Appendix Polish Spaces and Standard Borel Spaces

Total Page:16

File Type:pdf, Size:1020Kb

Appendix Polish Spaces and Standard Borel Spaces Appendix Polish Spaces and Standard Borel Spaces Let X be a given set. A collection ~ of subsets is called a a-field if (a) any union of countably many members of ~ is a member of~, (b) the complement of any member of f!J belongs to f!J and (c) cJ> E f!J. Given a family Y of subsets of X, there exists the smallest a-field f!J.,/ of subsets of X containing Y, which will be called the a-field generated by Y. A Borel space is a set X equipped with a specified a-field f!J. The members of ~ are called Borel sets of X. When X is a topological space, the Borel space X generated by the topology means the Borel space X equipped with the a-field generated by the family of open (hence closed) subsets of X. Given a Borel space X, a collection of Borel subsets is said to be generating ifthe a-field of Borel subsets is generated by the family; it is said to be separating if any distinct pair of points of X are separated by a member of the family. A Borel space is said to be countably generated (resp. separated) if it admits a countable generating and separating (resp. separating) family of Borel sets. A (positive) measure on a Borel space X means an extended positive real valued countably additive set function J1. on the Borel sets in X. Given two Borel spaces X 1 and X 2, a map f of X 1 into X 2 is said to be Borel if the inverse image f -1(S) of every Borel set S in X 2 is Borel in X 1. If f is bijective and f - 1 is Borel also, then f is called a Borel isomorphism, and in this case X 1 and X 2 are said to be (Borel) iso­ morphic. If X 1 and X 2 are topological spaces, then any continuous map f of X 1 into X 2 is Borel, i.e., f - 1(S) is Borel in X 1 for every Borel set S in X 2. We note, however, that the image f(S) of a Borel set S in X 1 need not be a Borel set in X 2. A topological space is called Polish if it is homeomorphic to a separable complete metric space. Theorem A.t. In a Polish space, a subspace, with respect to the relative topology, is a Polish space if and only if it is a Gd-subset of the whole Polish 375 376 Appendix: Polish Spaces and Standard Borel Spaces space. A topological space is a Polish space if and only if it is homeomorphic to a Ga-subset of the cube IN, where 1= [0,1] and N denotes the set of all positive integers. PROOF. Let X be a Polish space and Y be a subspace. Suppose that Y is a Polish space. Let d be a complete metric on Y compatible with the topology in Y. Let Y be the closure of Y in X. For each n :::: 1,2, ... , we denote by y" the set of all those points x E Y such that there exists an open neighborhood U of x with diameter U n Ys lin. It is clear that Y" is an open subset of Y with respect to the relative topology of Y, and that Y" ~ Y. Hence we have n:; 1 Y" ~ Y. Suppose that x En:; 1 Y". For each n, there exists an open neighborhood Un of x such that the diameter of Un n Y s lin. Replacing Un by U 1 n ... n Un, we may assume that {Un} is decreasing. It then fol­ lows that { Un n Y} is a sequence of decreasing open subsets of Y whose diameters tend to zero. Hence n:;l {Un n Y} is a singleton, say {y}. Since {Un} can be chosen to be a fundamental system of neighborhoods of x, we have x = y E Y. Thus Y = n:; 1 Y". Since y" is open in Y, there exists an open set v" in X such that y" = Y n v". On the other hand, Y is a Gd-set in X, being closed, so that there exists a sequence of open sets {~} in X such that Y = n:; 1 ~. Thus Y = nn.m (v" n Wm ) is a Gd-set in X. Suppose that Y is a Ga-set of X. Let {Gn} be a sequence of open sets in X such that nGn = Y. Let d be a complete metric in X compatible with the topology in X. For each x E Y and n = 1,2, ... , let fn(x) = 1Id(x,G~) > 0. We set ~ 1 jJ,,(x) - J,,(y)j do(x,y) = d(x,y) + .'~'t 2n 1 + jJ,,(x) - J,,(y)j for each (x,y) E Y x Y. Then it is not difficult to prove that do is a complete metric in Y which is compatible with the topology in Y. Being a subspace of a separable metric space, Y is separable. Thus Y is a Polish space. Suppose that X is a Polish space with a complete metric d. Let {an} be a dense sequence in X. For a point x E X, we set d(an,x) } [ ]N q>(x) = { 1 + d(an,x) E 0,1 . It is not too hard to show that q> is a homeomorphism of X into the compact metrizable space [0,1 ]N. By the first half of our assertion, q>(X) is a Ga-set in [0,1 ]N. Q.E.D. Let N denote the set of all positive integers as usual. Set A = NN and define a metric d in A by Appendix: Polish Spaces and Standard Borel Spaces 377 It then follows that A is separable and complete with respect to the metric d. Let X be a separable complete metric space with a metric d; hence a Polish space. For each subset A c X, let c:5(A) be the diameter of A, i.e., c:5(A) = sup{d(x,y):x,y E A}. Let {F(n):n E N} be a closed covering of X with c:5(F(n)) ~ 1/2. Suppose that a closed covering {F(nb' .. ,nk):n 1 , ••• ,nk E N} of X has been defined for k = 1, ... ,m with the properties 00 F(nb ... ,n) = U F(n 1,n2 , ••• ,nj,n), n=1 j = 1,2, ... ,m - 1. Then there exists a closed covering {F(nb'" ,nm,n):n E N} of F(n 1 , ••• ,nm) such that c:5(F(nl," . ,nm,n)) ~ tc:5(F(n 1, • •• ,nm)). Now for any sequence {nd E A, {F(nl,'" ,nk):k E N} is a decreasing se­ quence of closed sets and limk_oo c:5(F(nl,' .. ,nk)) = O. Since X is complete, nr=1 F(n 1 ,··· ,nk) is a singleton which we denote by {cp({nk})}' Thus we obtain a mapping cp of A into X. It is easy to show that cp is continuous and surjective. Thus we obtain the following: Lemma A.2. If X is a Polish space, then there exists a continuous map from NN = A onto X. A Souslin space (or sometimes analytic space) means a metrizable space which is a continuous image of a Polish space. A subset of a topological space is said to be a Souslin set if it is a Souslin space as a topological space. By Lemma A.2, any Souslin space is a continuous image of A. Theorem A.3 (Separation of Souslin Sets). Let X be a metrizable space. If {Xn} is a disjoint countable family of Souslin subsets of X, then there exists a disjoint family {Bn} of Borel subsets of X such that Xn c Bn, n = 1,2, .... PROOF. First, we claim that if {An} and {A;"} are sequences of subsets of X such that for any n, m there exists a Borel set Bn.mwith the property Bn.m :;) An and Bn.m n A;" = 0, then there exists a Borel set B such that B :;) U:= 1 An and B n (U~= 1A;") = 0· Indeed, the Borel set B = U:= 1(n~= 1Bn.m) does the job. We now prove the theorem for two disjoint Souslin sets Yand Y' in X. Let f and f' be continuous maps of A onto Yand Y', respectively. For each (n 1, ••• ,nk) E,N x .~. x N:, k times we set 378 Appendix: Polish Spaces and Standard Borel Spaces We then have 00 A(nl, ... ,nk) = U A(nlon2,'" ,nk,n). n= 1 Set Y(nb ... ,nk) = f(A(nb ... ,nk», Y'(ml, ... ,mk) = f(A(mlo .. ,mk»· We now assume that there exists no Borel set B such that B ~ Y and B n Y' = 0. Jt then follows from the first argument that for some nl and mb Y(nl) and Y'(ml) are not separated by a Borel set. If Y(n 1, ... ,nk) and Y'(mb ... ,mk) are not separated by a Borel set, then for some nk+ 1 and mk+ 10 Y(nb'" ,nkonk+ d and Y'(ml,'" ,mbmk+ d are not separated by a Borel set. By induction, we obtain two sequences {nil and {mj} such that Y(nb' .. ,nk) and Y'(mb'" ,mk) are not separated by a Borel set. Set n = {nil E A and m = {mil E A and y = f(n) E Y, y' = f'(m) E Y'.
Recommended publications
  • Descriptive Set Theory of Complete Quasi-Metric Spaces
    数理解析研究所講究録 第 1790 巻 2012 年 16-30 16 Descriptive set theory of complete quasi-metric spaces Matthew de Brecht National Institute of Information and Communications Technology Kyoto, Japan Abstract We give a summary of results from our investigation into extending classical descriptive set theory to the entire class of countably based $T_{0}$ -spaces. Polish spaces play a central role in the descriptive set theory of metrizable spaces, and we suggest that countably based completely quasi-metrizable spaces, which we refer to as quasi-Polish spaces, play the central role in the extended theory. The class of quasi-Polish spaces is general enough to include both Polish spaces and $\omega$ -continuous domains, which have many applications in theoretical computer science. We show that quasi-Polish spaces are a very natural generalization of Polish spaces in terms of their topological characterizations and their complete- ness properties. In particular, a metrizable space is quasi-Polish if and only if it is Polish, and many classical theorems concerning Polish spaces, such as the Hausdorff-Kuratowski theorem, generalize to all quasi-Polish spaces. 1. Introduction Descriptive set theory has proven to be an invaluable tool for the study of separable metrizable spaces, and the techniques and results have been applied to many fields such as functional analysis, topological group theory, and math- ematical logic. Separable completely metrizable spaces, called Polish spaces, play a central role in classical descriptive set theory. These spaces include the space of natural numbers with the discrete topology, the real numbers with the Euclidean topology, as well as the separable Hilbert and Banach spaces.
    [Show full text]
  • Measure and Integration (Under Construction)
    Measure and Integration (under construction) Gustav Holzegel∗ April 24, 2017 Abstract These notes accompany the lecture course ”Measure and Integration” at Imperial College London (Autumn 2016). They follow very closely the text “Real-Analysis” by Stein-Shakarchi, in fact most proofs are simple rephrasings of the proofs presented in the aforementioned book. Contents 1 Motivation 3 1.1 Quick review of the Riemann integral . 3 1.2 Drawbacks of the class R, motivation of the Lebesgue theory . 4 1.2.1 Limits of functions . 5 1.2.2 Lengthofcurves ....................... 5 1.2.3 TheFundamentalTheoremofCalculus . 5 1.3 Measures of sets in R ......................... 6 1.4 LiteratureandFurtherReading . 6 2 Measure Theory: Lebesgue Measure in Rd 7 2.1 Preliminaries and Notation . 7 2.2 VolumeofRectanglesandCubes . 7 2.3 Theexteriormeasure......................... 9 2.3.1 Examples ........................... 9 2.3.2 Propertiesoftheexteriormeasure . 10 2.4 Theclassof(Lebesgue)measurablesets . 12 2.4.1 The property of countable additivity . 14 2.4.2 Regularity properties of the Lebesgue measure . 15 2.4.3 Invariance properties of the Lebesgue measure . 16 2.4.4 σ-algebrasandBorelsets . 16 2.5 Constructionofanon-measurableset. 17 2.6 MeasurableFunctions ........................ 19 2.6.1 Some abstract preliminary remarks . 19 2.6.2 Definitions and equivalent formulations of measurability . 19 2.6.3 Properties 1: Behaviour under compositions . 21 2.6.4 Properties 2: Behaviour under limits . 21 2.6.5 Properties3: Behaviourof sums and products . 22 ∗Imperial College London, Department of Mathematics, South Kensington Campus, Lon- don SW7 2AZ, United Kingdom. 1 2.6.6 Thenotionof“almosteverywhere”. 22 2.7 Building blocks of integration theory .
    [Show full text]
  • Topology and Descriptive Set Theory
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector TOPOLOGY AND ITS APPLICATIONS ELSEVIER Topology and its Applications 58 (1994) 195-222 Topology and descriptive set theory Alexander S. Kechris ’ Department of Mathematics, California Institute of Technology, Pasadena, CA 91125, USA Received 28 March 1994 Abstract This paper consists essentially of the text of a series of four lectures given by the author in the Summer Conference on General Topology and Applications, Amsterdam, August 1994. Instead of attempting to give a general survey of the interrelationships between the two subjects mentioned in the title, which would be an enormous and hopeless task, we chose to illustrate them in a specific context, that of the study of Bore1 actions of Polish groups and Bore1 equivalence relations. This is a rapidly growing area of research of much current interest, which has interesting connections not only with topology and set theory (which are emphasized here), but also to ergodic theory, group representations, operator algebras and logic (particularly model theory and recursion theory). There are four parts, corresponding roughly to each one of the lectures. The first contains a brief review of some fundamental facts from descriptive set theory. In the second we discuss Polish groups, and in the third the basic theory of their Bore1 actions. The last part concentrates on Bore1 equivalence relations. The exposition is essentially self-contained, but proofs, when included at all, are often given in the barest outline. Keywords: Polish spaces; Bore1 sets; Analytic sets; Polish groups; Bore1 actions; Bore1 equivalence relations 1.
    [Show full text]
  • Borel Structure in Groups and Their Dualso
    BOREL STRUCTURE IN GROUPS AND THEIR DUALSO GEORGE W. MACKEY Introduction. In the past decade or so much work has been done toward extending the classical theory of finite dimensional representations of com- pact groups to a theory of (not necessarily finite dimensional) unitary repre- sentations of locally compact groups. Among the obstacles interfering with various aspects of this program is the lack of a suitable natural topology in the "dual object"; that is in the set of equivalence classes of irreducible representations. One can introduce natural topologies but none of them seem to have reasonable properties except in extremely special cases. When the group is abelian for example the dual object itself is a locally compact abelian group. This paper is based on the observation that for certain purposes one can dispense with a topology in the dual object in favor of a "weaker struc- ture" and that there is a wide class of groups for which this weaker structure has very regular properties. If .S is any topological space one defines a Borel (or Baire) subset of 5 to be a member of the smallest family of subsets of 5 which includes the open sets and is closed with respect to the formation of complements and countable unions. The structure defined in 5 by its Borel sets we may call the Borel structure of 5. It is weaker than the topological structure in the sense that any one-to-one transformation of S onto 5 which preserves the topological structure also preserves the Borel structure whereas the converse is usually false.
    [Show full text]
  • Dirichlet Is Natural Vincent Danos, Ilias Garnier
    Dirichlet is Natural Vincent Danos, Ilias Garnier To cite this version: Vincent Danos, Ilias Garnier. Dirichlet is Natural. MFPS 31 - Mathematical Foundations of Program- ming Semantics XXXI, Jun 2015, Nijmegen, Netherlands. pp.137-164, 10.1016/j.entcs.2015.12.010. hal-01256903 HAL Id: hal-01256903 https://hal.archives-ouvertes.fr/hal-01256903 Submitted on 15 Jan 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. MFPS 2015 Dirichlet is natural Vincent Danos1 D´epartement d'Informatique Ecole normale sup´erieure Paris, France Ilias Garnier2 School of Informatics University of Edinburgh Edinburgh, United Kingdom Abstract Giry and Lawvere's categorical treatment of probabilities, based on the probabilistic monad G, offer an elegant and hitherto unexploited treatment of higher-order probabilities. The goal of this paper is to follow this formulation to reconstruct a family of higher-order probabilities known as the Dirichlet process. This family is widely used in non-parametric Bayesian learning. Given a Polish space X, we build a family of higher-order probabilities in G(G(X)) indexed by M ∗(X) the set of non-zero finite measures over X. The construction relies on two ingredients.
    [Show full text]
  • Polish Spaces and Baire Spaces
    Polish spaces and Baire spaces Jordan Bell [email protected] Department of Mathematics, University of Toronto June 27, 2014 1 Introduction These notes consist of me working through those parts of the first chapter of Alexander S. Kechris, Classical Descriptive Set Theory, that I think are impor- tant in analysis. Denote by N the set of positive integers. I do not talk about universal spaces like the Cantor space 2N, the Baire space NN, and the Hilbert cube [0; 1]N, or \localization", or about Polish groups. If (X; τ) is a topological space, the Borel σ-algebra of X, denoted by BX , is the smallest σ-algebra of subsets of X that contains τ. BX contains τ, and is closed under complements and countable unions, and rather than talking merely about Borel sets (elements of the Borel σ-algebra), we can be more specific by talking about open sets, closed sets, and sets that are obtained by taking countable unions and complements. Definition 1. An Fσ set is a countable union of closed sets. A Gδ set is a complement of an Fσ set. Equivalently, it is a countable intersection of open sets. If (X; d) is a metric space, the topology induced by the metric d is the topology generated by the collection of open balls. If (X; τ) is a topological space, a metric d on the set X is said to be compatible with τ if τ is the topology induced by d.A metrizable space is a topological space whose topology is induced by some metric, and a completely metrizable space is a topological space whose topology is induced by some complete metric.
    [Show full text]
  • A Framework to Study Commutation Problems Bulletin De La S
    BULLETIN DE LA S. M. F. ALFONS VAN DAELE A framework to study commutation problems Bulletin de la S. M. F., tome 106 (1978), p. 289-309 <http://www.numdam.org/item?id=BSMF_1978__106__289_0> © Bulletin de la S. M. F., 1978, tous droits réservés. L’accès aux archives de la revue « Bulletin de la S. M. F. » (http: //smf.emath.fr/Publications/Bulletin/Presentation.html) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/ conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Bull. Soc. math. France, 106, 1978, p. 289-309. A FRAMEWORK TO STUDY COMMUTATION PROBLEMS BY ALFONS VAN DAELE [Kath. Univ. Leuven] RESUME. — Soient A et B deux algebres involutives d'operateurs sur un espace hil- bertien j^, telles que chacune d'elles soit contenue dans Ie commutant de Fautre. On enonce des conditions suffisantes sur A et B, en termes de certaines applications lineaires, ri : A ->• ^ et n' : B -> J^, pour que chacune de ces algebres engendre Ie commutant de Fautre. Cette structure generalise d'une certaine facon celle d'une algebre hilbertienne a gauche; elle permet de traiter Ie cas ou Falgebre de von Neumann et son commutant n'ont pas la meme grandeur. ABSTRACT. — If A and B are commuting *-algebras of operators on a Hilbert space ^, conditions on A and B are formulated in terms of linear maps T| : A -> ^ and n" : B -»• ^ to ensure that A and B generate each others commutants.
    [Show full text]
  • Descriptive Set Theory
    Descriptive Set Theory David Marker Fall 2002 Contents I Classical Descriptive Set Theory 2 1 Polish Spaces 2 2 Borel Sets 14 3 E®ective Descriptive Set Theory: The Arithmetic Hierarchy 27 4 Analytic Sets 34 5 Coanalytic Sets 43 6 Determinacy 54 7 Hyperarithmetic Sets 62 II Borel Equivalence Relations 73 1 8 ¦1-Equivalence Relations 73 9 Tame Borel Equivalence Relations 82 10 Countable Borel Equivalence Relations 87 11 Hyper¯nite Equivalence Relations 92 1 These are informal notes for a course in Descriptive Set Theory given at the University of Illinois at Chicago in Fall 2002. While I hope to give a fairly broad survey of the subject we will be concentrating on problems about group actions, particularly those motivated by Vaught's conjecture. Kechris' Classical Descriptive Set Theory is the main reference for these notes. Notation: If A is a set, A<! is the set of all ¯nite sequences from A. Suppose <! σ = (a0; : : : ; am) 2 A and b 2 A. Then σ b is the sequence (a0; : : : ; am; b). We let ; denote the empty sequence. If σ 2 A<!, then jσj is the length of σ. If f : N ! A, then fjn is the sequence (f(0); : : :b; f(n ¡ 1)). If X is any set, P(X), the power set of X is the set of all subsets X. If X is a metric space, x 2 X and ² > 0, then B²(x) = fy 2 X : d(x; y) < ²g is the open ball of radius ² around x. Part I Classical Descriptive Set Theory 1 Polish Spaces De¯nition 1.1 Let X be a topological space.
    [Show full text]
  • Notes Which Was Later Published As Springer Lecture Notes No.128: Simplifi- Cation Was Not an Issue, but the Validity of Tomita’S Claim
    STRUCTURE OF VON NEUMANN ALGEBRAS OF TYPE III Masamichi Takesaki Abstract. In this lecture, we will show that to every von Neumann algebra M there corresponds unquely a covariant system M, ⌧, R, ✓ on the real line R in such a way that n o f ✓ s M = M , ⌧ ✓s = e− ⌧, M0 M = C, ◦ \ where C is the center off M. In the case that M fis a factor, we have the following commutative square of groups which describes the relation of several important groups such as thef unitary group U(M) of M, the normalizer U(M) of M in M and the cohomology group of the flow of weights: C, R, ✓ : { } e f 1 1 1 ? ? @ ? 1 ? U?(C) ✓ B1( ,?U(C)) 1 −−−−−! yT −−−−−! y −−−−−! ✓ Ry −−−−−! ? ? @ ? 1 U(?M) U(?M) ✓ Z1( ,?U(C)) 1 −−−−−! y −−−−−! y −−−−−! ✓ Ry −−−−−! Ad Ade ? ? ˙ ? @✓ 1 1 Int?(M) Cnft?r(M) H ( ?, U(C)) 1 −−−−−! y −−−−−! y −−−−−! ✓ Ry −−−−−! ? ? ? ?1 ?1 ?1 y y y Contents Lecture 0. History of Structure Analyis of von Neumann Algebras of Type III. Lecture 1. Covariant System and Crossed Product. Lecture 2: Duality for the Crossed Product by Abelian Groups. Lecture 3: Second Cohomology of Locally Compact Abelian Group. Lecture 4. Arveson Spectrum of an Action of a Locally Compact Abelian Group G on a von Neumann algebra M. 1 2 VON NEUMANN ALGEBRAS OF TYPE III Lecture 5: Connes Spectrum. Lecture 6: Examples. Lecture 7: Crossed Product Construction of a Factor. Lecture 8: Structure of a Factor of Type III. Lecture 9: Hilbert Space Bundle. Lecture 10: The Non-Commutative Flow of Weights on a von Neumann algebra M, I.
    [Show full text]
  • COUNTABLE BOREL EQUIVALENCE RELATIONS Introduction. These
    COUNTABLE BOREL EQUIVALENCE RELATIONS SIMON THOMAS AND SCOTT SCHNEIDER Introduction. These notes are based upon a day-long lecture workshop presented by Simon Thomas at the University of Ohio at Athens on November 17, 2007. The workshop served as an intensive introduction to the emerging theory of countable Borel equivalence relations. These notes are an updated and slightly expanded version of an earlier draft which was compiled from the lecture slides by Scott Schneider. 1. First Session 1.1. Standard Borel Spaces and Borel Equivalence Relations. A topological space is said to be Polish if it admits a complete, separable metric. If B is a σ-algebra of subsets of a given set X, then the pair (X, B) is called a standard Borel space if there exists a Polish topology T on X that generates B as its Borel σ-algebra; in which case, we write B = B(T ). For example, each of the sets R, [0, 1], NN, and 2N = P(N) is Polish in its natural topology, and so may be viewed, equipped with its corresponding Borel structure, as a standard Borel space. The abstraction involved in passing from a topology to its associated Borel structure is analagous to that of passing from a metric to its induced topology. Just as distinct metrics on a space may induce the same topology, distinct topologies may very well generate the same Borel σ-algebra. In a standard Borel space, then, one “remembers” only the Borel sets, and forgets which of them were open; it is natural therefore to imagine that any of them might have been, and indeed this is the case: Theorem 1.1.1.
    [Show full text]
  • 4 from Random Borel Functions to Random Closed Sets
    Tel Aviv University, 2012 Measurability and continuity 63 4 From random Borel functions to random closed sets 4a Random measurable maps . 63 4b Random continuous functions revisited . 65 4c Random semicontinuous functions . 66 4d Randomclosedsets ................. 70 Hints to exercises ....................... 75 Index ............................. 75 A random Borel set is not a random element of the Borel σ-algebra, but a random closed set is a random element of a standard Borel space of closed sets. 4a Random measurable maps Indicators of random Borel sets are a special case of random Borel functions. The supremum of a random Borel function is measurable due to Sect. 3. In Sect. 2c random functions were treated as random elements of some spaces of functions (see 2c10–2c13), much more restricted than all functions or all Borel functions. And indeed, the indicator of a random Borel set cannot be treated in this way (since the random Borel set cannot, recall Sect. 2d). Now we proceed in the spirit of 2d3. A probability space (Ω, F,P ) is assumed to be given, but rarely mentioned.1 4a1 Definition. A random Borel function is an equivalence class of maps Ω → RR that contains the map ω → x → f(ω, x) for some (F × B(R))-measurable f : Ω × R → R. As before, “equivalent” means “differ on a negligible set only”. As before, it is convenient to denote both objects by f; just denote f(ω) = f(ω, ·) = x → f(ω, x). You may easily give an equivalent definition in the spirit of 2d2. Compare it with 1d26–1d27 and 2c10–2c13.
    [Show full text]
  • Stationary Probability Measures and Topological Realizations
    ISRAEL JOURNAL OF MATHEMATICS ?? (2013), 1{14 DOI: 10.1007/s??????-??????-?????? STATIONARY PROBABILITY MEASURES AND TOPOLOGICAL REALIZATIONS BY Clinton T. Conley∗ 584 Malott Hall Cornell University Ithaca, NY 14853 USA e-mail: [email protected] URL: http://www.math.cornell.edu/People/Faculty/conley.html AND Alexander S. Kechris∗∗ Mathematics 253-37 Caltech Pasadena, CA 91125 USA e-mail: [email protected] URL: http://www.math.caltech.edu/people/kechris.html AND Benjamin D. Miller∗ Institut f¨urmathematische Logik und Grundlagenforschung Fachbereich Mathematik und Informatik Universit¨atM¨unster Einsteinstraße 62 48149 M¨unster Germany e-mail: [email protected] URL: http://wwwmath.uni-muenster.de/u/ben.miller 1 2 C.T. CONLEY, A.S. KECHRIS AND B.D. MILLER Isr. J. Math. ABSTRACT We establish the generic inexistence of stationary Borel probability mea- sures for aperiodic Borel actions of countable groups on Polish spaces. Using this, we show that every aperiodic continuous action of a countable group on a compact Polish space has an invariant Borel set on which it has no σ-compact realization. 1. Introduction It is well known that every standard Borel space is Borel isomorphic to a σ- compact Polish space (see [Kec95, Theorem 15.6]), and that every Borel action of a countable discrete group on a standard Borel space is Borel isomorphic to a continuous action on a Polish space (see [Kec95, Theorem 13.1]). Here we consider obstacles to simultaneously achieving both results. In x2, we give elementary examples of continuous actions of countable groups on Polish spaces which are not Borel isomorphic to continuous actions on σ- compact Hausdorff spaces.
    [Show full text]