Math 595: Geometric Measure Theory

Total Page:16

File Type:pdf, Size:1020Kb

Math 595: Geometric Measure Theory MATH 595: GEOMETRIC MEASURE THEORY FALL 2015 0. Introduction Geometric measure theory considers the structure of Borel sets and Borel measures in metric spaces. It lies at the border between differential geometry and topology, and services a variety of areas: partial differential equations and the calculus of variations, geometric function theory, number theory, etc. The emphasis is on sets with a fine, irregular structure which cannot be well described by the classical tools of geometric analysis. Mandelbrot introduced the term \fractal" to describe sets of this nature. Dynamical systems provide a rich source of examples: Julia sets for rational maps of one complex variable, limit sets of Kleinian groups, attractors of iterated function systems and nonlinear differential systems, and so on. In addition to its intrinsic interest, geometric measure theory has been a valuable tool for problems arising from real and complex analysis, harmonic analysis, PDE, and other fields. For instance, rectifiability criteria and metric curvature conditions played a key role in Tolsa's resolution of the longstanding Painlev´eproblem on removable sets for bounded analytic functions. Major topics within geometric measure theory which we will discuss include Hausdorff measure and dimension, density theorems, energy and capacity methods, almost sure di- mension distortion theorems, Sobolev spaces, tangent measures, and rectifiability. Rectifiable sets and measures provide a rich measure-theoretic generalization of smooth differential submanifolds and their volume measures. The theory of rectifiable sets can be viewed as an extension of differential geometry in which the basic machinery and tools of the subject (tangent spaces, differential operators, vector bundles) are replaced by approxi- mate, measure-theoretic analogs. In contrast with smooth manifolds, rectifiable sets form a complete system; limits of rectifiable sets (in a suitable sense) are rectifiable. Classically, geometric measure theory was developed in the setting of finite-dimensional Euclidean spaces. Contemporary trends in analysis and geometry in metric measure spaces, including analysis on fractals, necessitate extensions to non-Riemannian and nonsmooth spaces. Sub-Riemannian spaces, particularly, the sub-Riemannian Heisenberg group, are an important testing ground and model for the general theory. In the first part of the course we will give an extended introduction to geometric measure theory in Euclidean spaces. In the second part we will discuss ongoing efforts to extend this theory into non-Riemannian and general metric spaces. Motivation for such efforts will be indicated. We will emphasize notions of rectifiability and almost sure dimension distortion theorems in sub-Riemannian spaces. The notation [M] refers to the book Geometry of Sets and Measures in Euclidean Spaces by Pertti Mattila (Cambridge University Press, 1995). 1 2 Math 595: Geometric Measure Theory (Fall 2015) 1. Review of Measure Theory 1.1. Metric spaces. A metric space is a set X together with a nonnegative, symmetric function d on X × X which satisfies the triangle inequality d(x; y) ≤ d(x; z) + d(z; y) 8x; y; z 2 X and vanishes only on the diagonal of X × X. We write (X; d) for the space X equipped with the metric d. Often we will not explicitly identify the metric d under consideration. Our n standard example is the Euclidean space R equipped with the Euclidean metric dE: q 2 2 dE(x; y) = jx − yj; j(x1; : : : ; xn)j = x1 + ··· + xn: The open ball in X with center x 2 X and radius r 2 (0; 1) is B(x; r) = fy 2 X : d(x; y) < rg: The closed ball with this center and radius is B(x; r) = fy 2 X : d(x; y) ≤ rg: Every metric space (X; d) is equipped with a canonical topology, obtained by taking the family of open balls as a base. In contrast with the situation in Euclidean space, • the center and radius of a ball in a general metric space are not uniquely determined. • the (topological) closure B(x; r) of B(x; r) need not coincide with B(x; r). The diameter of a (nonempty) subset A ⊂ X is diam(A) := supfd(x; y): x; y 2 Ag and the distance between two (nonempty) sets A; B ⊂ X is dist(A; B) = inffd(x; y): x 2 A; y 2 Bg: We abbreviate dist(fxg;B) = dist(x; B). Observe that diam(A) = diam(A) and dist(A; B) = dist(A; B) for any A; B ⊂ X, where A denotes the closure of A. The diameter of any ball in a metric space satisfies diam B(x; r) ≤ 2r. Equality holds in Rn for all x and all r > 0, but need not hold in general metric spaces. For > 0 and A ⊂ X the -neighborhood of A in X is the set [ N(A) := fx 2 X : dist(x; A) < g = B(x; ): x2A 1.2. Measures. For us, a measure on a space X will mean a nonnegative (possibly infinite- valued), monotonic, countably subadditive set function defined on the power set of X which vanishes on the empty set. More precisely, it is a function µ : P(X) ! [0; 1] (where P(X) = fA : A ⊂ Xg denotes the power set of X) such that µ(;) = 0; µ(A) ≤ µ(B) if A ⊂ B ⊂ X, and [ X µ( Ai) ≤ µ(Ai) i i if A1;A2; · · · ⊂ X. Math 595: Geometric Measure Theory (Fall 2015) 3 Recall that a set A ⊂ X is called (µ-)measurable if µ(E) = µ(E \ A) + µ(E n A) 8E ⊂ X: In other words, A splits the measure of each subset of E. The collection Mµ(X) of µ- measurable sets forms a σ-algebra: it is closed under complements and countable unions. Each measure is countably additive on pairwise disjoint measurable sets: if A1;A2; · · · 2 Mµ(X) and Ai \ Aj = ; whenever i 6= j, then [ X (1.2.1) µ( Ai) = µ(Ai): i i Remark 1.2.2. What we call a measure here is what is usually called an \outer measure", with the term \measure" reserved for the restriction of the outer measure to the σ-algebra of measurable sets. The terminology which we use here is traditional in geometric measure theory. It is essentially equivalent; any countable additive nonnegative set function defined on a σ-algebra of subsets of X can be extended to a measure on X (in the above sense). See Exercise 1.1 in [M]. Among various properties of measures and measurable sets we highlight the following. Proposition 1.2.3. Let A1;A2;::: 2 Mµ(X). S1 (i) If A1 ⊂ A2 ⊂ A3 ⊂ · · · , then µ( i=1 Ai) = limi!1 µ(Ai). T1 (ii) If A1 ⊃ A2 ⊃ A3 ⊃ · · · , and µ(A1) < 1, then µ( i=1 Ai) = limi!1 µ(Ai). From now on we assume that the underlying space X is equipped with a metric d. The Borel σ-algebra of X is the smallest σ-algebra containing the open sets. Elements of the Borel σ-algebra are called Borel sets. A measure µ on (X; d) is said to be • finite if µ(X) < 1; • locally finite if for every x 2 X there exists r > 0 so that µ(B(x; r)) < 1; S1 • σ-finite if there exist A1;A2;::: ⊂ X so that X = i=1 Ai and µ(Ai) < 1 for all i, • Borel if every Borel set is measurable; • Borel regular if it is Borel and each set A is a subset of a Borel set B with µ(A) = µ(B); • Radon if µ(K) < 1 for all compact sets K, µ(V ) = supfµ(K): K ⊂ V compactg for all open sets V , and µ(A) = inffµ(V ): V ⊃ A openg for all sets A; • doubling if it is locally finite, Borel, and there exists a constant Cµ < 1 so that 0 < µ(B(x; 2r)) ≤ Cµµ(B(x; r)) < 1 for all x 2 X and r > 0. All of the measures we will consider in this course will be Borel, and virtually all of them will be Borel regular. Although many measures which we will consider will be locally finite, a notable exception is the family of Hausdorff measures which will figure prominently in the course (see subsection 1.4 for the definition). The Hausdorff measure Hα on Rn is not locally finite for any 0 ≤ α < n. 4 Math 595: Geometric Measure Theory (Fall 2015) All locally finite Borel regular measures on complete, separable metric spaces are Radon. Doubling measures are extensively studied in harmonic and geometric analysis. We will consider them in more detail in section 2. A necessary and sufficient condition for a measure µ on a metric space (X; d) to be Borel is Carath´eodory's criterion: (1.2.4) µ(A [ B) = µ(A) + µ(B) whenever A; B ⊂ X satisfy dist(A; B) > 0. The support spt µ of a Borel measure µ is the complement of the largest open set whose measure is zero. In other words, \ spt µ := fF : F ⊂ X is closed, µ(X n F ) = 0g: Exercise 1.2.5. Show that x 2 spt µ if and only if µ(B(x; r)) > 0 for all r > 0. It is time to discuss examples. Example 1.2.6 (Counting measure). Let X be a set. For each subset A ⊂ X let µ(A) be the cardinality of A. Then µ is a measure in X. It is known as counting measure. Whenever X is equipped with a metric, counting measure is Borel regular. It is finite if and only if X is a finite set. It is locally finite if and only if X is a discrete set (every compact subset of X is finite).
Recommended publications
  • Integral Representation of a Linear Functional on Function Spaces
    INTEGRAL REPRESENTATION OF LINEAR FUNCTIONALS ON FUNCTION SPACES MEHDI GHASEMI Abstract. Let A be a vector space of real valued functions on a non-empty set X and L : A −! R a linear functional. Given a σ-algebra A, of subsets of X, we present a necessary condition for L to be representable as an integral with respect to a measure µ on X such that elements of A are µ-measurable. This general result then is applied to the case where X carries a topological structure and A is a family of continuous functions and naturally A is the Borel structure of X. As an application, short solutions for the full and truncated K-moment problem are presented. An analogue of Riesz{Markov{Kakutani representation theorem is given where Cc(X) is replaced with whole C(X). Then we consider the case where A only consists of bounded functions and hence is equipped with sup-norm. 1. Introduction A positive linear functional on a function space A ⊆ RX is a linear map L : A −! R which assigns a non-negative real number to every function f 2 A that is globally non-negative over X. The celebrated Riesz{Markov{Kakutani repre- sentation theorem states that every positive functional on the space of continuous compactly supported functions over a locally compact Hausdorff space X, admits an integral representation with respect to a regular Borel measure on X. In symbols R L(f) = X f dµ, for all f 2 Cc(X). Riesz's original result [12] was proved in 1909, for the unit interval [0; 1].
    [Show full text]
  • Geometric Integration Theory Contents
    Steven G. Krantz Harold R. Parks Geometric Integration Theory Contents Preface v 1 Basics 1 1.1 Smooth Functions . 1 1.2Measures.............................. 6 1.2.1 Lebesgue Measure . 11 1.3Integration............................. 14 1.3.1 Measurable Functions . 14 1.3.2 The Integral . 17 1.3.3 Lebesgue Spaces . 23 1.3.4 Product Measures and the Fubini–Tonelli Theorem . 25 1.4 The Exterior Algebra . 27 1.5 The Hausdorff Distance and Steiner Symmetrization . 30 1.6 Borel and Suslin Sets . 41 2 Carath´eodory’s Construction and Lower-Dimensional Mea- sures 53 2.1 The Basic Definition . 53 2.1.1 Hausdorff Measure and Spherical Measure . 55 2.1.2 A Measure Based on Parallelepipeds . 57 2.1.3 Projections and Convexity . 57 2.1.4 Other Geometric Measures . 59 2.1.5 Summary . 61 2.2 The Densities of a Measure . 64 2.3 A One-Dimensional Example . 66 2.4 Carath´eodory’s Construction and Mappings . 67 2.5 The Concept of Hausdorff Dimension . 70 2.6 Some Cantor Set Examples . 73 i ii CONTENTS 2.6.1 Basic Examples . 73 2.6.2 Some Generalized Cantor Sets . 76 2.6.3 Cantor Sets in Higher Dimensions . 78 3 Invariant Measures and the Construction of Haar Measure 81 3.1 The Fundamental Theorem . 82 3.2 Haar Measure for the Orthogonal Group and the Grassmanian 90 3.2.1 Remarks on the Manifold Structure of G(N,M).... 94 4 Covering Theorems and the Differentiation of Integrals 97 4.1 Wiener’s Covering Lemma and its Variants .
    [Show full text]
  • Measure and Integration (Under Construction)
    Measure and Integration (under construction) Gustav Holzegel∗ April 24, 2017 Abstract These notes accompany the lecture course ”Measure and Integration” at Imperial College London (Autumn 2016). They follow very closely the text “Real-Analysis” by Stein-Shakarchi, in fact most proofs are simple rephrasings of the proofs presented in the aforementioned book. Contents 1 Motivation 3 1.1 Quick review of the Riemann integral . 3 1.2 Drawbacks of the class R, motivation of the Lebesgue theory . 4 1.2.1 Limits of functions . 5 1.2.2 Lengthofcurves ....................... 5 1.2.3 TheFundamentalTheoremofCalculus . 5 1.3 Measures of sets in R ......................... 6 1.4 LiteratureandFurtherReading . 6 2 Measure Theory: Lebesgue Measure in Rd 7 2.1 Preliminaries and Notation . 7 2.2 VolumeofRectanglesandCubes . 7 2.3 Theexteriormeasure......................... 9 2.3.1 Examples ........................... 9 2.3.2 Propertiesoftheexteriormeasure . 10 2.4 Theclassof(Lebesgue)measurablesets . 12 2.4.1 The property of countable additivity . 14 2.4.2 Regularity properties of the Lebesgue measure . 15 2.4.3 Invariance properties of the Lebesgue measure . 16 2.4.4 σ-algebrasandBorelsets . 16 2.5 Constructionofanon-measurableset. 17 2.6 MeasurableFunctions ........................ 19 2.6.1 Some abstract preliminary remarks . 19 2.6.2 Definitions and equivalent formulations of measurability . 19 2.6.3 Properties 1: Behaviour under compositions . 21 2.6.4 Properties 2: Behaviour under limits . 21 2.6.5 Properties3: Behaviourof sums and products . 22 ∗Imperial College London, Department of Mathematics, South Kensington Campus, Lon- don SW7 2AZ, United Kingdom. 1 2.6.6 Thenotionof“almosteverywhere”. 22 2.7 Building blocks of integration theory .
    [Show full text]
  • On Stochastic Distributions and Currents
    NISSUNA UMANA INVESTIGAZIONE SI PUO DIMANDARE VERA SCIENZIA S’ESSA NON PASSA PER LE MATEMATICHE DIMOSTRAZIONI LEONARDO DA VINCI vol. 4 no. 3-4 2016 Mathematics and Mechanics of Complex Systems VINCENZO CAPASSO AND FRANCO FLANDOLI ON STOCHASTIC DISTRIBUTIONS AND CURRENTS msp MATHEMATICS AND MECHANICS OF COMPLEX SYSTEMS Vol. 4, No. 3-4, 2016 dx.doi.org/10.2140/memocs.2016.4.373 ∩ MM ON STOCHASTIC DISTRIBUTIONS AND CURRENTS VINCENZO CAPASSO AND FRANCO FLANDOLI Dedicated to Lucio Russo, on the occasion of his 70th birthday In many applications, it is of great importance to handle random closed sets of different (even though integer) Hausdorff dimensions, including local infor- mation about initial conditions and growth parameters. Following a standard approach in geometric measure theory, such sets may be described in terms of suitable measures. For a random closed set of lower dimension with respect to the environment space, the relevant measures induced by its realizations are sin- gular with respect to the Lebesgue measure, and so their usual Radon–Nikodym derivatives are zero almost everywhere. In this paper, how to cope with these difficulties has been suggested by introducing random generalized densities (dis- tributions) á la Dirac–Schwarz, for both the deterministic case and the stochastic case. For the last one, mean generalized densities are analyzed, and they have been related to densities of the expected values of the relevant measures. Ac- tually, distributions are a subclass of the larger class of currents; in the usual Euclidean space of dimension d, currents of any order k 2 f0; 1;:::; dg or k- currents may be introduced.
    [Show full text]
  • Extremal Dependence Concepts
    Extremal dependence concepts Giovanni Puccetti1 and Ruodu Wang2 1Department of Economics, Management and Quantitative Methods, University of Milano, 20122 Milano, Italy 2Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, ON N2L3G1, Canada Journal version published in Statistical Science, 2015, Vol. 30, No. 4, 485{517 Minor corrections made in May and June 2020 Abstract The probabilistic characterization of the relationship between two or more random variables calls for a notion of dependence. Dependence modeling leads to mathematical and statistical challenges and recent developments in extremal dependence concepts have drawn a lot of attention to probability and its applications in several disciplines. The aim of this paper is to review various concepts of extremal positive and negative dependence, including several recently established results, reconstruct their history, link them to probabilistic optimization problems, and provide a list of open questions in this area. While the concept of extremal positive dependence is agreed upon for random vectors of arbitrary dimensions, various notions of extremal negative dependence arise when more than two random variables are involved. We review existing popular concepts of extremal negative dependence given in literature and introduce a novel notion, which in a general sense includes the existing ones as particular cases. Even if much of the literature on dependence is focused on positive dependence, we show that negative dependence plays an equally important role in the solution of many optimization problems. While the most popular tool used nowadays to model dependence is that of a copula function, in this paper we use the equivalent concept of a set of rearrangements.
    [Show full text]
  • Measure Theory John K. Hunter
    Measure Theory John K. Hunter Department of Mathematics, University of California at Davis Abstract. These are some brief notes on measure theory, concentrating on n Lebesgue measure on R . Some missing topics I would have liked to have in- cluded had time permitted are: the change of variable formula for the Lebesgue n integral on R ; absolutely continuous functions and functions of bounded vari- ation of a single variable and their connection with Lebesgue-Stieltjes measures n on R; Radon measures on R , and other locally compact Hausdorff topological spaces, and the Riesz representation theorem for bounded linear functionals on spaces of continuous functions; and other examples of measures, including n k-dimensional Hausdorff measure in R , Wiener measure and Brownian mo- tion, and Haar measure on topological groups. All these topics can be found in the references. c John K. Hunter, 2011 Contents Chapter 1. Measures 1 1.1. Sets 1 1.2. Topological spaces 2 1.3. Extended real numbers 2 1.4. Outer measures 3 1.5. σ-algebras 4 1.6. Measures 5 1.7. Sets of measure zero 6 Chapter 2. Lebesgue Measure on Rn 9 2.1. Lebesgue outer measure 10 2.2. Outer measure of rectangles 12 2.3. Carath´eodory measurability 14 2.4. Null sets and completeness 18 2.5. Translational invariance 19 2.6. Borel sets 20 2.7. Borel regularity 22 2.8. Linear transformations 27 2.9. Lebesgue-Stieltjes measures 30 Chapter 3. Measurable functions 33 3.1. Measurability 33 3.2. Real-valued functions 34 3.3.
    [Show full text]
  • Dirichlet Is Natural Vincent Danos, Ilias Garnier
    Dirichlet is Natural Vincent Danos, Ilias Garnier To cite this version: Vincent Danos, Ilias Garnier. Dirichlet is Natural. MFPS 31 - Mathematical Foundations of Program- ming Semantics XXXI, Jun 2015, Nijmegen, Netherlands. pp.137-164, 10.1016/j.entcs.2015.12.010. hal-01256903 HAL Id: hal-01256903 https://hal.archives-ouvertes.fr/hal-01256903 Submitted on 15 Jan 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. MFPS 2015 Dirichlet is natural Vincent Danos1 D´epartement d'Informatique Ecole normale sup´erieure Paris, France Ilias Garnier2 School of Informatics University of Edinburgh Edinburgh, United Kingdom Abstract Giry and Lawvere's categorical treatment of probabilities, based on the probabilistic monad G, offer an elegant and hitherto unexploited treatment of higher-order probabilities. The goal of this paper is to follow this formulation to reconstruct a family of higher-order probabilities known as the Dirichlet process. This family is widely used in non-parametric Bayesian learning. Given a Polish space X, we build a family of higher-order probabilities in G(G(X)) indexed by M ∗(X) the set of non-zero finite measures over X. The construction relies on two ingredients.
    [Show full text]
  • Five Lectures on Optimal Transportation: Geometry, Regularity and Applications
    FIVE LECTURES ON OPTIMAL TRANSPORTATION: GEOMETRY, REGULARITY AND APPLICATIONS ROBERT J. MCCANN∗ AND NESTOR GUILLEN Abstract. In this series of lectures we introduce the Monge-Kantorovich problem of optimally transporting one distribution of mass onto another, where optimality is measured against a cost function c(x, y). Connections to geometry, inequalities, and partial differential equations will be discussed, focusing in particular on recent developments in the regularity theory for Monge-Amp`ere type equations. An ap- plication to microeconomics will also be described, which amounts to finding the equilibrium price distribution for a monopolist marketing a multidimensional line of products to a population of anonymous agents whose preferences are known only statistically. c 2010 by Robert J. McCann. All rights reserved. Contents Preamble 2 1. An introduction to optimal transportation 2 1.1. Monge-Kantorovich problem: transporting ore from mines to factories 2 1.2. Wasserstein distance and geometric applications 3 1.3. Brenier’s theorem and convex gradients 4 1.4. Fully-nonlinear degenerate-elliptic Monge-Amp`eretype PDE 4 1.5. Applications 5 1.6. Euclidean isoperimetric inequality 5 1.7. Kantorovich’s reformulation of Monge’s problem 6 2. Existence, uniqueness, and characterization of optimal maps 6 2.1. Linear programming duality 8 2.2. Game theory 8 2.3. Relevance to optimal transport: Kantorovich-Koopmans duality 9 2.4. Characterizing optimality by duality 9 2.5. Existence of optimal maps and uniqueness of optimal measures 10 3. Methods for obtaining regularity of optimal mappings 11 3.1. Rectifiability: differentiability almost everywhere 12 3.2. From regularity a.e.
    [Show full text]
  • Hausdorff Measure
    Hausdorff Measure Jimmy Briggs and Tim Tyree December 3, 2016 1 1 Introduction In this report, we explore the the measurement of arbitrary subsets of the metric space (X; ρ); a topological space X along with its distance function ρ. We introduce Hausdorff Measure as a natural way of assigning sizes to these sets, especially those of smaller \dimension" than X: After an exploration of the salient properties of Hausdorff Measure, we proceed to a definition of Hausdorff dimension, a separate idea of size that allows us a more robust comparison between rough subsets of X. Many of the theorems in this report will be summarized in a proof sketch or shown by visual example. For a more rigorous treatment of the same material, we redirect the reader to Gerald B. Folland's Real Analysis: Modern techniques and their applications. Chapter 11 of the 1999 edition served as our primary reference. 2 Hausdorff Measure 2.1 Measuring low-dimensional subsets of X The need for Hausdorff Measure arises from the need to know the size of lower-dimensional subsets of a metric space. This idea is not as exotic as it may sound. In a high school Geometry course, we learn formulas for objects of various dimension embedded in R3: In Figure 1 we see the line segment, the circle, and the sphere, each with it's own idea of size. We call these length, area, and volume, respectively. Figure 1: low-dimensional subsets of R3: 2 4 3 2r πr 3 πr Note that while only volume measures something of the same dimension as the host space, R3; length, and area can still be of interest to us, especially 2 in applications.
    [Show full text]
  • The Geometry of Optimal Transportation
    THE GEOMETRY OF OPTIMAL TRANSPORTATION Wilfrid Gangbo∗ School of Mathematics, Georgia Institute of Technology Atlanta, GA 30332, USA [email protected] Robert J. McCann∗ Department of Mathematics, Brown University Providence, RI 02912, USA and Institut des Hautes Etudes Scientifiques 91440 Bures-sur-Yvette, France [email protected] July 28, 1996 Abstract A classical problem of transporting mass due to Monge and Kantorovich is solved. Given measures µ and ν on Rd, we find the measure-preserving map y(x) between them with minimal cost | where cost is measured against h(x − y)withhstrictly convex, or a strictly concave function of |x − y|.This map is unique: it is characterized by the formula y(x)=x−(∇h)−1(∇ (x)) and geometrical restrictions on . Connections with mathematical economics, numerical computations, and the Monge-Amp`ere equation are sketched. ∗Both authors gratefully acknowledge the support provided by postdoctoral fellowships: WG at the Mathematical Sciences Research Institute, Berkeley, CA 94720, and RJM from the Natural Sciences and Engineering Research Council of Canada. c 1995 by the authors. To appear in Acta Mathematica 1997. 1 2 Key words and phrases: Monge-Kantorovich mass transport, optimal coupling, optimal map, volume-preserving maps with convex potentials, correlated random variables, rearrangement of vector fields, multivariate distributions, marginals, Lp Wasserstein, c-convex, semi-convex, infinite dimensional linear program, concave cost, resource allocation, degenerate elliptic Monge-Amp`ere 1991 Mathematics
    [Show full text]
  • Integral Geometry – Measure Theoretic Approach and Stochastic Applications
    Integral geometry – measure theoretic approach and stochastic applications Rolf Schneider Preface Integral geometry, as it is understood here, deals with the computation and application of geometric mean values with respect to invariant measures. In the following, I want to give an introduction to the integral geometry of polyconvex sets (i.e., finite unions of compact convex sets) in Euclidean spaces. The invariant or Haar measures that occur will therefore be those on the groups of translations, rotations, or rigid motions of Euclidean space, and on the affine Grassmannians of k-dimensional affine subspaces. How- ever, it is also in a different sense that invariant measures will play a central role, namely in the form of finitely additive functions on polyconvex sets. Such functions have been called additive functionals or valuations in the literature, and their motion invariant specializations, now called intrinsic volumes, have played an essential role in Hadwiger’s [2] and later work (e.g., [8]) on integral geometry. More recently, the importance of these functionals for integral geometry has been rediscovered by Rota [5] and Klain-Rota [4], who called them ‘measures’ and emphasized their role in certain parts of geometric probability. We will, more generally, deal with local versions of the intrinsic volumes, the curvature measures, and derive integral-geometric results for them. This is the third aspect of the measure theoretic approach mentioned in the title. A particular feature of this approach is the essential role that uniqueness results for invariant measures play in the proofs. As prerequisites, we assume some familiarity with basic facts from mea- sure and integration theory.
    [Show full text]
  • (Measure Theory for Dummies) UWEE Technical Report Number UWEETR-2006-0008
    A Measure Theory Tutorial (Measure Theory for Dummies) Maya R. Gupta {gupta}@ee.washington.edu Dept of EE, University of Washington Seattle WA, 98195-2500 UWEE Technical Report Number UWEETR-2006-0008 May 2006 Department of Electrical Engineering University of Washington Box 352500 Seattle, Washington 98195-2500 PHN: (206) 543-2150 FAX: (206) 543-3842 URL: http://www.ee.washington.edu A Measure Theory Tutorial (Measure Theory for Dummies) Maya R. Gupta {gupta}@ee.washington.edu Dept of EE, University of Washington Seattle WA, 98195-2500 University of Washington, Dept. of EE, UWEETR-2006-0008 May 2006 Abstract This tutorial is an informal introduction to measure theory for people who are interested in reading papers that use measure theory. The tutorial assumes one has had at least a year of college-level calculus, some graduate level exposure to random processes, and familiarity with terms like “closed” and “open.” The focus is on the terms and ideas relevant to applied probability and information theory. There are no proofs and no exercises. Measure theory is a bit like grammar, many people communicate clearly without worrying about all the details, but the details do exist and for good reasons. There are a number of great texts that do measure theory justice. This is not one of them. Rather this is a hack way to get the basic ideas down so you can read through research papers and follow what’s going on. Hopefully, you’ll get curious and excited enough about the details to check out some of the references for a deeper understanding.
    [Show full text]