University Physics I: Classical Mechanics

Total Page:16

File Type:pdf, Size:1020Kb

University Physics I: Classical Mechanics University of Arkansas, Fayetteville ScholarWorks@UARK Open Educational Resources 2-8-2019 University Physics I: Classical Mechanics Julio Gea-Banacloche University of Arkansas, Fayetteville Follow this and additional works at: https://scholarworks.uark.edu/oer Part of the Atomic, Molecular and Optical Physics Commons, Elementary Particles and Fields and String Theory Commons, Engineering Physics Commons, and the Other Physics Commons Citation Gea-Banacloche, J. (2019). University Physics I: Classical Mechanics. Open Educational Resources. Retrieved from https://scholarworks.uark.edu/oer/3 This Textbook is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Open Educational Resources by an authorized administrator of ScholarWorks@UARK. For more information, please contact ccmiddle@uark.edu. University Physics I: Classical Mechanics Julio Gea-Banacloche Cover image from NASA, https://www.nasa.gov/image-feature/jpl/not-really-starless-at-saturn University Physics I: Classical Mechanics Julio Gea-Banacloche First revision, Fall 2019 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Developed thanks to a grant from the University of Arkansas Libraries ii Contents Preface i 1 Reference frames, displacement, and velocity 1 1.1 Introduction ......................................... 1 1.1.1 Particles in classical mechanics .......................... 1 1.1.2 Aside: the atomic perspective ........................... 3 1.2 Position, displacement, velocity .............................. 3 1.2.1 Position ....................................... 4 1.2.2 Displacement .................................... 6 1.2.3 Velocity ....................................... 8 1.3 Reference frame changes and relative motion ...................... 14 1.4 In summary ......................................... 19 1.5 Examples .......................................... 21 1.5.1 Motion with (piecewise) constant velocity .................... 21 1.5.2 Addition of velocities, relative motion ...................... 24 iii iv CONTENTS 1.6 Problems .......................................... 27 2 Acceleration 31 2.1 The law of inertia ...................................... 31 2.1.1 Inertial reference frames .............................. 33 2.2 Acceleration ......................................... 35 2.2.1 Average and instantaneous acceleration ..................... 35 2.2.2 Motion with constant acceleration ........................ 39 2.2.3 Acceleration as a vector .............................. 41 2.2.4 Acceleration in different reference frames .................... 41 2.3 Free fall ........................................... 42 2.4 In summary ......................................... 44 2.5 Examples .......................................... 46 2.5.1 Motion with piecewise constant acceleration ................... 46 2.6 Problems .......................................... 48 3 Momentum and Inertia 51 3.1 Inertia ............................................ 51 3.1.1 Relative inertia and collisions ........................... 51 3.1.2 Inertial mass: definition and properties ..................... 55 3.2 Momentum ......................................... 56 3.2.1 Conservation of momentum; isolated systems .................. 56 CONTENTS v 3.3 Extended systems and center of mass ........................... 58 3.3.1 Center of mass motion for an isolated system .................. 59 3.3.2 Recoil and rocket propulsion ........................... 61 3.4 In summary ......................................... 61 3.5 Examples .......................................... 63 3.5.1 Reading a collision graph ............................. 63 3.5.2 Collision in different reference frames, center of mass,andrecoil ....... 65 3.6 Problems .......................................... 67 4 Kinetic Energy 69 4.1 Kinetic Energy ....................................... 69 4.1.1 Kinetic energy in collisions ............................ 70 4.1.2 Relative velocity and coefficient of restitution .................. 74 4.2 “Convertible” and “translational” kinetic energy .................... 76 4.2.1 Kinetic energy and momentum in different reference frames .......... 79 4.3 In summary ......................................... 80 4.4 Examples .......................................... 82 4.4.1 Collision graph revisited .............................. 82 4.4.2 Inelastic collision and explosive separation .................... 83 4.5 Problems .......................................... 86 5 Interactions and energy 89 vi CONTENTS 5.1 Conservative interactions ................................. 89 5.1.1 Potential energy .................................. 90 5.1.2 Potential energy functions and “energy landscapes” .............. 94 5.2 Dissipation of energy and thermal energy ........................ 96 5.3 Fundamental interactions, and other forms of energy .................. 98 5.4 Conservation of energy ................................... 99 5.5 In summary .........................................101 5.6 Examples ..........................................103 5.6.1 Inelastic collision in the middle of a swing ....................103 5.6.2 Kinetic energy to spring potential energy: block collides with spring .....104 5.7 Advanced Topics ......................................106 5.7.1 Two carts colliding and compressing a spring ..................106 5.7.2 Getting the potential energy function from collision data ............107 5.8 Problems ..........................................109 6 Interactions, part 2: Forces 113 6.1 Force .............................................113 6.1.1 Forces and systems of particles ..........................115 6.2 Forces and potential energy ................................116 6.3 Forces not derived from a potential energy ........................120 6.3.1 Tensions .......................................120 CONTENTS vii 6.3.2 Normal forces ....................................122 6.3.3 Static and kinetic friction forces .........................123 6.3.4 Air resistance ....................................125 6.4 Free-body diagrams ....................................126 6.5 In summary .........................................127 6.6 Examples ..........................................129 6.6.1 Dropping an object on a weighing scale .....................129 6.6.2 Speeding up and slowing down ..........................130 6.7 Problems ..........................................134 7 Impulse, Work and Power 137 7.1 Introduction: work and impulse ..............................137 7.2 Work on a single particle .................................138 7.2.1 Work done by the net force, and the Work-Energy Theorem ..........140 7.3 The “center of mass work” .................................141 7.4 Work done on a system by all the external forces ....................142 7.4.1 The no-dissipation case ..............................143 7.4.2 The general case: systems with dissipation ...................147 7.4.3 Energy dissipated by kinetic friction .......................150 7.5 Power ............................................150 7.6 In summary .........................................151 viii CONTENTS 7.7 Examples ..........................................153 7.7.1 Braking .......................................153 7.7.2 Work, energy and the choice of system: dissipative case ............154 7.7.3 Work, energy and the choice of system: non-dissipativecase..........155 7.7.4 Jumping .......................................156 7.8 Problems ..........................................158 8 Motion in two dimensions 161 8.1 Dealing with forces in two dimensions ..........................161 8.2 Projectile motion ......................................164 8.3 Inclined planes .......................................167 8.4 Motion on a circle (or part of a circle) ..........................169 8.4.1 Centripetal acceleration and centripetal force ..................169 8.4.2 Kinematic angular variables ...........................172 8.5 In summary .........................................175 8.6 Examples ..........................................177 8.6.1 The penny on the turntable ............................177 8.7 Advanced Topics ......................................179 8.7.1 Staying on track ..................................179 8.7.2 Going around a banked curve ...........................181 8.7.3 Rotating frames of reference: Centrifugal force and Coriolis force .......184 CONTENTS ix 8.8 Problems ..........................................186 9 Rotational dynamics 191 9.1 Rotational kinetic energy, and moment of inertia ....................191 9.2 Angular momentum ....................................193 9.3 The cross product and rotational quantities .......................197 9.4 Torque ............................................201 9.5 Statics ............................................204 9.6 Rolling motion .......................................207 9.7 In summary .........................................211 9.8 Examples ..........................................213 9.8.1 Torques and forces on the wheels of an accelerating bicycle ..........213 9.8.2 Blocks connected by rope over a pulley with non-zero mass ..........214 9.9 Problems ..........................................217 10 Gravity 221 10.1 The inverse-square law ...................................221 10.1.1 Gravitational potential energy ..........................224 10.1.2 Types of orbits under an inverse-square force ..................227
Recommended publications
  • Glossary Physics (I-Introduction)
    1 Glossary Physics (I-introduction) - Efficiency: The percent of the work put into a machine that is converted into useful work output; = work done / energy used [-]. = eta In machines: The work output of any machine cannot exceed the work input (<=100%); in an ideal machine, where no energy is transformed into heat: work(input) = work(output), =100%. Energy: The property of a system that enables it to do work. Conservation o. E.: Energy cannot be created or destroyed; it may be transformed from one form into another, but the total amount of energy never changes. Equilibrium: The state of an object when not acted upon by a net force or net torque; an object in equilibrium may be at rest or moving at uniform velocity - not accelerating. Mechanical E.: The state of an object or system of objects for which any impressed forces cancels to zero and no acceleration occurs. Dynamic E.: Object is moving without experiencing acceleration. Static E.: Object is at rest.F Force: The influence that can cause an object to be accelerated or retarded; is always in the direction of the net force, hence a vector quantity; the four elementary forces are: Electromagnetic F.: Is an attraction or repulsion G, gravit. const.6.672E-11[Nm2/kg2] between electric charges: d, distance [m] 2 2 2 2 F = 1/(40) (q1q2/d ) [(CC/m )(Nm /C )] = [N] m,M, mass [kg] Gravitational F.: Is a mutual attraction between all masses: q, charge [As] [C] 2 2 2 2 F = GmM/d [Nm /kg kg 1/m ] = [N] 0, dielectric constant Strong F.: (nuclear force) Acts within the nuclei of atoms: 8.854E-12 [C2/Nm2] [F/m] 2 2 2 2 2 F = 1/(40) (e /d ) [(CC/m )(Nm /C )] = [N] , 3.14 [-] Weak F.: Manifests itself in special reactions among elementary e, 1.60210 E-19 [As] [C] particles, such as the reaction that occur in radioactive decay.
    [Show full text]
  • A Brief History and Philosophy of Mechanics
    A Brief History and Philosophy of Mechanics S. A. Gadsden McMaster University, gadsdesa@mcmaster.ca 1. Introduction During this period, several clever inventions were created. Some of these were Archimedes screw, Hero of Mechanics is a branch of physics that deals with the Alexandria’s aeolipile (steam engine), the catapult and interaction of forces on a physical body and its trebuchet, the crossbow, pulley systems, odometer, environment. Many scholars consider the field to be a clockwork, and a rolling-element bearing (used in precursor to modern physics. The laws of mechanics Roman ships). [5] Although mechanical inventions apply to many different microscopic and macroscopic were being made at an accelerated rate, it wasn’t until objects—ranging from the motion of electrons to the after the Middle Ages when classical mechanics orbital patterns of galaxies. [1] developed. Attempting to understand the underlying principles of 3. Classical Period (1500 – 1900 AD) the universe is certainly a daunting task. It is therefore no surprise that the development of ‘idea and thought’ Classical mechanics had many contributors, although took many centuries, and bordered many different the most notable ones were Galileo, Huygens, Kepler, fields—atomism, metaphysics, religion, mathematics, Descartes and Newton. “They showed that objects and mechanics. The history of mechanics can be move according to certain rules, and these rules were divided into three main periods: antiquity, classical, and stated in the forms of laws of motion.” [1] quantum. The most famous of these laws were Newton’s Laws of 2. Period of Antiquity (800 BC – 500 AD) Motion, which accurately describe the relationships between force, velocity, and acceleration on a body.
    [Show full text]
  • Classical Mechanics
    Classical Mechanics Hyoungsoon Choi Spring, 2014 Contents 1 Introduction4 1.1 Kinematics and Kinetics . .5 1.2 Kinematics: Watching Wallace and Gromit ............6 1.3 Inertia and Inertial Frame . .8 2 Newton's Laws of Motion 10 2.1 The First Law: The Law of Inertia . 10 2.2 The Second Law: The Equation of Motion . 11 2.3 The Third Law: The Law of Action and Reaction . 12 3 Laws of Conservation 14 3.1 Conservation of Momentum . 14 3.2 Conservation of Angular Momentum . 15 3.3 Conservation of Energy . 17 3.3.1 Kinetic energy . 17 3.3.2 Potential energy . 18 3.3.3 Mechanical energy conservation . 19 4 Solving Equation of Motions 20 4.1 Force-Free Motion . 21 4.2 Constant Force Motion . 22 4.2.1 Constant force motion in one dimension . 22 4.2.2 Constant force motion in two dimensions . 23 4.3 Varying Force Motion . 25 4.3.1 Drag force . 25 4.3.2 Harmonic oscillator . 29 5 Lagrangian Mechanics 30 5.1 Configuration Space . 30 5.2 Lagrangian Equations of Motion . 32 5.3 Generalized Coordinates . 34 5.4 Lagrangian Mechanics . 36 5.5 D'Alembert's Principle . 37 5.6 Conjugate Variables . 39 1 CONTENTS 2 6 Hamiltonian Mechanics 40 6.1 Legendre Transformation: From Lagrangian to Hamiltonian . 40 6.2 Hamilton's Equations . 41 6.3 Configuration Space and Phase Space . 43 6.4 Hamiltonian and Energy . 45 7 Central Force Motion 47 7.1 Conservation Laws in Central Force Field . 47 7.2 The Path Equation .
    [Show full text]
  • Capacitance and Dielectrics
    Chapter 24 Capacitance and Dielectrics PowerPoint® Lectures for University Physics, Twelfth Edition – Hugh D. Young and Roger A. Freedman Lectures by James Pazun Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley Goals for Chapter 24 • To consider capacitors and capacitance • To study the use of capacitors in series and capacitors in parallel • To determine the energy in a capacitor • To examine dielectrics and see how different dielectrics lead to differences in capacitance Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley How to Accomplish these goals: Read the chapter Study this PowerPoint Presentation Do the homework: 11, 13, 15, 39, 41, 45, 71 Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley Introduction • When flash devices made the “big switch” from bulbs and flashcubes to early designs of electronic flash devices, you could use a camera and actually hear a high-pitched whine as the “flash charged up” for your next photo opportunity. • The person in the picture must have done something worthy of a picture. Just think of all those electrons moving on camera flash capacitors! Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley Keep charges apart and you get capacitance Any two charges insulated from each other form a capacitor. When we say that a capacitor has a charge Q or that charge Q is stored in the capacitor, we mean that the conductor at higher potential has charge +Q and at lower potential has charge –Q. When the capacitor is fully charged the potential difference across it is the same as the vab that charged it.
    [Show full text]
  • Engineering Physics I Syllabus COURSE IDENTIFICATION Course
    Engineering Physics I Syllabus COURSE IDENTIFICATION Course Prefix/Number PHYS 104 Course Title Engineering Physics I Division Applied Science Division Program Physics Credit Hours 4 credit hours Revision Date Fall 2010 Assessment Goal per Outcome(s) 70% INSTRUCTION CLASSIFICATION Academic COURSE DESCRIPTION This course is the first semester of a calculus-based physics course primarily intended for engineering and science majors. Course work includes studying forces and motion, and the properties of matter and heat. Topics will include motion in one, two, and three dimensions, mechanical equilibrium, momentum, energy, rotational motion and dynamics, periodic motion, and conservation laws. The laboratory (taken concurrently) presents exercises that are designed to reinforce the concepts presented and discussed during the lectures. PREREQUISITES AND/OR CO-RECQUISITES MATH 150 Analytic Geometry and Calculus I The engineering student should also be proficient in algebra and trigonometry. Concurrent with Phys. 140 Engineering Physics I Laboratory COURSE TEXT *The official list of textbooks and materials for this course are found on Inside NC. • COLLEGE PHYSICS, 2nd Ed. By Giambattista, Richardson, and Richardson, McGraw-Hill, 2007. • Additionally, the student must have a scientific calculator with trigonometric functions. COURSE OUTCOMES • To understand and be able to apply the principles of classical Newtonian mechanics. • To effectively communicate classical mechanics concepts and solutions to problems, both in written English and through mathematics. • To be able to apply critical thinking and problem solving skills in the application of classical mechanics. To demonstrate successfully accomplishing the course outcomes, the student should be able to: 1) Demonstrate knowledge of physical concepts by their application in problem solving.
    [Show full text]
  • Exercises in Classical Mechanics 1 Moments of Inertia 2 Half-Cylinder
    Exercises in Classical Mechanics CUNY GC, Prof. D. Garanin No.1 Solution ||||||||||||||||||||||||||||||||||||||||| 1 Moments of inertia (5 points) Calculate tensors of inertia with respect to the principal axes of the following bodies: a) Hollow sphere of mass M and radius R: b) Cone of the height h and radius of the base R; both with respect to the apex and to the center of mass. c) Body of a box shape with sides a; b; and c: Solution: a) By symmetry for the sphere I®¯ = I±®¯: (1) One can ¯nd I easily noticing that for the hollow sphere is 1 1 X ³ ´ I = (I + I + I ) = m y2 + z2 + z2 + x2 + x2 + y2 3 xx yy zz 3 i i i i i i i i 2 X 2 X 2 = m r2 = R2 m = MR2: (2) 3 i i 3 i 3 i i b) and c): Standard solutions 2 Half-cylinder ϕ (10 points) Consider a half-cylinder of mass M and radius R on a horizontal plane. a) Find the position of its center of mass (CM) and the moment of inertia with respect to CM. b) Write down the Lagrange function in terms of the angle ' (see Fig.) c) Find the frequency of cylinder's oscillations in the linear regime, ' ¿ 1. Solution: (a) First we ¯nd the distance a between the CM and the geometrical center of the cylinder. With σ being the density for the cross-sectional surface, so that ¼R2 M = σ ; (3) 2 1 one obtains Z Z 2 2σ R p σ R q a = dx x R2 ¡ x2 = dy R2 ¡ y M 0 M 0 ¯ 2 ³ ´3=2¯R σ 2 2 ¯ σ 2 3 4 = ¡ R ¡ y ¯ = R = R: (4) M 3 0 M 3 3¼ The moment of inertia of the half-cylinder with respect to the geometrical center is the same as that of the cylinder, 1 I0 = MR2: (5) 2 The moment of inertia with respect to the CM I can be found from the relation I0 = I + Ma2 (6) that yields " µ ¶ # " # 1 4 2 1 32 I = I0 ¡ Ma2 = MR2 ¡ = MR2 1 ¡ ' 0:3199MR2: (7) 2 3¼ 2 (3¼)2 (b) The Lagrange function L is given by L('; '_ ) = T ('; '_ ) ¡ U('): (8) The potential energy U of the half-cylinder is due to the elevation of its CM resulting from the deviation of ' from zero.
    [Show full text]
  • Rigid Body Dynamics: Student Misconceptions and Their Diagnosis1
    Rigid Body Dynamics: Student Misconceptions and Their Diagnosis1 D. L. Evans2, Gary L. Gray3, Francesco Costanzo4, Phillip Cornwell5, Brian Self6 Introduction: As pointed out by a rich body of research literature, including the three video case studies, Lessons from Thin Air, Private Universe, and, particularly, Can We Believe Our Eyes?, students subjected to traditional instruction in math, science and engineering often do not adequately resolve the misconceptions that they either bring to a subject or develop while studying a subject. These misconceptions, sometimes referred to as alternative views or student views of basic concepts because they make sense to the student, block the establishment of connections between basic concepts, connections which are necessary for understanding the macroconceptions that build on the basics. That is, the misconceptions of basic phenomena hinder the learning of further material that relies on understanding these concepts. The literature on misconceptions includes the field of particle mechanics, but does not include rigid body mechanics. For example, it has been established7 "that … commonsense beliefs about motion and force are incompatible with Newtonian concepts in most respects…" It is also known that replacing these "commonsense beliefs" with concepts aligned with modern thinking on science is extremely difficult to accomplish8. But a proper approach to accomplishing this replacement must begin with understanding what the misconceptions are, progress to being able to diagnose them, and eventually, reach the point whereby instructional approaches are developed for addressing them. In high school, college and university physics, research has led to the development of an assessment instrument called the Force Concept Inventory9 (FCI) that is now available for measuring the success of instruction in breaking these student misconceptions.
    [Show full text]
  • Electric Units and Standards
    DEPARTMENT OF COMMERCE OF THE Bureau of Standards S. W. STRATTON, Director No. 60 ELECTRIC UNITS AND STANDARDS list Edition 1 Issued September 25. 1916 WASHINGTON GOVERNMENT PRINTING OFFICE DEPARTMENT OF COMMERCE Circular OF THE Bureau of Standards S. W. STRATTON, Director No. 60 ELECTRIC UNITS AND STANDARDS [1st Edition] Issued September 25, 1916 WASHINGTON GOVERNMENT PRINTING OFFICE 1916 ADDITIONAL COPIES OF THIS PUBLICATION MAY BE PROCURED FROM THE SUPERINTENDENT OF DOCUMENTS GOVERNMENT PRINTING OFFICE WASHINGTON, D. C. AT 15 CENTS PER COPY A complete list of the Bureau’s publications may be obtained free of charge on application to the Bureau of Standards, Washington, D. C. ELECTRIC UNITS AND STANDARDS CONTENTS Page I. The systems of units 4 1. Units and standards in general 4 2. The electrostatic and electromagnetic systems 8 () The numerically different systems of units 12 () Gaussian systems, and ratios of the units 13 “ ’ (c) Practical ’ electromagnetic units 15 3. The international electric units 16 II. Evolution of present system of concrete standards 18 1. Early electric standards 18 2. Basis of present laws 22 3. Progress since 1893 24 III. Units and standards of the principal electric quantities 29 1. Resistance 29 () International ohm 29 Definition 29 Mercury standards 30 Secondary standards 31 () Resistance standards in practice 31 (c) Absolute ohm 32 2. Current 33 (a) International ampere 33 Definition 34 The silver voltameter 35 ( b ) Resistance standards used in current measurement 36 (c) Absolute ampere 37 3. Electromotive force 38 (a) International volt 38 Definition 39 Weston normal cell 39 (b) Portable Weston cells 41 (c) Absolute and semiabsolute volt 42 4.
    [Show full text]
  • Students' Depictions of Quantum Mechanics
    Students’ depictions of quantum mechanics: a contemporary review and some implications for research and teaching Johan Falk January 2007 Dissertation for the degree of Licentiate of Philosophy in Physics within the specialization Physics Education Research Uppsala University, 2007 Abstract This thesis presents a comprehensive review of research into students’ depic- tions of quantum mechanics. A taxonomy to describe and compare quantum mechanics education research is presented, and this taxonomy is used to highlight the foci of prior research. A brief history of quantum mechanics education research is also presented. Research implications of the review are discussed, and several areas for future research are proposed. In particular, this thesis highlights the need for investigations into what interpretations of quantum mechanics are employed in teaching, and that classical physics – in particular the classical particle model – appears to be a common theme in students’ inappropriate depictions of quantum mechanics. Two future research projects are presented in detail: one concerning inter- pretations of quantum mechanics, the other concerning students’ depictions of the quantum mechanical wave function. This thesis also discusses teaching implications of the review. This is done both through a discussion on how Paper 1 can be used as a resource for lecturers and through a number of teaching suggestions based on a merging of the contents of the review and personal teaching experience. List of papers and conference presentations Falk, J & Linder, C. (2005). Towards a concept inventory in quantum mechanics. Presentation at the Physics Education Research Conference, Salt Lake City, Utah, August 2005. Falk, J., Linder, C., & Lippmann Kung, R. (in review, 2007).
    [Show full text]
  • Guide for the Use of the International System of Units (SI)
    Guide for the Use of the International System of Units (SI) m kg s cd SI mol K A NIST Special Publication 811 2008 Edition Ambler Thompson and Barry N. Taylor NIST Special Publication 811 2008 Edition Guide for the Use of the International System of Units (SI) Ambler Thompson Technology Services and Barry N. Taylor Physics Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 (Supersedes NIST Special Publication 811, 1995 Edition, April 1995) March 2008 U.S. Department of Commerce Carlos M. Gutierrez, Secretary National Institute of Standards and Technology James M. Turner, Acting Director National Institute of Standards and Technology Special Publication 811, 2008 Edition (Supersedes NIST Special Publication 811, April 1995 Edition) Natl. Inst. Stand. Technol. Spec. Publ. 811, 2008 Ed., 85 pages (March 2008; 2nd printing November 2008) CODEN: NSPUE3 Note on 2nd printing: This 2nd printing dated November 2008 of NIST SP811 corrects a number of minor typographical errors present in the 1st printing dated March 2008. Guide for the Use of the International System of Units (SI) Preface The International System of Units, universally abbreviated SI (from the French Le Système International d’Unités), is the modern metric system of measurement. Long the dominant measurement system used in science, the SI is becoming the dominant measurement system used in international commerce. The Omnibus Trade and Competitiveness Act of August 1988 [Public Law (PL) 100-418] changed the name of the National Bureau of Standards (NBS) to the National Institute of Standards and Technology (NIST) and gave to NIST the added task of helping U.S.
    [Show full text]
  • The Development of the Action Principle a Didactic History from Euler-Lagrange to Schwinger Series: Springerbriefs in Physics
    springer.com Walter Dittrich The Development of the Action Principle A Didactic History from Euler-Lagrange to Schwinger Series: SpringerBriefs in Physics Provides a philosophical interpretation of the development of physics Contains many worked examples Shows the path of the action principle - from Euler's first contributions to present topics This book describes the historical development of the principle of stationary action from the 17th to the 20th centuries. Reference is made to the most important contributors to this topic, in particular Bernoullis, Leibniz, Euler, Lagrange and Laplace. The leading theme is how the action principle is applied to problems in classical physics such as hydrodynamics, electrodynamics and gravity, extending also to the modern formulation of quantum mechanics 1st ed. 2021, XV, 135 p. 23 illus., 1 illus. and quantum field theory, especially quantum electrodynamics. A critical analysis of operator in color. versus c-number field theory is given. The book contains many worked examples. In particular, the term "vacuum" is scrutinized. The book is aimed primarily at actively working researchers, Printed book graduate students and historians interested in the philosophical interpretation and evolution of Softcover physics; in particular, in understanding the action principle and its application to a wide range 54,99 € | £49.99 | $69.99 of natural phenomena. [1]58,84 € (D) | 60,49 € (A) | CHF 65,00 eBook 46,00 € | £39.99 | $54.99 [2]46,00 € (D) | 46,00 € (A) | CHF 52,00 Available from your library or springer.com/shop MyCopy [3] Printed eBook for just € | $ 24.99 springer.com/mycopy Order online at springer.com / or for the Americas call (toll free) 1-800-SPRINGER / or email us at: customerservice@springernature.com.
    [Show full text]
  • 6. Non-Inertial Frames
    6. Non-Inertial Frames We stated, long ago, that inertial frames provide the setting for Newtonian mechanics. But what if you, one day, find yourself in a frame that is not inertial? For example, suppose that every 24 hours you happen to spin around an axis which is 2500 miles away. What would you feel? Or what if every year you spin around an axis 36 million miles away? Would that have any e↵ect on your everyday life? In this section we will discuss what Newton’s equations of motion look like in non- inertial frames. Just as there are many ways that an animal can be not a dog, so there are many ways in which a reference frame can be non-inertial. Here we will just consider one type: reference frames that rotate. We’ll start with some basic concepts. 6.1 Rotating Frames Let’s start with the inertial frame S drawn in the figure z=z with coordinate axes x, y and z.Ourgoalistounderstand the motion of particles as seen in a non-inertial frame S0, with axes x , y and z , which is rotating with respect to S. 0 0 0 y y We’ll denote the angle between the x-axis of S and the x0- axis of S as ✓.SinceS is rotating, we clearly have ✓ = ✓(t) x 0 0 θ and ✓˙ =0. 6 x Our first task is to find a way to describe the rotation of Figure 31: the axes. For this, we can use the angular velocity vector ! that we introduced in the last section to describe the motion of particles.
    [Show full text]