The Structure of Hyperfinite Borel Equivalence Relations Author(s): R. Dougherty, S. Jackson and A. S. Kechris Source: Transactions of the American Mathematical Society, Vol. 341, No. 1 (Jan., 1994), pp. 193-225 Published by: American Mathematical Society Stable URL: http://www.jstor.org/stable/2154620 . Accessed: 16/05/2013 17:31 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact
[email protected]. American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to Transactions of the American Mathematical Society. http://www.jstor.org This content downloaded from 131.215.71.79 on Thu, 16 May 2013 17:31:55 PM All use subject to JSTOR Terms and Conditions TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 341, Number 1, January 1994 THE STRUCTURE OF HYPERFINITE BOREL EQUIVALENCE RELATIONS R. DOUGHERTY, S. JACKSON, AND A. S. KECHRIS ABSTRACT.We study the structure of the equivalence relations induced by the orbits of a single Borel automorphism on a standard Borel space. We show that any two such equivalence relations which are not smooth, i.e., do not admit Borel selectors, are Borel embeddable into each other. (This utilizes among other things work of Effros and Weiss.) Using this and also results of Dye, Varadarajan, and recent work of Nadkami, we show that the cardinality of the set of ergodic invariant measures is a complete invariant for Borel isomor- phism of aperiodic nonsmooth such equivalence relations.