one macromollusk, and 10 micromollusks, including the first description of the species Xinjispira simplex Zhou and Xiao, 1984 outside North China. The new fauna shows some similarity to previously described micromollusks from lower Cambrian glacial erratics from the Antarctic Peninsula. The fauna, mainly composed of steinkerns, is relatively low diver- sity, but the presence of diagnostic taxa, including helcionelloid Davidonia rostrata (Zhou and Xiao, 1984), bivalve Pojetaia runnegari Jell, 1980, cambroclavid Cambroclavus absonus Conway Morris in Bengtson et al., 1990, and bradoriid Spinospitella coronata Skovsted et al., 2006, as well as the botsfordiid brachiopod Schizopholis yorkensis (Ushatinskaya and Holmer in Gravestock et al., 2001), in the overlying Holyoake Formation correlates the succession to the Dailyatia odyssei Zone (Cambrian Stages 3–4) in South Australia. Introduction pre-trilobitic Terreneuvian (Khomentovsky et al., 1990; Kou- chinsky et al., 2012) and range through to the Early Ordovician During the early Cambrian, East Antarctica was sutured between (Gubanov and Peel, 2001; Peel and Horný, 2004). the now southern coast of Australia, Southeast Africa, and India The taxonomic position of helcionelloids remains unre- and located at tropical latitudes (Brock et al., 2000; Torsvik and solved, with numerous authors suggesting different affinities Cocks, 2013a, b). The Shackleton Limestone crops out meri- and phylogenetic relationships (Parkhaev 2008, table 3.1). dionally and episodically along the Central Transantarctic Early efforts placed some asymmetrically coiled helcionelloids Mountains (Fig. 1). While the true thickness of this carbonate in the late Paleozoic macluritid gastropods and bilaterally sym- unit remains uncertain (Myrow et al., 2002), it is estimated to metrical forms with the monoplacophoran tryblidiids—then be up to 2,000 m thick in places (Laird et al., 1971; Burgess considered a ‘primitive’ gastropod taxon (Knight, 1952). Hel- and Lammerink, 1979). The unit consists of many lithofacies cionelloids have also been suggested by some authors to be including sandy carbonates, pure limestones, and archaeocyath- basal to the rest of the Gastropoda (e.g., Golikov and Staroboga- microbialite bioherms (Rees et al., 1989; Myrow et al., 2002). tov, 1975; Runnegar and Jell, 1976; Parkhaev, 2017a); a poly- The newly recovered fauna from measured stratigraphic sections phyletic approach was proposed by other authors, with some through autochthonous exposures of the Byrd Group, central helcionelloids considered ancestral to the major groups of mol- Transantarctic Mountains, includes archaeocyaths, brachiopods, lusks (Runnegar and Jell, 1976, fig. 4; Runnegar, 1983, fig. 1) bradoriid arthropods, cambroclavids, chancelloriids, hyoliths, while others (the superfamily Helcionellacea Wenz, 1938) sponge spicules, and tommotiids. This paper focusses on were referred to the monoplacophorans. Problems with these descriptions and biostratigraphy of eight helcionelloids, two classification schemes are apparent, as a diagnostic criterion of pelagiellids, one scenellid, and the bivalve Pojetaia runnegari the gastropods is torsion (Salvini-Plawen, 1980; Ponder and Jell, 1980. Helcionelloids are typical components of ‘small Lindberg, 1997), a characteristic obvious only in soft anatomy shelly fossil’ (SSF) assemblages in lower Cambrian (Terreneu- and never convincingly demonstrated in any helcionelloid vian, Cambrian Series 2) strata around the world (Bengtson, taxon (but see Runnegar, 1981). A monoplacophoran affinity 2004; Kouchinsky et al., 2012). Widespread phosphatized stein- is also difficult to demonstrate as helcionelloids invariably kerns of micromorphic univalved helcionelloids appear in the lack the serially repeated muscles scars on the shell interior 1 Downloaded from https://www.cambridge.org/core. Uppsala Universitetsbibliotek, on 09 Jan 2019 at 11:15:56, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/jpa.2018.84 2 Journal of Paleontology:1–23 Figure 1. (1) Map of Antarctica showing approximate extent of the Transantarctic Mountains and area shown in (2). (2) Map of Nimrod Glacier, Holyoake Range, and Churchill Mountains. (3) Generalized relationship of Cambrian (Byrd Group) and Neoproterozoic (Beardmore Group) rock units of the Holyoake Range, adapted from Myrow et al. (2002). (4) Simplified geological map of the Holyoake Range, adapted from Myrow et al. (2002). reflecting the muscle attachment common to all extant monopla- Recognized sinistral and dextral asymmetrical deviations from cophorans (Lindberg, 2009). Lindsey and Kier (1984) hypothe- typically symmetric forms remain within Helcionelloida (Guba- sized a separate paraphyletic class for some asymmetrical nov and Peel, 2000). Recent systematic treatment of pelagiellids helcionelloid mollusks (the Paragastropoda) on the basis that has them assigned to the helcionelloids (e.g., Skovsted and Peel, they lacked evidence of both torsion and serially repeated mus- 2007; Topper et al., 2009; Wotte and Sundberg, 2017) or to the cle scars, which included the pelagiellids. However, the asym- gastropods (e.g., Landing et al. 2002; Parkhaev, 2007a, 2017a). metrically coiled pelagiellids are perhaps the best candidates While many authors have worked on the paleobiology of for inclusion in the gastropods. Preserved features such as mus- the helcionelloids (e.g., Peel, 1991a; Brock, 1998; Parkhaev, cle scars similar to those found in torted gastropods (Landing 2000, 2001), these and other SSFs can also be utilized in biostra- et al., 2002, fig. 9), a large mantle cavity, and potential anal tigraphy, with certain caveats. Parkhaev in Gravestock et al. notch have been inferred by some authors as indirect evidence (2001) created loosely defined molluscan assemblage ‘zones’ of torsion (Landing et al., 2002). The class Helcionelloida for their work on the biostratigraphy of the lower Cambrian suc- Peel, 1991a was erected to include bilaterally symmetrical cession in the Stansbury Basin, South Australia. These were forms, excluding asymmetrical forms of the Paragastropoda. defined according to the presence of certain key taxa, and four Downloaded from https://www.cambridge.org/core. Uppsala Universitetsbibliotek, on 09 Jan 2019 at 11:15:56, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/jpa.2018.84 Claybourn et al.—Lower Cambrian mollusks from East Antarctica 3 ‘zones’ were recognized (oldest to youngest): Pelagiella suban- used to indicate ontogeny, and morphological differences gulata, Bemella communis, Stenotheca drepanoida, and Pela- between two steinkerns of the same size may not indicate taxo- giella madianensis ‘zones.’ Jacquet et al. (2017) criticized nomically meaningful differences. The term ‘teilsteinkern’ was these molluscan biozones noting they have very poorly defined introduced to describe incomplete internal molds (Dattilo et al., boundaries and are based on poorly preserved, long-ranging taxa 2016). with considerable overlapping ranges. Close inspection of the Some evidence suggests that the preservation of phosphatic data provided by Gravestock et al. (2001) reveals clear temporal steinkerns is tied to particular lithologies and depositional pro- discrepancies between the sections on Yorke and Fleurieu cesses. Phosphate replacement and coating of originally calcar- peninsulas (see Jacquet et al., 2017, p. 1093–1094 for details; eous fossils was related to phosphate precipitation and intense Betts et al., 2016a). denitrification within sediments or above an oxygen minimum Broad biostratigraphic correlations of lower Cambrian zone (Landing 1992; Landing et al., 2002). Subsequently, Jac- rocks have proven difficult due to strong provincialism and quet et al. (2016a) noted the occurrence of abundant micromol- facies dependence in faunas (Landing, 1992; Mount and Signor, luskan
Recommended publications
  • Geology and Palaeontology of the Codos Anticline, Eastern Iberian Chains, NE Spain: Age Constraints for the Ediacaran-Cambrian B
    Geological Magazine Geology and palaeontology of the Codos www.cambridge.org/geo anticline, eastern Iberian Chains, NE Spain: age constraints for the Ediacaran–Cambrian boundary in the Iberian Chains Original Article Cite this article: Streng M. Geology and Michael Streng palaeontology of the Codos anticline, eastern Iberian Chains, NE Spain: age constraints for Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 752 36 Uppsala, Sweden the Ediacaran–Cambrian boundary in the Iberian Chains. Geological Magazine https:// Abstract doi.org/10.1017/S0016756821000595 The two major structural elements of the Iberian Chains, the Datos and Jarque thrust faults, Received: 3 November 2020 have been described as occurring in proximity in the area around the village of Codos. The Revised: 16 May 2021 Accepted: 26 May 2021 purported Jarque fault corresponds to the axial plane of an anticline known as the Codos anti- cline, which exposes the oldest stratigraphic unit in this area, i.e. the Codos Bed, a limestone bed Keywords: bearing skeletal fossils of putative Ediacaran or earliest Cambrian age. Details of the geology of Paracuellos Group; Aluenda Formation; Codos the area and the age of the known fossils are poorly understood or not universally agreed upon. Bed; Cloudina; helcionelloids; Terreneuvian; New investigations in the anticline revealed the presence of a normal fault, introduced as the Heraultia Limestone Codos fault, which cross-cuts the course of the alleged Jarque fault. The vertical displacement Author for correspondence: along the axial plane of the anticline appears to be insignificant, challenging the traditional Michael Streng, interpretation of the plane as an equivalent of the Jarque thrust fault.
    [Show full text]
  • Shell Microstructures in Early Cambrian Molluscs
    Shell microstructures in Early Cambrian molluscs ARTEM KOUCHINSKY Kouchinsky, A. 2000. Shell microstructures in Early Cambrian molluscs. - Acta Palaeontologica Polonica 45,2, 119-150. The affinities of a considerable part of the earliest skeletal fossils are problematical, but investigation of their microstructures may be useful for understanding biomineralization mechanisms in early metazoans and helpful for their taxonomy. The skeletons of Early Cambrian mollusc-like organisms increased by marginal secretion of new growth lamel- lae or sclerites, the recognized basal elements of which were fibers of apparently aragon- ite. The juvenile part of some composite shells consisted of needle-like sclerites; the adult part was built of hollow leaf-like sclerites. A layer of mineralized prism-like units (low aragonitic prisms or flattened spherulites) surrounded by an organic matrix possibly existed in most of the shells with continuous walls. The distribution of initial points of the prism-like units on a periostracurn-like sheet and their growth rate were mostly regular. The units may be replicated on the surface of internal molds as shallow concave poly- gons, which may contain a more or less well-expressed tubercle in their center. Tubercles are often not enclosed in concave polygons and may co-occur with other types of tex- tures. Convex polygons seem to have resulted from decalcification of prism-like units. They do not co-occur with tubercles. The latter are interpreted as casts of pore channels in the wall possibly playing a role in biomineralization or pits serving as attachment sites of groups of mantle cells. Casts of fibers and/or lamellar units may overlap a polygonal tex- ture or occur without it.
    [Show full text]
  • Um Éon De História Dos Bivalvia: Ideias Sobre a Sua Origem, Filogenia E Importância Paleontológica E Educativa
    Um Éon de história dos Bivalvia: ideias sobre a sua origem, filogenia e importância paleontológica e educativa Ricardo J. Pimentel1, Pedro M. Callapez2 & Paulo Legoinha3 1 Agrupamento de Escolas de Guia, P-3105 075 Guia, Pombal, Portugal. E-mail: [email protected] 2 Universidade de Coimbra, CITEUC - Centro de Investigação da Terra e do Espaço da Universidade de Coimbra, Faculdade de Ciências e Tecnologia, Departamento de Ciências da Terra, Polo II, Rua Sílvio Lima, P-3030 790 Coimbra, Portugal. E-mail: [email protected] 3 Universidade NOVA de Lisboa, GEOBIOTEC - GeoBiociências, Geotecnologias e Geoengenharias, Faculdade de Ciências e Tecnologia, Departamento de Ciências da Terra, Quinta da Torre, P-2829 516 Caparica, Portugal. E-mail: [email protected] Resumo: A Classe Bivalvia, cuja monofilia se encontra bem suportada por estudos recentes, destaca-se como o segundo taxon, em termos de biodiversidade, do Filo Mollusca. O registo da sua história evolutiva remonta ao Fortuniano (Câmbrico). Diversos dados paleontológicos fundamentados no registo fóssil sugerem que os bivalves atuais são, sobretudo, herdeiros de carateres morfológicos e requisitos ecológicos transmitidos por linhagens da transição devónico-carbonífera. Estes invertebrados habitam a maioria dos ambientes aquáticos atuais e constituem um dos principais grupos de animais invertebrados da biosfera atual, são herdeiros de uma longa história evolutiva e ecológica que é intrínseca à própria história biótica dos oceanos durante o Fanerozoico. São um exemplo de sucesso entre as comunidades bióticas e a sua abundância, diversidade e acessibilidade propiciam a sua utilização como recursos educativos em Ciências Naturais. Palavras-chave: Bivalvia, Educação científica, Filogenia, Mollusca, Registo fóssil.
    [Show full text]
  • Durham Research Online
    Durham Research Online Deposited in DRO: 23 May 2017 Version of attached le: Accepted Version Peer-review status of attached le: Peer-reviewed Citation for published item: Betts, Marissa J. and Paterson, John R. and Jago, James B. and Jacquet, Sarah M. and Skovsted, Christian B. and Topper, Timothy P. and Brock, Glenn A. (2017) 'Global correlation of the early Cambrian of South Australia : shelly fauna of the Dailyatia odyssei Zone.', Gondwana research., 46 . pp. 240-279. Further information on publisher's website: https://doi.org/10.1016/j.gr.2017.02.007 Publisher's copyright statement: c 2017 This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Additional information: Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full DRO policy for further details. Durham University Library, Stockton Road, Durham DH1 3LY, United Kingdom Tel : +44 (0)191 334 3042 | Fax : +44 (0)191 334 2971 https://dro.dur.ac.uk Accepted Manuscript Global correlation of the early Cambrian of South Australia: Shelly fauna of the Dailyatia odyssei Zone Marissa J.
    [Show full text]
  • Facies, Phosphate, and Fossil Preservation Potential Across a Lower Cambrian Carbonate Shelf, Arrowie Basin, South Australia
    Palaeogeography, Palaeoclimatology, Palaeoecology 533 (2019) 109200 Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Facies, phosphate, and fossil preservation potential across a Lower Cambrian T carbonate shelf, Arrowie Basin, South Australia ⁎ Sarah M. Jacqueta,b, , Marissa J. Bettsc,d, John Warren Huntleya, Glenn A. Brockb,d a Department of Geological Sciences, University of Missouri, Columbia, MO 65211, USA b Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia c Palaeoscience Research Centre, School of Environmental and Rural Science, University of New England, Armidale, New South Wales 2351, Australia d Early Life Institute and Department of Geology, State Key Laboratory for Continental Dynamics, Northwest University, Xi'an 710069, China ARTICLE INFO ABSTRACT Keywords: The efects of sedimentological, depositional and taphonomic processes on preservation potential of Cambrian Microfacies small shelly fossils (SSF) have important implications for their utility in biostratigraphy and high-resolution Calcareous correlation. To investigate the efects of these processes on fossil occurrence, detailed microfacies analysis, Organophosphatic biostratigraphic data, and multivariate analyses are integrated from an exemplar stratigraphic section Taphonomy intersecting a suite of lower Cambrian carbonate palaeoenvironments in the northern Flinders Ranges, South Biominerals Australia. The succession deepens upsection, across a low-gradient shallow-marine shelf. Six depositional Facies Hardgrounds Sequences are identifed ranging from protected (FS1) and open (FS2) shelf/lagoonal systems, high-energy inner ramp shoal complex (FS3), mid-shelf (FS4), mid- to outer-shelf (FS5) and outer-shelf (FS6) environments. Non-metric multi-dimensional scaling ordination and two-way cluster analysis reveal an underlying bathymetric gradient as the main control on the distribution of SSFs.
    [Show full text]
  • Abstract Volume
    https://doi.org/10.3301/ABSGI.2019.04 Milano, 2-5 July 2019 ABSTRACT BOOK a cura della Società Geologica Italiana 3rd International Congress on Stratigraphy GENERAL CHAIRS Marco Balini, Università di Milano, Italy Elisabetta Erba, Università di Milano, Italy - past President Società Geologica Italiana 2015-2017 SCIENTIFIC COMMITTEE Adele Bertini, Peter Brack, William Cavazza, Mauro Coltorti, Piero Di Stefano, Annalisa Ferretti, Stanley C. Finney, Fabio Florindo, Fabrizio Galluzzo, Piero Gianolla, David A.T. Harper, Martin J. Head, Thijs van Kolfschoten, Maria Marino, Simonetta Monechi, Giovanni Monegato, Maria Rose Petrizzo, Claudia Principe, Isabella Raffi, Lorenzo Rook ORGANIZING COMMITTEE The Organizing Committee is composed by members of the Department of Earth Sciences “Ardito Desio” and of the Società Geologica Italiana Lucia Angiolini, Cinzia Bottini, Bernardo Carmina, Domenico Cosentino, Fabrizio Felletti, Daniela Germani, Fabio M. Petti, Alessandro Zuccari FIELD TRIP COMMITTEE Fabrizio Berra, Mattia Marini, Maria Letizia Pampaloni, Marcello Tropeano ABSTRACT BOOK EDITORS Fabio M. Petti, Giulia Innamorati, Bernardo Carmina, Daniela Germani Papers, data, figures, maps and any other material published are covered by the copyright own by the Società Geologica Italiana. DISCLAIMER: The Società Geologica Italiana, the Editors are not responsible for the ideas, opinions, and contents of the papers published; the authors of each paper are responsible for the ideas opinions and con- tents published. La Società Geologica Italiana, i curatori scientifici non sono responsabili delle opinioni espresse e delle affermazioni pubblicate negli articoli: l’autore/i è/sono il/i solo/i responsabile/i. ST3.2 Cambrian stratigraphy, events and geochronology Conveners and Chairpersons Per Ahlberg (Lund University, Sweden) Loren E.
    [Show full text]
  • First Skeletal Microfauna from the Cambrian Series 3 of the Jordan Rift Valley (Middle East)
    First skeletal microfauna from the Cambrian Series 3 of the Jordan Rift Valley (Middle East) OLAF ELICKI ELICKI, O., 2011:12:23. First skeletal microfauna from the Cambrian Series 3 of the Jordan Rift Valley (Middle East). Memoirs of the Association of Australasian Palaeontologists 42, 153-173. ISSN 0810-8889. For the first time, a Cambrian microfauna is reported from the Jordan Rift Valley. The fauna comes from low-latitude carbonates of the Numayri Member (Burj Formation, Jordan) and to a lesser degree the equivalent Nimra Member (Timna Formation, Israel). Co-occuring with trilobite, brachiopod and hyolith macrofossils, the microfauna is represented mostly by disarticulated poriferid (mostly hexactinellids) and echinoderm remains (eocrinoids and edrioasteroids). Among the hexactinellids, Rigbyella sp., many isolated triactins and tetractins, as well as a few pentactins and rare hexactins occur. Additional poriferid spicules come from heteractinids (Eiffelia araniformis [Missarzhevsky, 1981]) and polyactinellids (?Praephobetractinia). Chancelloriids (Archiasterella cf. hirundo Bengtson, 1990, Allonnia sp., Chancelloria sp., ?Ginospina sp.) are a rather rare faunal element. Micromolluscs are represented mainly by an indeterminable helcionellid. The probable octocoral spicule Microcoryne cephalata (Bengtson, 1990), torellellid and hyolithellid hyolithelminths, and a bradoriid arthropod occur as very few or single specimens. The same is the case with a probable siphogonuchitid. The occurrence of a cornulitid related microfossil may extend the stratigraphic range of this fossil group significantly. The rather low-diversity microfauna is overwhelmingly dominated by sessile epibenthic biota. The preferred feeding habit seems to have been suspension feeding and minor deposit feeding. The microfauna from the Jordan Rift Valley is typical for low-latitude carbonate environments of Cambrian Series 3 age that corresponds to the traditional late early to middle Cambrian.
    [Show full text]
  • Research Article the Continuing Debate on Deep Molluscan Phylogeny: Evidence for Serialia (Mollusca, Monoplacophora + Polyplacophora)
    Hindawi Publishing Corporation BioMed Research International Volume 2013, Article ID 407072, 18 pages http://dx.doi.org/10.1155/2013/407072 Research Article The Continuing Debate on Deep Molluscan Phylogeny: Evidence for Serialia (Mollusca, Monoplacophora + Polyplacophora) I. Stöger,1,2 J. D. Sigwart,3 Y. Kano,4 T. Knebelsberger,5 B. A. Marshall,6 E. Schwabe,1,2 and M. Schrödl1,2 1 SNSB-Bavarian State Collection of Zoology, Munchhausenstraße¨ 21, 81247 Munich, Germany 2 Faculty of Biology, Department II, Ludwig-Maximilians-Universitat¨ Munchen,¨ Großhaderner Straße 2-4, 82152 Planegg-Martinsried, Germany 3 Queen’s University Belfast, School of Biological Sciences, Marine Laboratory, 12-13 The Strand, Portaferry BT22 1PF, UK 4 Department of Marine Ecosystems Dynamics, Atmosphere and Ocean Research Institute, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan 5 Senckenberg Research Institute, German Centre for Marine Biodiversity Research (DZMB), Sudstrand¨ 44, 26382 Wilhelmshaven, Germany 6 Museum of New Zealand Te Papa Tongarewa, P.O. Box 467, Wellington, New Zealand Correspondence should be addressed to M. Schrodl;¨ [email protected] Received 1 March 2013; Revised 8 August 2013; Accepted 23 August 2013 Academic Editor: Dietmar Quandt Copyright © 2013 I. Stoger¨ et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Molluscs are a diverse animal phylum with a formidable fossil record. Although there is little doubt about the monophyly of the eight extant classes, relationships between these groups are controversial. We analysed a comprehensive multilocus molecular data set for molluscs, the first to include multiple species from all classes, including five monoplacophorans in both extant families.
    [Show full text]
  • Developing Perspectives on Molluscan Shells, Part 1: Introduction and Molecular Biology
    CHAPTER 1 DEVELOPING PERSPECTIVES ON MOLLUSCAN SHELLS, PART 1: INTRODUCTION AND MOLECULAR BIOLOGY KEVIN M. KOCOT1, CARMEL MCDOUGALL, and BERNARD M. DEGNAN 1Present Address: Department of Biological Sciences and Alabama Museum of Natural History, The University of Alabama, Tuscaloosa, AL 35487, USA; E-mail: [email protected] School of Biological Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia CONTENTS Abstract ........................................................................................................2 1.1 Introduction .........................................................................................2 1.2 Insights From Genomics, Transcriptomics, and Proteomics ............13 1.3 Novelty in Molluscan Biomineralization ..........................................21 1.4 Conclusions and Open Questions .....................................................24 Keywords ...................................................................................................27 References ..................................................................................................27 2 Physiology of Molluscs Volume 1: A Collection of Selected Reviews ABSTRACT Molluscs (snails, slugs, clams, squid, chitons, etc.) are renowned for their highly complex and robust shells. Shell formation involves the controlled deposition of calcium carbonate within a framework of macromolecules that are secreted by the outer epithelium of a specialized organ called the mantle. Molluscan shells display remarkable morphological
    [Show full text]
  • The Continuing Debate on Deep Molluscan Phylogeny: Evidence for Serialia (Mollusca, Monoplacophora + Polyplacophora)
    The Continuing Debate on Deep Molluscan Phylogeny: Evidence for Serialia (Mollusca, Monoplacophora + Polyplacophora) Stöger, I., Sigwart, J. D., Kano, Y., Marshall, B. A., Schwabe, E., & Schrödl, M. (2013). The Continuing Debate on Deep Molluscan Phylogeny: Evidence for Serialia (Mollusca, Monoplacophora + Polyplacophora). BioMed Research International, 2013, [407072]. https://doi.org/10.1155/2013/407072 Published in: BioMed Research International Document Version: Early version, also known as pre-print Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights Copyright 2013 The authors General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected]. Download date:11. Jan. 2021 The continuing debate on deep molluscan phylogeny: Evidence for Serialia (Mollusca, Monoplacophora + Polyplacophora) I. Stöger1, J. D. Sigwart2, Y. Kano3, T. Knebelsberger4, B. A. Marshall5, E. Schwabe1, M. Schrödl1§ 1Bavarian State Collection of Zoology, Münchhausenstr. 21, 81247 Munich, Germany. GeoBioCenterLMU and Department II, Faculty of Biology, Ludwig Maximilians-Universität München, Germany.
    [Show full text]
  • Shell Microstructures in Early Mollusks
    Vol. XLII(4): 2010 THE FESTIVUS Page 43 SHELL MICROSTRUCTURES IN EARLY MOLLUSKS MICHAEL J. VENDRASCO1*, SUSANNAH M. PORTER1, ARTEM V. KOUCHINSKY2, GUOXIANG LI3, and CHRISTINE Z. FERNANDEZ4 1Institute for Crustal Studies, University of California, Santa Barbara, CA, 93106, USA 2Department of Palaeozoology, Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden 3LPS, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, P.R. China, 414601 Madris Ave., Norwalk, CA 90650, USA Abstract: Shell microstructures in some of the oldest known mollusk fossils (from the early to middle Cambrian Period; 542 to 510 million years ago) are diverse, strong, and in some cases unusual. We herein review our recent work focused on different aspects of shell microstructures in Cambrian mollusks, briefly summarizing some of the major conclusions from a few of our recent publications and adding some new analysis. Overall, the data suggest that: (1) mollusks rapidly evolved disparate shell microstructures; (2) early mollusks had a complex shell with a different type of shell microstructure in the outer layer than in the inner one; (3) the modern molluscan biomineralization system, with precise control over crystal shapes and arrangements in a mantle cavity bounded by periostracum, was already in place during the Cambrian; (4) shell microstructure data provide a suite of characters useful in phylogenetic analyses of mollusks and mollusk-like Problematica, allowing better determination
    [Show full text]
  • Fossil Bivalves and the Sclerochronological Reawakening
    Paleobiology, 2021, pp. 1–23 DOI: 10.1017/pab.2021.16 Review Fossil bivalves and the sclerochronological reawakening David K. Moss* , Linda C. Ivany, and Douglas S. Jones Abstract.—The field of sclerochronology has long been known to paleobiologists. Yet, despite the central role of growth rate, age, and body size in questions related to macroevolution and evolutionary ecology, these types of studies and the data they produce have received only episodic attention from paleobiologists since the field’s inception in the 1960s. It is time to reconsider their potential. Not only can sclerochrono- logical data help to address long-standing questions in paleobiology, but they can also bring to light new questions that would otherwise have been impossible to address. For example, growth rate and life-span data, the very data afforded by chronological growth increments, are essential to answer questions related not only to heterochrony and hence evolutionary mechanisms, but also to body size and organism ener- getics across the Phanerozoic. While numerous fossil organisms have accretionary skeletons, bivalves offer perhaps one of the most tangible and intriguing pathways forward, because they exhibit clear, typically annual, growth increments and they include some of the longest-lived, non-colonial animals on the planet. In addition to their longevity, modern bivalves also show a latitudinal gradient of increasing life span and decreasing growth rate with latitude that might be related to the latitudinal diversity gradient. Is this a recently developed phenomenon or has it characterized much of the group’s history? When and how did extreme longevity evolve in the Bivalvia? What insights can the growth increments of fossil bivalves provide about hypotheses for energetics through time? In spite of the relative ease with which the tools of sclerochronology can be applied to these questions, paleobiologists have been slow to adopt sclerochrono- logical approaches.
    [Show full text]