Descriptive Set Theory and the Ergodic Theory of Countable Groups
DESCRIPTIVE SET THEORY AND THE ERGODIC THEORY OF COUNTABLE GROUPS Thesis by Robin Daniel Tucker-Drob In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology Pasadena, California 2013 (Defended April 17, 2013) ii c 2013 Robin Daniel Tucker-Drob All Rights Reserved iii Acknowledgements I would like to thank my advisor Alexander Kechris for his invaluable guidance and support, for his generous feedback, and for many (many!) discussions. In addition I would like to thank Miklos Abert,´ Lewis Bowen, Clinton Conley, Darren Creutz, Ilijas Farah, Adrian Ioana, David Kerr, Andrew Marks, Benjamin Miller, Jesse Peterson, Ernest Schimmerling, Miodrag Sokic, Simon Thomas, Asger Tornquist,¨ Todor Tsankov, Anush Tserunyan, and Benjy Weiss for many valuable conversations over the past few years. iv Abstract The primary focus of this thesis is on the interplay of descriptive set theory and the ergodic theory of group actions. This incorporates the study of turbulence and Borel re- ducibility on the one hand, and the theory of orbit equivalence and weak equivalence on the other. Chapter 2 is joint work with Clinton Conley and Alexander Kechris; we study measurable graph combinatorial invariants of group actions and employ the ultraproduct construction as a way of constructing various measure preserving actions with desirable properties. Chapter 3 is joint work with Lewis Bowen; we study the property MD of resid- ually finite groups, and we prove a conjecture of Kechris by showing that under general hypotheses property MD is inherited by a group from one of its co-amenable subgroups. Chapter 4 is a study of weak equivalence.
[Show full text]