Products of Two Borel Measures by Roy A

Total Page:16

File Type:pdf, Size:1020Kb

Products of Two Borel Measures by Roy A TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 269, Number 2, February 1982 PRODUCTS OF TWO BOREL MEASURES BY ROY A. JOHNSON Abstract. Let ¡j, and v be finite Borel measures on Hausdorff spaces X and Y, respectively, and suppose product measures ¡i X x v and p. X2 v are defined on the Borel sets of X X Y by integrating vertical and horizontal cross-section measure, respectively. Sufficient conditions are given so that ¡i x¡ v = p x2v and so that the usual product measure u X v can be extended to a Borel measure on X X Y by means of completion. Examples are given to illustrate these ideas. Throughout this paper p and v will be finite Borel measures on Hausdorff spaces A and Y, respectively. That is, p and v will be countably additive, nonnegative real-valued measures on "35(A) and %(Y), where ÇÔ(A) and %(Y) are the Borel sets of A and Y, respectively. Sometimes p will be regular, which is to say that it is inner regular with respect to the compact sets. At times v will be two-valued, which means that its range consists of the two values 0 and 1. If »»can be expressed as the sum of a countable collection of multiples of two-valued Borel measures, then v is purely atomic. A (not necessarily regular) Borel measure p will be called r-additive if p(C\ Fa) = inf p(Fa) whenever {Fa} is a decreasing family of closed sets [4, p. 96]. Equiva- lently, p is r-additive if p( U Va) = sup p( Va) for each increasingly directed family { Va} of open sets. Of course, each regular Borel measure is T-additive. A Borel rectangle is a set A X B such that A and B are Borel sets, and <3b(X) X ®(y) denotes the a-algebra generated by Borel rectangles. The notation p X v is reserved for the usual (not necessarily complete) product of p and v, with <$>(X)X %(Y) for its domain. If M is a Borel set in A X Y, let Mx = {y: (x,y) G M} for each x G X and let My = {x: (x,y) G M} for each y E Y. If M G % (X X y) and v(Mx) is measura- ble as a function in x (or p-almost everywhere equal to a measurable function), then we say that p X, v(M) is defined and we let p X, v(M) = f v(Mx) dp. If v is r-additive or if A is first countable, then Lemma 1.1 shows that v(Wx) is lower semicontinuous for each open set W in X X Y. Hence, if v is regular or if A is first countable, then v(Mx) is measurable as a function in x for all M G ® (A X Y) so that p x, v is a Borel measure on A X Y. In the same manner, if Received by the editors January 27, 1981. 1980 Mathematics Subject Classification. Primary 28A35; Secondary 28C15. Key words and phrases. Borel measure, purely atomic measure, separable-regular Borel measure, completion of a measure. © 1982 American Mathematical Society 0002-9947/82/0000-0777/$04.75 611 License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use 612 R. A. JOHNSON M G%(X X Y) and fi(My) is measurable (or »«-almost everywhere equal to a measurable function), then p x 2 v(M) is defined and fi X2v(M) = f p(My)dv. Notice that p X, v(M) and p X2 v(M) are defined and equal to p X v(M) for all M £ %(X)X <$>(Y). The main purpose of this paper is to give conditions in §3 such that each Borel set of A X y can be sandwiched between two members of © (A) X © ( Y) with the same p X »»-measure. (This happens, for example, if p is inner regular with respect to the separable compact sets, if A is first countable, and if v is purely atomic.) In that case, p X, v(M) and p X2 v(M) are defined and equal for all Borel sets M in A X y. The existence and equality of p X, v(M) and p x2 v(M) for all M G © (A X Y) are of interest because they make possible the existence and equality of both iterated integrals for each nonnegative Borel function on A X y [7, summary, p. 124]. I wish to thank D. H. Fremlin for helpful discussions concerning the ideas of this paper. In particular, Theorem 2.4 is due to him. 1. The p x j v-measure of an open set. In this section conditions are given under which each open set in A X y contains a set in ©(A) X %(Y) with the same p X x f-measure. For example, Theorem 1.2 shows that such containment occurs if A is first countable and p is regular. Lemma 1.1. Suppose v is a Borel measure on Y, and suppose W is an open set in X X Y. Let p G X, and let {Ua: a E A} be a base of open neighborhoods of p. If v( Wp) > k, then there exist a G A and an open set V such that Uax V G W and v( V) > k if either of the following conditions holds : (1) If k = card(/l), then the union of k Borel sets of v-measure zero has v-outer measure zero. (Of course, this condition is satisfied if A is countable.) (2) v(\J Vß) = sup v(Vß)for each increasingly directed family {Vß} of open sets in Y. That is, v is r-additive. Proof. Suppose W is open in A X y and that v( Wp) > k. For each y G Wp, choose an open neighborhood V(y) of y such that Ua X V(y) G W for some a G A. For each a G A, let Va be the union of those V(y) such that Ua X V(y) G W. Then Vp G Vy whenever Uß D Uy, and Wp = (J {Va: a G A}. Hence, there is a G A such that v( Va) > k. Since Ua X Va G W, we are done. Theorem 1.2. Suppose p is a regular Borel measure on X and that v is a Borel measure on Y. Then each open set in X X Y contains an open set in © (A) X % ( Y) with the same p X, v-measure if any one of the following conditions holds: (1) A is first countable. (2) The character (minimum cardinality of a neighborhood base) of each point in X is less than k, and the union of fewer than k Borel sets of v-measure zero has v-outer measure zero. (3) v is r-additive. License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use PRODUCTS OF TWO BOREL MEASURES 613 Proof. Let W be open in A X Y, and fix n. By Lusin's theorem, there exists a compact set A in A such that the restriction of the function v(Wx) to A is continuous and such that p(X \ K) < l/n [6, Exercise 55.3]. For eachp in A, we may choose by Lemma 1.1 open sets U(p) and V(p) such that (i)p E U(p), (ii) v(Wx) <v(Wp)+ l/n for all x G U(p) n A, (iii)v(V(p))>v(Wp)- l/«,and (iv) U(p) X V(p) G W. Since K is compact, there exists a finite collection of points {p,} in A such that A is covered by the corresponding collection of open sets {U(p¡)}. If W(n) = \J{U(p,)X V(Pi)}, then W(n) is an open subset of Wsuch that W(ri) G%(X) X <$>(Y)and such that p X, v(W)<p Xxv(W(n)) + (2/n)p(X) + (l/n)v(Y). Then W* = U W(ri) is the required open subset of W with the same p X, v- measure as W. The conclusion of Lemma 1.1 clearly holds if v is regular. As a matter of fact, almost the same lemma can be proved if open sets of Y are inner regular with respect to a class of sets having a certain type of property provided that the only sets in A with that property are the closed sets. In order to make these ideas precise, let us say that a topological property P is compact-like if whenever a set A has property P, then so does (i) the product of any compact set with A, (ii) each closed subset of A, and (hi) the image of A under every continuous, open mapping. For example, countable compactness is a compact-like property. Now a set A is called N0- bounded (or strongly countably compact) if the closure in A of each of its countable subsets is compact ([5, p. 201] or [12, pp. 763-764]). The property of Nn- boundedness is also a compact-like property. Lemma 1.3. Suppose v is a Borel measure on Y such that each open set in Y contains a set with a given compact-like property P and with arbitrarily close v-outer measure. Suppose that every set in X with property P is closed.
Recommended publications
  • Integral Representation of a Linear Functional on Function Spaces
    INTEGRAL REPRESENTATION OF LINEAR FUNCTIONALS ON FUNCTION SPACES MEHDI GHASEMI Abstract. Let A be a vector space of real valued functions on a non-empty set X and L : A −! R a linear functional. Given a σ-algebra A, of subsets of X, we present a necessary condition for L to be representable as an integral with respect to a measure µ on X such that elements of A are µ-measurable. This general result then is applied to the case where X carries a topological structure and A is a family of continuous functions and naturally A is the Borel structure of X. As an application, short solutions for the full and truncated K-moment problem are presented. An analogue of Riesz{Markov{Kakutani representation theorem is given where Cc(X) is replaced with whole C(X). Then we consider the case where A only consists of bounded functions and hence is equipped with sup-norm. 1. Introduction A positive linear functional on a function space A ⊆ RX is a linear map L : A −! R which assigns a non-negative real number to every function f 2 A that is globally non-negative over X. The celebrated Riesz{Markov{Kakutani repre- sentation theorem states that every positive functional on the space of continuous compactly supported functions over a locally compact Hausdorff space X, admits an integral representation with respect to a regular Borel measure on X. In symbols R L(f) = X f dµ, for all f 2 Cc(X). Riesz's original result [12] was proved in 1909, for the unit interval [0; 1].
    [Show full text]
  • Set Theory, Including the Axiom of Choice) Plus the Negation of CH
    ANNALS OF ~,IATltEMATICAL LOGIC - Volume 2, No. 2 (1970) pp. 143--178 INTERNAL COHEN EXTENSIONS D.A.MARTIN and R.M.SOLOVAY ;Tte RockeJ~'ller University and University (.~t CatiJbrnia. Berkeley Received 2 l)ecemt)er 1969 Introduction Cohen [ !, 2] has shown that tile continuum hypothesis (CH) cannot be proved in Zermelo-Fraenkel set theory. Levy and Solovay [9] have subsequently shown that CH cannot be proved even if one assumes the existence of a measurable cardinal. Their argument in tact shows that no large cardinal axiom of the kind present;y being considered by set theorists can yield a proof of CH (or of its negation, of course). Indeed, many set theorists - including the authors - suspect that C1t is false. But if we reject CH we admit Gurselves to be in a state of ignorance about a great many questions which CH resolves. While CH is a power- full assertion, its negation is in many ways quite weak. Sierpinski [ 1 5 ] deduces propcsitions there called C l - C82 from CH. We know of none of these propositions which is decided by the negation of CH and only one of them (C78) which is decided if one assumes in addition that a measurable cardinal exists. Among the many simple questions easily decided by CH and which cannot be decided in ZF (Zerme!o-Fraenkel set theory, including the axiom of choice) plus the negation of CH are tile following: Is every set of real numbers of cardinality less than tha't of the continuum of Lebesgue measure zero'? Is 2 ~0 < 2 ~ 1 ? Is there a non-trivial measure defined on all sets of real numbers? CIhis third question could be decided in ZF + not CH only in the unlikely event t Tile second author received support from a Sloan Foundation fellowship and tile National Science Foundation Grant (GP-8746).
    [Show full text]
  • Lecture Notes
    MEASURE THEORY AND STOCHASTIC PROCESSES Lecture Notes José Melo, Susana Cruz Faculdade de Engenharia da Universidade do Porto Programa Doutoral em Engenharia Electrotécnica e de Computadores March 2011 Contents 1 Probability Space3 1 Sample space Ω .....................................4 2 σ-eld F .........................................4 3 Probability Measure P .................................6 3.1 Measure µ ....................................6 3.2 Probability Measure P .............................7 4 Learning Objectives..................................7 5 Appendix........................................8 2 Chapter 1 Probability Space Let's consider the experience of throwing a dart on a circular target with radius r (assuming the dart always hits the target), divided in 4 dierent areas as illustrated in Figure 1.1. 4 3 2 1 Figure 1.1: Circular Target The circles that bound the regions 1, 2, 3, and 4, have radius of, respectively, r , r , 3r , and . 4 2 4 r Therefore, the probability that a dart lands in each region is: 1 , 3 , 5 , P (1) = 16 P (2) = 16 P (3) = 16 7 . P (4) = 16 For this kind of problems, the theory of discrete probability spaces suces. However, when it comes to problems involving either an innitely repeated operation or an innitely ne op- eration, this mathematical framework does not apply. This motivates the introduction of a measure-theoretic probability approach to correctly describe those cases. We dene the proba- bility space (Ω; F;P ), where Ω is the sample space, F is the event space, and P is the probability 3 measure. Each of them will be described in the following subsections. 1 Sample space Ω The sample space Ω is the set of all the possible results or outcomes ! of an experiment or observation.
    [Show full text]
  • Borel Structure in Groups and Their Dualso
    BOREL STRUCTURE IN GROUPS AND THEIR DUALSO GEORGE W. MACKEY Introduction. In the past decade or so much work has been done toward extending the classical theory of finite dimensional representations of com- pact groups to a theory of (not necessarily finite dimensional) unitary repre- sentations of locally compact groups. Among the obstacles interfering with various aspects of this program is the lack of a suitable natural topology in the "dual object"; that is in the set of equivalence classes of irreducible representations. One can introduce natural topologies but none of them seem to have reasonable properties except in extremely special cases. When the group is abelian for example the dual object itself is a locally compact abelian group. This paper is based on the observation that for certain purposes one can dispense with a topology in the dual object in favor of a "weaker struc- ture" and that there is a wide class of groups for which this weaker structure has very regular properties. If .S is any topological space one defines a Borel (or Baire) subset of 5 to be a member of the smallest family of subsets of 5 which includes the open sets and is closed with respect to the formation of complements and countable unions. The structure defined in 5 by its Borel sets we may call the Borel structure of 5. It is weaker than the topological structure in the sense that any one-to-one transformation of S onto 5 which preserves the topological structure also preserves the Borel structure whereas the converse is usually false.
    [Show full text]
  • STAT 571 Assignment 1 Solutions 1. If Ω Is a Set and C a Collection Of
    STAT 571 Assignment 1 solutions 1. If Ω is a set and a collection of subsets of Ω, let be the intersection of all σ-algebras that contain . ProveC that is the σ-algebra generatedA by . C A C Solution: Let α α A be the collection of all σ-algebras that contain , and fA j 2 g C set = α. We first show that is a σ-algebra. There are three things to A \ A A α A prove. 2 (a) For every α A, α is a σ-algebra, so Ω α, and hence Ω α A α = . 2 A 2 A 2 \ 2 A A (b) If B , then B α for every α A. Since α is a σ-algebra, we have c 2 A 2 A 2 A c B α. But this is true for every α A, so we have B . 2 A 2 2 A (c) If B1;B2;::: are sets in , then B1;B2;::: belong to α for each α A. A A 2 Since α is a σ-algebra, we have 1 Bn α. But this is true for every A [n=1 2 A α A, so we have 1 Bn . 2 [n=1 2 A Thus is a σ-algebra that contains , and it must be the smallest one since α for everyA α A. C A ⊆ A 2 2. Prove that the set of rational numbers Q is a Borel set in R. Solution: For every x R, the set x is the complement of an open set, and hence Borel.
    [Show full text]
  • (Measure Theory for Dummies) UWEE Technical Report Number UWEETR-2006-0008
    A Measure Theory Tutorial (Measure Theory for Dummies) Maya R. Gupta {gupta}@ee.washington.edu Dept of EE, University of Washington Seattle WA, 98195-2500 UWEE Technical Report Number UWEETR-2006-0008 May 2006 Department of Electrical Engineering University of Washington Box 352500 Seattle, Washington 98195-2500 PHN: (206) 543-2150 FAX: (206) 543-3842 URL: http://www.ee.washington.edu A Measure Theory Tutorial (Measure Theory for Dummies) Maya R. Gupta {gupta}@ee.washington.edu Dept of EE, University of Washington Seattle WA, 98195-2500 University of Washington, Dept. of EE, UWEETR-2006-0008 May 2006 Abstract This tutorial is an informal introduction to measure theory for people who are interested in reading papers that use measure theory. The tutorial assumes one has had at least a year of college-level calculus, some graduate level exposure to random processes, and familiarity with terms like “closed” and “open.” The focus is on the terms and ideas relevant to applied probability and information theory. There are no proofs and no exercises. Measure theory is a bit like grammar, many people communicate clearly without worrying about all the details, but the details do exist and for good reasons. There are a number of great texts that do measure theory justice. This is not one of them. Rather this is a hack way to get the basic ideas down so you can read through research papers and follow what’s going on. Hopefully, you’ll get curious and excited enough about the details to check out some of the references for a deeper understanding.
    [Show full text]
  • Probability Measures on Metric Spaces
    Probability measures on metric spaces Onno van Gaans These are some loose notes supporting the first sessions of the seminar Stochastic Evolution Equations organized by Dr. Jan van Neerven at the Delft University of Technology during Winter 2002/2003. They contain less information than the common textbooks on the topic of the title. Their purpose is to present a brief selection of the theory that provides a basis for later study of stochastic evolution equations in Banach spaces. The notes aim at an audience that feels more at ease in analysis than in probability theory. The main focus is on Prokhorov's theorem, which serves both as an important tool for future use and as an illustration of techniques that play a role in the theory. The field of measures on topological spaces has the luxury of several excellent textbooks. The main source that has been used to prepare these notes is the book by Parthasarathy [6]. A clear exposition is also available in one of Bour- baki's volumes [2] and in [9, Section 3.2]. The theory on the Prokhorov metric is taken from Billingsley [1]. The additional references for standard facts on general measure theory and general topology have been Halmos [4] and Kelley [5]. Contents 1 Borel sets 2 2 Borel probability measures 3 3 Weak convergence of measures 6 4 The Prokhorov metric 9 5 Prokhorov's theorem 13 6 Riesz representation theorem 18 7 Riesz representation for non-compact spaces 21 8 Integrable functions on metric spaces 24 9 More properties of the space of probability measures 26 1 The distribution of a random variable in a Banach space X will be a probability measure on X.
    [Show full text]
  • Descriptive Set Theory
    Descriptive Set Theory David Marker Fall 2002 Contents I Classical Descriptive Set Theory 2 1 Polish Spaces 2 2 Borel Sets 14 3 E®ective Descriptive Set Theory: The Arithmetic Hierarchy 27 4 Analytic Sets 34 5 Coanalytic Sets 43 6 Determinacy 54 7 Hyperarithmetic Sets 62 II Borel Equivalence Relations 73 1 8 ¦1-Equivalence Relations 73 9 Tame Borel Equivalence Relations 82 10 Countable Borel Equivalence Relations 87 11 Hyper¯nite Equivalence Relations 92 1 These are informal notes for a course in Descriptive Set Theory given at the University of Illinois at Chicago in Fall 2002. While I hope to give a fairly broad survey of the subject we will be concentrating on problems about group actions, particularly those motivated by Vaught's conjecture. Kechris' Classical Descriptive Set Theory is the main reference for these notes. Notation: If A is a set, A<! is the set of all ¯nite sequences from A. Suppose <! σ = (a0; : : : ; am) 2 A and b 2 A. Then σ b is the sequence (a0; : : : ; am; b). We let ; denote the empty sequence. If σ 2 A<!, then jσj is the length of σ. If f : N ! A, then fjn is the sequence (f(0); : : :b; f(n ¡ 1)). If X is any set, P(X), the power set of X is the set of all subsets X. If X is a metric space, x 2 X and ² > 0, then B²(x) = fy 2 X : d(x; y) < ²g is the open ball of radius ² around x. Part I Classical Descriptive Set Theory 1 Polish Spaces De¯nition 1.1 Let X be a topological space.
    [Show full text]
  • Lecture 2 the Borel Σ-Algebra
    MA40042 Measure Theory and Integration • A set K ⊂ Rd is compact if every open cover of K has a finite subcover. That is, if K can be `covered' by a (not necessarily countable) union of open sets [ d Lecture 2 K ⊂ Gα;Gα ⊂ R open for all α 2 I; The Borel σ-algebra α2I then there exists a finite subset fα1; : : : ; αN g ⊂ I that also covers K, N [ K ⊂ G : • Review of open, closed, αn n=1 and compact sets in Rd • The Borel σ-algebra on Rd Checking whether a set is compact under this definition can be difficult, but is made much easier by the following theorem (which we won't prove here). • Intervals and boxes in Rd Theorem 2.2 (Heine{Borel theorem). A set K ⊂ Rd is compact if and only if it is closed and bounded. For countable sets X, the powerset P(X) is a useful σ-algebra. But in larger d sets, such as R or R , the full powerset is often too big for interesting measures to Bounded here means that K ⊂ B(x; r) for some x 2 Rd and some r 2 (0; 1). exist, such as the Lebesgue length/area/volume measure. (We'll see a example of this later in the course.) d d 2.2 B( ) On R or R a useful σ-algebra is the Borel σ-algebra. The benefits of the Borel R σ-algebra are: Fix d, and write G, F, and K for, respectively, the collection of open, closed, and compact sets in d.
    [Show full text]
  • Descriptive Set Theory and the Ergodic Theory of Countable Groups
    DESCRIPTIVE SET THEORY AND THE ERGODIC THEORY OF COUNTABLE GROUPS Thesis by Robin Daniel Tucker-Drob In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology Pasadena, California 2013 (Defended April 17, 2013) ii c 2013 Robin Daniel Tucker-Drob All Rights Reserved iii Acknowledgements I would like to thank my advisor Alexander Kechris for his invaluable guidance and support, for his generous feedback, and for many (many!) discussions. In addition I would like to thank Miklos Abert,´ Lewis Bowen, Clinton Conley, Darren Creutz, Ilijas Farah, Adrian Ioana, David Kerr, Andrew Marks, Benjamin Miller, Jesse Peterson, Ernest Schimmerling, Miodrag Sokic, Simon Thomas, Asger Tornquist,¨ Todor Tsankov, Anush Tserunyan, and Benjy Weiss for many valuable conversations over the past few years. iv Abstract The primary focus of this thesis is on the interplay of descriptive set theory and the ergodic theory of group actions. This incorporates the study of turbulence and Borel re- ducibility on the one hand, and the theory of orbit equivalence and weak equivalence on the other. Chapter 2 is joint work with Clinton Conley and Alexander Kechris; we study measurable graph combinatorial invariants of group actions and employ the ultraproduct construction as a way of constructing various measure preserving actions with desirable properties. Chapter 3 is joint work with Lewis Bowen; we study the property MD of resid- ually finite groups, and we prove a conjecture of Kechris by showing that under general hypotheses property MD is inherited by a group from one of its co-amenable subgroups. Chapter 4 is a study of weak equivalence.
    [Show full text]
  • Stationary Probability Measures and Topological Realizations
    ISRAEL JOURNAL OF MATHEMATICS ?? (2013), 1{14 DOI: 10.1007/s??????-??????-?????? STATIONARY PROBABILITY MEASURES AND TOPOLOGICAL REALIZATIONS BY Clinton T. Conley∗ 584 Malott Hall Cornell University Ithaca, NY 14853 USA e-mail: [email protected] URL: http://www.math.cornell.edu/People/Faculty/conley.html AND Alexander S. Kechris∗∗ Mathematics 253-37 Caltech Pasadena, CA 91125 USA e-mail: [email protected] URL: http://www.math.caltech.edu/people/kechris.html AND Benjamin D. Miller∗ Institut f¨urmathematische Logik und Grundlagenforschung Fachbereich Mathematik und Informatik Universit¨atM¨unster Einsteinstraße 62 48149 M¨unster Germany e-mail: [email protected] URL: http://wwwmath.uni-muenster.de/u/ben.miller 1 2 C.T. CONLEY, A.S. KECHRIS AND B.D. MILLER Isr. J. Math. ABSTRACT We establish the generic inexistence of stationary Borel probability mea- sures for aperiodic Borel actions of countable groups on Polish spaces. Using this, we show that every aperiodic continuous action of a countable group on a compact Polish space has an invariant Borel set on which it has no σ-compact realization. 1. Introduction It is well known that every standard Borel space is Borel isomorphic to a σ- compact Polish space (see [Kec95, Theorem 15.6]), and that every Borel action of a countable discrete group on a standard Borel space is Borel isomorphic to a continuous action on a Polish space (see [Kec95, Theorem 13.1]). Here we consider obstacles to simultaneously achieving both results. In x2, we give elementary examples of continuous actions of countable groups on Polish spaces which are not Borel isomorphic to continuous actions on σ- compact Hausdorff spaces.
    [Show full text]
  • Real Analysis II, Winter 2018
    Real Analysis II, Winter 2018 From the Finnish original “Moderni reaalianalyysi”1 by Ilkka Holopainen adapted by Tuomas Hytönen February 22, 2018 1Version dated September 14, 2011 Contents 1 General theory of measure and integration 2 1.1 Measures . 2 1.11 Metric outer measures . 4 1.20 Regularity of measures, Radon measures . 7 1.31 Uniqueness of measures . 9 1.36 Extension of measures . 11 1.45 Product measure . 14 1.52 Fubini’s theorem . 16 2 Hausdorff measures 21 2.1 Basic properties of Hausdorff measures . 21 2.12 Hausdorff dimension . 24 2.17 Hausdorff measures on Rn ...................... 25 3 Compactness and convergence of Radon measures 30 3.1 Riesz representation theorem . 30 3.13 Weak convergence of measures . 35 3.17 Compactness of measures . 36 4 On the Hausdorff dimension of fractals 39 4.1 Mass distribution and Frostman’s lemma . 39 4.16 Self-similar fractals . 43 5 Differentiation of measures 52 5.1 Besicovitch and Vitali covering theorems . 52 1 Chapter 1 General theory of measure and integration 1.1 Measures Let X be a set and P(X) = fA : A ⊂ Xg its power set. Definition 1.2. A collection M ⊂ P (X) is a σ-algebra of X if 1. ? 2 M; 2. A 2 M ) Ac = X n A 2 M; S1 3. Ai 2 M, i 2 N ) i=1 Ai 2 M. Example 1.3. 1. P(X) is the largest σ-algebra of X; 2. f?;Xg is the smallest σ-algebra of X; 3. Leb(Rn) = the Lebesgue measurable subsets of Rn; 4.
    [Show full text]