Probability Measures on Metric Spaces
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Integral Representation of a Linear Functional on Function Spaces
INTEGRAL REPRESENTATION OF LINEAR FUNCTIONALS ON FUNCTION SPACES MEHDI GHASEMI Abstract. Let A be a vector space of real valued functions on a non-empty set X and L : A −! R a linear functional. Given a σ-algebra A, of subsets of X, we present a necessary condition for L to be representable as an integral with respect to a measure µ on X such that elements of A are µ-measurable. This general result then is applied to the case where X carries a topological structure and A is a family of continuous functions and naturally A is the Borel structure of X. As an application, short solutions for the full and truncated K-moment problem are presented. An analogue of Riesz{Markov{Kakutani representation theorem is given where Cc(X) is replaced with whole C(X). Then we consider the case where A only consists of bounded functions and hence is equipped with sup-norm. 1. Introduction A positive linear functional on a function space A ⊆ RX is a linear map L : A −! R which assigns a non-negative real number to every function f 2 A that is globally non-negative over X. The celebrated Riesz{Markov{Kakutani repre- sentation theorem states that every positive functional on the space of continuous compactly supported functions over a locally compact Hausdorff space X, admits an integral representation with respect to a regular Borel measure on X. In symbols R L(f) = X f dµ, for all f 2 Cc(X). Riesz's original result [12] was proved in 1909, for the unit interval [0; 1]. -
Set Theory, Including the Axiom of Choice) Plus the Negation of CH
ANNALS OF ~,IATltEMATICAL LOGIC - Volume 2, No. 2 (1970) pp. 143--178 INTERNAL COHEN EXTENSIONS D.A.MARTIN and R.M.SOLOVAY ;Tte RockeJ~'ller University and University (.~t CatiJbrnia. Berkeley Received 2 l)ecemt)er 1969 Introduction Cohen [ !, 2] has shown that tile continuum hypothesis (CH) cannot be proved in Zermelo-Fraenkel set theory. Levy and Solovay [9] have subsequently shown that CH cannot be proved even if one assumes the existence of a measurable cardinal. Their argument in tact shows that no large cardinal axiom of the kind present;y being considered by set theorists can yield a proof of CH (or of its negation, of course). Indeed, many set theorists - including the authors - suspect that C1t is false. But if we reject CH we admit Gurselves to be in a state of ignorance about a great many questions which CH resolves. While CH is a power- full assertion, its negation is in many ways quite weak. Sierpinski [ 1 5 ] deduces propcsitions there called C l - C82 from CH. We know of none of these propositions which is decided by the negation of CH and only one of them (C78) which is decided if one assumes in addition that a measurable cardinal exists. Among the many simple questions easily decided by CH and which cannot be decided in ZF (Zerme!o-Fraenkel set theory, including the axiom of choice) plus the negation of CH are tile following: Is every set of real numbers of cardinality less than tha't of the continuum of Lebesgue measure zero'? Is 2 ~0 < 2 ~ 1 ? Is there a non-trivial measure defined on all sets of real numbers? CIhis third question could be decided in ZF + not CH only in the unlikely event t Tile second author received support from a Sloan Foundation fellowship and tile National Science Foundation Grant (GP-8746). -
Lecture Notes
MEASURE THEORY AND STOCHASTIC PROCESSES Lecture Notes José Melo, Susana Cruz Faculdade de Engenharia da Universidade do Porto Programa Doutoral em Engenharia Electrotécnica e de Computadores March 2011 Contents 1 Probability Space3 1 Sample space Ω .....................................4 2 σ-eld F .........................................4 3 Probability Measure P .................................6 3.1 Measure µ ....................................6 3.2 Probability Measure P .............................7 4 Learning Objectives..................................7 5 Appendix........................................8 2 Chapter 1 Probability Space Let's consider the experience of throwing a dart on a circular target with radius r (assuming the dart always hits the target), divided in 4 dierent areas as illustrated in Figure 1.1. 4 3 2 1 Figure 1.1: Circular Target The circles that bound the regions 1, 2, 3, and 4, have radius of, respectively, r , r , 3r , and . 4 2 4 r Therefore, the probability that a dart lands in each region is: 1 , 3 , 5 , P (1) = 16 P (2) = 16 P (3) = 16 7 . P (4) = 16 For this kind of problems, the theory of discrete probability spaces suces. However, when it comes to problems involving either an innitely repeated operation or an innitely ne op- eration, this mathematical framework does not apply. This motivates the introduction of a measure-theoretic probability approach to correctly describe those cases. We dene the proba- bility space (Ω; F;P ), where Ω is the sample space, F is the event space, and P is the probability 3 measure. Each of them will be described in the following subsections. 1 Sample space Ω The sample space Ω is the set of all the possible results or outcomes ! of an experiment or observation. -
Borel Structure in Groups and Their Dualso
BOREL STRUCTURE IN GROUPS AND THEIR DUALSO GEORGE W. MACKEY Introduction. In the past decade or so much work has been done toward extending the classical theory of finite dimensional representations of com- pact groups to a theory of (not necessarily finite dimensional) unitary repre- sentations of locally compact groups. Among the obstacles interfering with various aspects of this program is the lack of a suitable natural topology in the "dual object"; that is in the set of equivalence classes of irreducible representations. One can introduce natural topologies but none of them seem to have reasonable properties except in extremely special cases. When the group is abelian for example the dual object itself is a locally compact abelian group. This paper is based on the observation that for certain purposes one can dispense with a topology in the dual object in favor of a "weaker struc- ture" and that there is a wide class of groups for which this weaker structure has very regular properties. If .S is any topological space one defines a Borel (or Baire) subset of 5 to be a member of the smallest family of subsets of 5 which includes the open sets and is closed with respect to the formation of complements and countable unions. The structure defined in 5 by its Borel sets we may call the Borel structure of 5. It is weaker than the topological structure in the sense that any one-to-one transformation of S onto 5 which preserves the topological structure also preserves the Borel structure whereas the converse is usually false. -
On Stochastic Distributions and Currents
NISSUNA UMANA INVESTIGAZIONE SI PUO DIMANDARE VERA SCIENZIA S’ESSA NON PASSA PER LE MATEMATICHE DIMOSTRAZIONI LEONARDO DA VINCI vol. 4 no. 3-4 2016 Mathematics and Mechanics of Complex Systems VINCENZO CAPASSO AND FRANCO FLANDOLI ON STOCHASTIC DISTRIBUTIONS AND CURRENTS msp MATHEMATICS AND MECHANICS OF COMPLEX SYSTEMS Vol. 4, No. 3-4, 2016 dx.doi.org/10.2140/memocs.2016.4.373 ∩ MM ON STOCHASTIC DISTRIBUTIONS AND CURRENTS VINCENZO CAPASSO AND FRANCO FLANDOLI Dedicated to Lucio Russo, on the occasion of his 70th birthday In many applications, it is of great importance to handle random closed sets of different (even though integer) Hausdorff dimensions, including local infor- mation about initial conditions and growth parameters. Following a standard approach in geometric measure theory, such sets may be described in terms of suitable measures. For a random closed set of lower dimension with respect to the environment space, the relevant measures induced by its realizations are sin- gular with respect to the Lebesgue measure, and so their usual Radon–Nikodym derivatives are zero almost everywhere. In this paper, how to cope with these difficulties has been suggested by introducing random generalized densities (dis- tributions) á la Dirac–Schwarz, for both the deterministic case and the stochastic case. For the last one, mean generalized densities are analyzed, and they have been related to densities of the expected values of the relevant measures. Ac- tually, distributions are a subclass of the larger class of currents; in the usual Euclidean space of dimension d, currents of any order k 2 f0; 1;:::; dg or k- currents may be introduced. -
Weak Convergence of Probability Measures Revisited
WEAK CONVERGENCE OF PROBABILITY MEASURES REVISITED Cabriella saltnetti' Roger J-B wetse April 1987 W P-87-30 This research was supported in part by MPI, Projects: "Calcolo Stocastico e Sistemi Dinamici Statistici" and "Modelli Probabilistic" 1984, and by the National Science Foundation. Working Papers are interim reports on work of the lnternational Institute for Applied Systems Analysis and have received only limited review. Views or opinions expressed herein do not necessarily represent those of the Institute or of its National Member Organizations. INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSlS A-2361 Laxenburg, Austria FOREWORD The modeling of stochastic processes is a fundamental tool in the study of models in- volving uncertainty, a major topic at SDS. A number of classical convergence results (and extensions) for probability measures are derived by relying on new tools that are particularly useful in stochastic optimization and extremal statistics. Alexander B. Kurzhanski Chairman System and Decision Sciences Program ABSTRACT The hypo-convergence of upper semicontinuous functions provides a natural frame- work for the study of the convergence of probability measures. This approach also yields some further characterizations of weak convergence and tightness. CONTENTS 1 About Continuity and Measurability 2 Convergence of Sets and Semicontinuous Functions 3 SC-Measures and SGPrerneasures on 7 (E) 4 Hypo-Limits of SGMeasures and Tightness 5 Tightness and Equi-Semicontinuity Acknowledgment Appendix A Appendix B References - vii - WEAK CONVERGENCE OF PROBABILITY MEASURES REVISITED Gabriella salinettil and Roger J-B wetsL luniversiti "La Sapienza", 00185 Roma, Italy. 2~niversityof California, Davis, CA 95616. 1. ABOUT CONTINUITY AND MEASURABILITY A probabilistic structure - a space of possible events, a sigma-field of (observable) subcollections of events, and a probability measure defined on this sigma-field - does not have a built-in topological structure. -
Arxiv:1009.3824V2 [Math.OC] 7 Feb 2012 E Fpstv Nees Let Integers
OPTIMIZATION AND CONVERGENCE OF OBSERVATION CHANNELS IN STOCHASTIC CONTROL SERDAR YUKSEL¨ AND TAMAS´ LINDER Abstract. This paper studies the optimization of observation channels (stochastic kernels) in partially observed stochastic control problems. In particular, existence and continuity properties are investigated mostly (but not exclusively) concentrating on the single-stage case. Continuity properties of the optimal cost in channels are explored under total variation, setwise convergence, and weak convergence. Sufficient conditions for compactness of a class of channels under total variation and setwise convergence are presented and applications to quantization are explored. Key words. Stochastic control, information theory, observation channels, optimization, quan- tization AMS subject classifications. 15A15, 15A09, 15A23 1. Introduction. In stochastic control, one is often concerned with the following problem: Given a dynamical system, an observation channel (stochastic kernel), a cost function, and an action set, when does there exist an optimal policy, and what is an optimal control policy? The theory for such problems is advanced, and practically significant, spanning a wide variety of applications in engineering, economics, and natural sciences. In this paper, we are interested in a dual problem with the following questions to be explored: Given a dynamical system, a cost function, an action set, and a set of observation channels, does there exist an optimal observation channel? What is the right convergence notion for continuity in such observation channels for optimization purposes? The answers to these questions may provide useful tools for characterizing an optimal observation channel subject to constraints. We start with the probabilistic setup of the problem. Let X ⊂ Rn, be a Borel set in which elements of a controlled Markov process {Xt, t ∈ Z+} live. -
Arxiv:2102.05840V2 [Math.PR]
SEQUENTIAL CONVERGENCE ON THE SPACE OF BOREL MEASURES LIANGANG MA Abstract We study equivalent descriptions of the vague, weak, setwise and total- variation (TV) convergence of sequences of Borel measures on metrizable and non-metrizable topological spaces in this work. On metrizable spaces, we give some equivalent conditions on the vague convergence of sequences of measures following Kallenberg, and some equivalent conditions on the TV convergence of sequences of measures following Feinberg-Kasyanov-Zgurovsky. There is usually some hierarchy structure on the equivalent descriptions of convergence in different modes, but not always. On non-metrizable spaces, we give examples to show that these conditions are seldom enough to guarantee any convergence of sequences of measures. There are some remarks on the attainability of the TV distance and more modes of sequential convergence at the end of the work. 1. Introduction Let X be a topological space with its Borel σ-algebra B. Consider the collection M˜ (X) of all the Borel measures on (X, B). When we consider the regularity of some mapping f : M˜ (X) → Y with Y being a topological space, some topology or even metric is necessary on the space M˜ (X) of Borel measures. Various notions of topology and metric grow out of arXiv:2102.05840v2 [math.PR] 28 Apr 2021 different situations on the space M˜ (X) in due course to deal with the corresponding concerns of regularity. In those topology and metric endowed on M˜ (X), it has been recognized that the vague, weak, setwise topology as well as the total-variation (TV) metric are highlighted notions on the topological and metric description of M˜ (X) in various circumstances, refer to [Kal, GR, Wul]. -
STAT 571 Assignment 1 Solutions 1. If Ω Is a Set and C a Collection Of
STAT 571 Assignment 1 solutions 1. If Ω is a set and a collection of subsets of Ω, let be the intersection of all σ-algebras that contain . ProveC that is the σ-algebra generatedA by . C A C Solution: Let α α A be the collection of all σ-algebras that contain , and fA j 2 g C set = α. We first show that is a σ-algebra. There are three things to A \ A A α A prove. 2 (a) For every α A, α is a σ-algebra, so Ω α, and hence Ω α A α = . 2 A 2 A 2 \ 2 A A (b) If B , then B α for every α A. Since α is a σ-algebra, we have c 2 A 2 A 2 A c B α. But this is true for every α A, so we have B . 2 A 2 2 A (c) If B1;B2;::: are sets in , then B1;B2;::: belong to α for each α A. A A 2 Since α is a σ-algebra, we have 1 Bn α. But this is true for every A [n=1 2 A α A, so we have 1 Bn . 2 [n=1 2 A Thus is a σ-algebra that contains , and it must be the smallest one since α for everyA α A. C A ⊆ A 2 2. Prove that the set of rational numbers Q is a Borel set in R. Solution: For every x R, the set x is the complement of an open set, and hence Borel. -
Statistics and Probability Letters a Note on Vague Convergence Of
Statistics and Probability Letters 153 (2019) 180–186 Contents lists available at ScienceDirect Statistics and Probability Letters journal homepage: www.elsevier.com/locate/stapro A note on vague convergence of measures ∗ Bojan Basrak, Hrvoje Planini¢ Department of Mathematics, Faculty of Science, University of Zagreb, Bijeni£ka 30, Zagreb, Croatia article info a b s t r a c t Article history: We propose a new approach to vague convergence of measures based on the general Received 17 April 2019 theory of boundedness due to Hu (1966). The article explains how this connects and Accepted 6 June 2019 unifies several frequently used types of vague convergence from the literature. Such Available online 20 June 2019 an approach allows one to translate already developed results from one type of vague MSC: convergence to another. We further analyze the corresponding notion of vague topology primary 28A33 and give a new and useful characterization of convergence in distribution of random secondary 60G57 measures in this topology. 60G70 ' 2019 Elsevier B.V. All rights reserved. Keywords: Boundedly finite measures Vague convergence w#–convergence Random measures Convergence in distribution Lipschitz continuous functions 1. Introduction Let X be a Polish space, i.e. separable topological space which is metrizable by a complete metric. Denote by B(X) the corresponding Borel σ –field and choose a subfamily Bb(X) ⊆ B(X) of sets, called bounded (Borel) sets of X. When there is no fear of confusion, we will simply write B and Bb. A Borel measure µ on X is said to be locally (or boundedly) finite if µ(B) < 1 for all B 2 Bb. -
(Measure Theory for Dummies) UWEE Technical Report Number UWEETR-2006-0008
A Measure Theory Tutorial (Measure Theory for Dummies) Maya R. Gupta {gupta}@ee.washington.edu Dept of EE, University of Washington Seattle WA, 98195-2500 UWEE Technical Report Number UWEETR-2006-0008 May 2006 Department of Electrical Engineering University of Washington Box 352500 Seattle, Washington 98195-2500 PHN: (206) 543-2150 FAX: (206) 543-3842 URL: http://www.ee.washington.edu A Measure Theory Tutorial (Measure Theory for Dummies) Maya R. Gupta {gupta}@ee.washington.edu Dept of EE, University of Washington Seattle WA, 98195-2500 University of Washington, Dept. of EE, UWEETR-2006-0008 May 2006 Abstract This tutorial is an informal introduction to measure theory for people who are interested in reading papers that use measure theory. The tutorial assumes one has had at least a year of college-level calculus, some graduate level exposure to random processes, and familiarity with terms like “closed” and “open.” The focus is on the terms and ideas relevant to applied probability and information theory. There are no proofs and no exercises. Measure theory is a bit like grammar, many people communicate clearly without worrying about all the details, but the details do exist and for good reasons. There are a number of great texts that do measure theory justice. This is not one of them. Rather this is a hack way to get the basic ideas down so you can read through research papers and follow what’s going on. Hopefully, you’ll get curious and excited enough about the details to check out some of the references for a deeper understanding. -
Weak Convergence of Measures
Mathematical Surveys and Monographs Volume 234 Weak Convergence of Measures Vladimir I. Bogachev Weak Convergence of Measures Mathematical Surveys and Monographs Volume 234 Weak Convergence of Measures Vladimir I. Bogachev EDITORIAL COMMITTEE Walter Craig Natasa Sesum Robert Guralnick, Chair Benjamin Sudakov Constantin Teleman 2010 Mathematics Subject Classification. Primary 60B10, 28C15, 46G12, 60B05, 60B11, 60B12, 60B15, 60E05, 60F05, 54A20. For additional information and updates on this book, visit www.ams.org/bookpages/surv-234 Library of Congress Cataloging-in-Publication Data Names: Bogachev, V. I. (Vladimir Igorevich), 1961- author. Title: Weak convergence of measures / Vladimir I. Bogachev. Description: Providence, Rhode Island : American Mathematical Society, [2018] | Series: Mathe- matical surveys and monographs ; volume 234 | Includes bibliographical references and index. Identifiers: LCCN 2018024621 | ISBN 9781470447380 (alk. paper) Subjects: LCSH: Probabilities. | Measure theory. | Convergence. Classification: LCC QA273.43 .B64 2018 | DDC 519.2/3–dc23 LC record available at https://lccn.loc.gov/2018024621 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy select pages for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for permission to reuse portions of AMS publication content are handled by the Copyright Clearance Center. For more information, please visit www.ams.org/publications/pubpermissions. Send requests for translation rights and licensed reprints to [email protected].