Notes on ergodic theory Michael Hochman1 January 27, 2013 1Please report any errors to
[email protected] Contents 1 Introduction 4 2 Measure preserving transformations 6 2.1 Measure preserving transformations . 6 2.2 Recurrence . 9 2.3 Inducedactiononfunctionsandmeasures . 11 2.4 Dynamics on metric spaces . 13 2.5 Some technicalities . 15 3 Ergodicity 17 3.1 Ergodicity . 17 3.2 Mixing . 19 3.3 Kac’s return time formula . 20 3.4 Ergodic measures as extreme points . 21 3.5 Ergodic decomposition I . 23 3.6 Measure integration . 24 3.7 Measure disintegration . 25 3.8 Ergodic decomposition II . 28 4 The ergodic theorem 31 4.1 Preliminaries . 31 4.2 Mean ergodic theorem . 32 4.3 Thepointwiseergodictheorem . 34 4.4 Generic points . 38 4.5 Unique ergodicity and circle rotations . 41 4.6 Sub-additive ergodic theorem . 43 5 Some categorical constructions 48 5.1 Isomorphismandfactors. 48 5.2 Product systems . 52 5.3 Natural extension . 53 5.4 Inverselimits ............................. 53 5.5 Skew products . 54 1 CONTENTS 2 6 Weak mixing 56 6.1 Weak mixing . 56 6.2 Weak mixing as a multiplier property . 59 6.3 Isometricfactors ........................... 61 6.4 Eigenfunctions . 62 6.5 Spectral isomorphism and the Kronecker factor . 66 6.6 Spectral methods . 68 7 Disjointness and a taste of entropy theory 73 7.1 Joinings and disjointness . 73 7.2 Spectrum, disjointness and the Wiener-Wintner theorem . 75 7.3 Shannon entropy: a quick introduction . 77 7.4 Digression: applications of entropy . 81 7.5 Entropy of a stationary process .