Construction of Geometric Outer-Measures and Dimension Theory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Geometric Integration Theory Contents
Steven G. Krantz Harold R. Parks Geometric Integration Theory Contents Preface v 1 Basics 1 1.1 Smooth Functions . 1 1.2Measures.............................. 6 1.2.1 Lebesgue Measure . 11 1.3Integration............................. 14 1.3.1 Measurable Functions . 14 1.3.2 The Integral . 17 1.3.3 Lebesgue Spaces . 23 1.3.4 Product Measures and the Fubini–Tonelli Theorem . 25 1.4 The Exterior Algebra . 27 1.5 The Hausdorff Distance and Steiner Symmetrization . 30 1.6 Borel and Suslin Sets . 41 2 Carath´eodory’s Construction and Lower-Dimensional Mea- sures 53 2.1 The Basic Definition . 53 2.1.1 Hausdorff Measure and Spherical Measure . 55 2.1.2 A Measure Based on Parallelepipeds . 57 2.1.3 Projections and Convexity . 57 2.1.4 Other Geometric Measures . 59 2.1.5 Summary . 61 2.2 The Densities of a Measure . 64 2.3 A One-Dimensional Example . 66 2.4 Carath´eodory’s Construction and Mappings . 67 2.5 The Concept of Hausdorff Dimension . 70 2.6 Some Cantor Set Examples . 73 i ii CONTENTS 2.6.1 Basic Examples . 73 2.6.2 Some Generalized Cantor Sets . 76 2.6.3 Cantor Sets in Higher Dimensions . 78 3 Invariant Measures and the Construction of Haar Measure 81 3.1 The Fundamental Theorem . 82 3.2 Haar Measure for the Orthogonal Group and the Grassmanian 90 3.2.1 Remarks on the Manifold Structure of G(N,M).... 94 4 Covering Theorems and the Differentiation of Integrals 97 4.1 Wiener’s Covering Lemma and its Variants . -
Hausdorff Measure
Hausdorff Measure Jimmy Briggs and Tim Tyree December 3, 2016 1 1 Introduction In this report, we explore the the measurement of arbitrary subsets of the metric space (X; ρ); a topological space X along with its distance function ρ. We introduce Hausdorff Measure as a natural way of assigning sizes to these sets, especially those of smaller \dimension" than X: After an exploration of the salient properties of Hausdorff Measure, we proceed to a definition of Hausdorff dimension, a separate idea of size that allows us a more robust comparison between rough subsets of X. Many of the theorems in this report will be summarized in a proof sketch or shown by visual example. For a more rigorous treatment of the same material, we redirect the reader to Gerald B. Folland's Real Analysis: Modern techniques and their applications. Chapter 11 of the 1999 edition served as our primary reference. 2 Hausdorff Measure 2.1 Measuring low-dimensional subsets of X The need for Hausdorff Measure arises from the need to know the size of lower-dimensional subsets of a metric space. This idea is not as exotic as it may sound. In a high school Geometry course, we learn formulas for objects of various dimension embedded in R3: In Figure 1 we see the line segment, the circle, and the sphere, each with it's own idea of size. We call these length, area, and volume, respectively. Figure 1: low-dimensional subsets of R3: 2 4 3 2r πr 3 πr Note that while only volume measures something of the same dimension as the host space, R3; length, and area can still be of interest to us, especially 2 in applications. -
Caratheodory's Extension Theorem
Caratheodory’s extension theorem DBW August 3, 2016 These notes are meant as introductory notes on Caratheodory’s extension theorem. The presentation is not completely my own work; the presentation heavily relies on the pre- sentation of Noel Vaillant on http://www.probability.net/WEBcaratheodory.pdf. To make the line of arguments as clear as possible, the starting point is the notion of a ring on a topological space and not the notion of a semi-ring. 1 Elementary definitions and properties We fix a topological space Ω. The power set of Ω is denoted P(Ω) and consists of all subsets of Ω. Definition 1. A ring on on Ω is a subset R of P(Ω), such that (i) ∅ ∈ R (ii) A, B ∈ R ⇒ A ∪ B ∈ R (iii) A, B ∈ R ⇒ A \ B ∈ R Definition 2. A σ-algebra on Ω is a subset Σ of P(Ω) such that (i) ∅ ∈ Σ (ii) (An)n∈N ∈ Σ ⇒ ∪n An ∈ Σ (iii) A ∈ Σ ⇒ Ac ∈ Σ Since A∩B = A\(A\B) it follows that any ring on Ω is closed under finite intersections; c c hence any ring is also a semi-ring. Since ∩nAn = (∪nA ) it follows that any σ-algebra is closed under arbitrary intersections. And from A \ B = A ∩ Bc we deduce that any σ-algebra is also a ring. If (Ri)i∈I is a set of rings on Ω then it is clear that ∩I Ri is also a ring on Ω. Let S be any subset of P(Ω), then we call the intersection of all rings on Ω containing S the ring generated by S. -
M.Sc. I Semester Mathematics (CBCS) 2015-16 Teaching Plan
M.Sc. I Semester Mathematics (CBCS) 2015-16 Teaching Plan Paper : M1 MAT 01-CT01 (ALGEBRA-I) Day Topic Reference Book Chapter UNIT-I 1-4 External and Internal direct product of Algebra (Agrawal, R.S.) Chapter 6 two and finite number of subgroups; 5-6 Commutator subgroup - do - Chapter 6 7-9 Cauchy’s theorem for finite abelian and - do - Chapter 6 non abelian groups. 10-11 Tutorials UNIT-II 12-15 Sylow’s three theorem and their easy - do - Chapter 6 applications 16-18 Subnormal and Composition series, - do - Chapter 6 19-21 Zassenhaus lemma and Jordan Holder - do - Chapter 6 theorem. 22-23 Tutorials - do - UNIT-III 24-26 Solvable groups and their properties Modern Algebra (Surjeet Chapter 5 Singh and Quazi Zameeruddin) 27-29 Nilpotent groups - do - Chapter 5 30-32 Fundamental theorem for finite abelian - do - Chapter 4 groups. 33-34 Tutorials UNIT-IV 35-38 Annihilators of subspace and its Algebra (Agrawal, R.S.) Chapter 12 dimension in finite dimensional vector space 39-41 Invariant, - do - Chapter 12 42-45 Projection, - do - Chapter 12 46-47 adjoins. - do - Chapter 12 48-49 Tutorials UNIT-V 50-54 Singular and nonsingular linear Algebra (Agrawal, R.S.) Chapter 12 transformation 55-58 quadratic forms and Diagonalization. - do - Chapter12 59-60 Tutorials - do - 61-65 Students Interaction & Difficulty solving - - M.Sc. I Semester Mathematics (CBCS) 2015-16 Teaching Plan Paper : M1 MAT 02-CT02 (REAL ANALYSIS) Day Topic Reference Book Chapter UNIT-I 1-2 Length of an interval, outer measure of a Theory and Problems of Chapter 2 subset of R, Labesgue outer measure of a Real Variables: Murray subset of R R. -
Section 17.5. the Carathéodry-Hahn Theorem: the Extension of A
17.5. The Carath´eodory-Hahn Theorem 1 Section 17.5. The Carath´eodry-Hahn Theorem: The Extension of a Premeasure to a Measure Note. We have µ defined on S and use µ to define µ∗ on X. We then restrict µ∗ to a subset of X on which µ∗ is a measure (denoted µ). Unlike with Lebesgue measure where the elements of S are measurable sets themselves (and S is the set of open intervals), we may not have µ defined on S. In this section, we look for conditions on µ : S → [0, ∞] which imply the measurability of the elements of S. Under these conditions, µ is then an extension of µ from S to M (the σ-algebra of measurable sets). ∞ Definition. A set function µ : S → [0, ∞] is finitely additive if whenever {Ek}k=1 ∞ is a finite disjoint collection of sets in S and ∪k=1Ek ∈ S, we have n n µ · Ek = µ(Ek). k=1 ! k=1 [ X Note. We have previously defined finitely monotone for set functions and Propo- sition 17.6 gives finite additivity for an outer measure on M, but this is the first time we have discussed a finitely additive set function. Proposition 17.11. Let S be a collection of subsets of X and µ : S → [0, ∞] a set function. In order that the Carath´eodory measure µ induced by µ be an extension of µ (that is, µ = µ on S) it is necessary that µ be both finitely additive and countably monotone and, if ∅ ∈ S, then µ(∅) = 0. -
2.5 Outer Measure and Measurable Sets. Note the Results of This Section Concern Any Given Outer Measure Λ
2.5 Outer Measure and Measurable sets. Note The results of this section concern any given outer measure ¸. If an outer measure ¸ on a set X were a measure then it would be additive. In particular, given any two sets A; B ⊆ X we have that A \ B and A \ Bc are disjoint with (A \ B) [ (A \ Bc) = A and so we would have ¸(A) = ¸(A \ B) + ¸(A \ Bc): We will see later that this does not necessarily hold for all A and B but it does lead to the following definition. Definition Let ¸ be an outer measure on a set X. Then E ⊆ X is said to be measurable with respect to ¸ (or ¸-measurable) if ¸(A) = ¸(A \ E) + ¸(A \ Ec) for all A ⊆ X. (7) (This can be read as saying that we take each and every possible “test set”, A, look at the measures of the parts of A that fall within and without E, and check whether these measures add up to that of A.) Since ¸ is subadditive we have ¸(A) · ¸(A\E)+¸(A\Ec) so, in checking measurability, we need only verify that ¸(A) ¸ ¸(A \ E) + ¸(A \ Ec) for all A ⊆ X. (8) Let M = M(¸) denote the collection of ¸-measurable sets. Theorem 2.6 M is a field. Proof Trivially Á and X are in M. Take any E1;E2 2 M and any test set A ⊆ X. Then c ¸(A) = ¸(A \ E1) + ¸(A \ E1): c Now apply the definition of measurability for E2 with the test set A \ E1 to get c c c c ¸(A \ E1) = ¸((A \ E1) \ E2) + ¸((A \ E1) \ E2) c c = ¸(A \ E1 \ E2) + ¸(A \ (E1 [ E2) ): Combining c c ¸(A) = ¸(A \ E1) + ¸(A \ E1 \ E2) + ¸(A \ (E1 [ E2) ): (9) 1 We hope to use the subadditivity of ¸ on the first two term on the right hand side of (9). -
2.1.3 Outer Measures and Construction of Measures Recall the Construction of Lebesgue Measure on the Real Line
CHAPTER 2. THE LEBESGUE INTEGRAL I 11 2.1.3 Outer measures and construction of measures Recall the construction of Lebesgue measure on the real line. There are various approaches to construct the Lebesgue measure on the real line. For example, consider the collection of finite union of sets of the form ]a; b]; ] − 1; b]; ]a; 1[ R: This collection is an algebra A but not a sigma-algebra (this has been discussed on p.7). A natural measure on A is given by the length of an interval. One attempts to measure the size of any subset S of R covering it by countably many intervals (recall also that R can be covered by countably many intervals) and we define this quantity by 1 1 X [ m∗(S) = inff jAkj : Ak 2 A;S ⊂ Akg (2.7) k=1 k=1 where jAkj denotes the length of the interval Ak. However, m∗(S) is not a measure since it is not additive, which we do not prove here. It is only sigma- subadditive, that is k k [ X m∗ Sn ≤ m∗(Sn) n=1 n=1 for any countable collection (Sn) of subsets of R. Alternatively one could choose coverings by open intervals (see the exercises, see also B.Dacorogna, Analyse avanc´eepour math´ematiciens)Note that the quantity m∗ coincides with the length for any set in A, that is the measure on A (this is surprisingly the more difficult part!). Also note that the sigma-subadditivity implies that m∗(A) = 0 for any countable set since m∗(fpg) = 0 for any p 2 R. -
Survey of Lebesgue and Hausdorff Measures
BearWorks MSU Graduate Theses Spring 2019 Survey of Lebesgue and Hausdorff Measures Jacob N. Oliver Missouri State University, [email protected] As with any intellectual project, the content and views expressed in this thesis may be considered objectionable by some readers. However, this student-scholar’s work has been judged to have academic value by the student’s thesis committee members trained in the discipline. The content and views expressed in this thesis are those of the student-scholar and are not endorsed by Missouri State University, its Graduate College, or its employees. Follow this and additional works at: https://bearworks.missouristate.edu/theses Part of the Analysis Commons Recommended Citation Oliver, Jacob N., "Survey of Lebesgue and Hausdorff Measures" (2019). MSU Graduate Theses. 3357. https://bearworks.missouristate.edu/theses/3357 This article or document was made available through BearWorks, the institutional repository of Missouri State University. The work contained in it may be protected by copyright and require permission of the copyright holder for reuse or redistribution. For more information, please contact [email protected]. SURVEY OF LEBESGUE AND HAUSDORFF MEASURES A Master's Thesis Presented to The Graduate College of Missouri State University In Partial Fulfillment Of the Requirements for the Degree Master of Science, Mathematics By Jacob Oliver May 2019 SURVEY OF LEBESGUE AND HAUSDORFF MEASURES Mathematics Missouri State University, May 2019 Master of Science Jacob Oliver ABSTRACT Measure theory is fundamental in the study of real analysis and serves as the basis for more robust integration methods than the classical Riemann integrals. Measure the- ory allows us to give precise meanings to lengths, areas, and volumes which are some of the most important mathematical measurements of the natural world. -
PATHOLOGICAL 1. Introduction
PATHOLOGICAL APPLICATIONS OF LEBESGUE MEASURE TO THE CANTOR SET AND NON-INTEGRABLE DERIVATIVES PRICE HARDMAN WHITMAN COLLEGE 1. Introduction Pathological is an oft used word in the mathematical community, and in that context it has quite a different meaning than in everyday usage. In mathematics, something is said to be \pathological" if it is particularly poorly behaved or counterintuitive. However, this is not to say that mathe- maticians use this term in an entirely derisive manner. Counterintuitive and unexpected results often challenge common conventions and invite a reevalu- ation of previously accepted methods and theories. In this way, pathological examples can be seen as impetuses for mathematical progress. As a result, pathological examples crop up quite often in the history of mathematics, and we can usually learn a great deal about the history of a given field by studying notable pathological examples in that field. In addition to allowing us to weave historical narrative into an otherwise noncontextualized math- mematical discussion, these examples shed light on the boundaries of the subfield of mathematics in which we find them. It is the intention then of this piece to investigate the basic concepts, ap- plications, and historical development of measure theory through the use of pathological examples. We will develop some basic tools of Lebesgue mea- sure on the real line and use them to investigate some historically significant (and fascinating) examples. One such example is a function whose deriva- tive is bounded yet not Riemann integrable, seemingly in violation of the Fundamental Theorem of Calculus. In fact, this example played a large part in the development of the Lebesgue integral in the early years of the 20th century. -
Hausdorff Measure and Level Sets of Typical Continuous Mappings in Euclidean Spaces
transactions of the american mathematical society Volume 347, Number 5, May 1995 HAUSDORFF MEASURE AND LEVEL SETS OF TYPICAL CONTINUOUS MAPPINGS IN EUCLIDEAN SPACES BERND KIRCHHEIM In memory ofHana Kirchheimová Abstract. We determine the Hausdorff dimension of level sets and of sets of points of multiplicity for mappings in a residual subset of the space of all continuous mappings from R" to Rm . Questions about the structure of level sets of typical (i.e. of all except a set negligible from the point of view of Baire category) real functions on the unit interval were already studied in [2], [1], and also [3]. In the last one the question about the Hausdorff dimension of level sets of such functions appears. The fact that a typical continuous function has all level sets zero-dimensional was commonly known, although it seems difficult to find the first proof of this. The author showed in [9] that in certain spaces of functions the level sets are of dimension one typically and developed in [8] a method to show that in other spaces functions are typically injective on the complement of a zero dimensional set—this yields smallness of all level sets. Here we are going to extend this method to continuous mappings between Euclidean spaces and to determine the size of level sets of typical mappings and the typical multiplicity in case the level sets are finite; see Theorems 1 and 2. We will use the following notation. For M a set and e > 0, U(M, e), resp. B(M, e), is the open, resp. -
1. Area and Co-Area Formula 1.1. Hausdorff Measure. in This Section
1. Area and co-area formula 1.1. Hausdorff measure. In this section we will recall the definition of the Hausdorff measure and we will state some of its basic properties. A more detailed discussion is postponed to Section ??. s=2 s Let !s = π =Γ(1 + 2 ), s ≥ 0. If s = n is a positive integer, then !n is volume of the 1 unit ball in Rn. Let X be a metric space. For " > 0 and E ⊂ X we define 1 !s X Hs(E) = inf (diam A )s " 2s i i=1 where the infimum is taken over all possible coverings 1 [ E ⊂ Ai with diam Ai ≤ ": i=1 s Since the function " 7! H"(E) is nonincreasing, the limit s s H (E) = lim H"(E) "!0 exists. Hs is called the Hausdorff measure. It is easy to see that if s = 0, H0 is the counting measure. s P1 s The Hausdorff content H1(E) is defined as the infimum of i=1 ri over all coverings 1 [ E ⊂ B(xi; ri) i=1 s of E by balls of radii ri. It is an easy exercise to show that H (E) = 0 if and only if s H1(E) = 0. Often it is easier to use the Hausdorff content to show that the Hausdorff measure of a set is zero, because one does not have to worry about the diameters of the sets in the covering. The Hausdorff content is an outer measure, but very few sets are s actually measurable, and it is not countably additive on Borel sets. -
Math 595: Geometric Measure Theory
MATH 595: GEOMETRIC MEASURE THEORY FALL 2015 0. Introduction Geometric measure theory considers the structure of Borel sets and Borel measures in metric spaces. It lies at the border between differential geometry and topology, and services a variety of areas: partial differential equations and the calculus of variations, geometric function theory, number theory, etc. The emphasis is on sets with a fine, irregular structure which cannot be well described by the classical tools of geometric analysis. Mandelbrot introduced the term \fractal" to describe sets of this nature. Dynamical systems provide a rich source of examples: Julia sets for rational maps of one complex variable, limit sets of Kleinian groups, attractors of iterated function systems and nonlinear differential systems, and so on. In addition to its intrinsic interest, geometric measure theory has been a valuable tool for problems arising from real and complex analysis, harmonic analysis, PDE, and other fields. For instance, rectifiability criteria and metric curvature conditions played a key role in Tolsa's resolution of the longstanding Painlev´eproblem on removable sets for bounded analytic functions. Major topics within geometric measure theory which we will discuss include Hausdorff measure and dimension, density theorems, energy and capacity methods, almost sure di- mension distortion theorems, Sobolev spaces, tangent measures, and rectifiability. Rectifiable sets and measures provide a rich measure-theoretic generalization of smooth differential submanifolds and their volume measures. The theory of rectifiable sets can be viewed as an extension of differential geometry in which the basic machinery and tools of the subject (tangent spaces, differential operators, vector bundles) are replaced by approxi- mate, measure-theoretic analogs.