Souslin Quasi-Orders and Bi-Embeddability of Uncountable

Total Page:16

File Type:pdf, Size:1020Kb

Souslin Quasi-Orders and Bi-Embeddability of Uncountable Souslin quasi-orders and bi-embeddability of uncountable structures Alessandro Andretta Luca Motto Ros Author address: Universita` di Torino, Dipartimento di Matematica, Via Carlo Alberto, 10, 10123 Torino, Italy E-mail address: [email protected] Universita` di Torino, Dipartimento di Matematica, Via Carlo Alberto, 10, 10123 Torino, Italy E-mail address: [email protected] arXiv:1609.09292v2 [math.LO] 18 Mar 2019 Contents 1. Introduction 1 2. Preliminaries and notation 14 3. The generalized Cantor space 22 4. Generalized Borel sets 30 5. Generalized Borel functions 37 6. The generalized Baire space and Baire category 41 7. Standard Borel κ-spaces, κ-analyticquasi-orders,andspacesofcodes 47 8. Infinitary logics and models 55 9. κ-Souslin sets 65 10. The main construction 76 11. Completeness 85 12. Invariant universality 91 13. An alternative approach 106 14. Definable cardinality and reducibility 115 15. Some applications 126 16. Further completeness results 132 Indexes 147 Concepts 147 Symbols 148 Bibliography 151 iii Abstract We provide analogues of the results from [FMR11, CMMR13] (which correspond to the case κ = ω) for arbitrary κ-Souslin quasi-orders on any Polish space, for κ an infinite cardinal smaller than the cardinality of R. These generalizations yield a variety of results concerning the complexity of the embeddability relation between graphs or lattices of size κ, the isometric embeddability relation between complete metric spaces of density character κ, and the linear isometric embeddability relation between (real or complex) Banach spaces of density κ. Received by the editor March 19, 2019. 2010 Mathematics Subject Classification. 03E15, 03E60, 03E45, 03E10, 03E47. Key words and phrases. Generalized descriptive set theory, infinitary logics, κ-Souslin sets, determinacy, (bi-)embeddability, uncountable structures, non-separable metric spaces, non-separable Banach spaces. The authors would like to thank the anonymous referee for carefully reading the manuscript, pointing out inaccuracies, and suggesting changes that substantially improved the paper. All remaining errors are responsibility of the authors alone. v 1. INTRODUCTION 1 1. Introduction 1.1. What we knew. 1.1.1. Equivalence relations and classification problems. The analysis of definable equiva- lence relations on Polish spaces (or, more generally, on standard Borel spaces) has been one of the most active areas in descriptive set theory for the last two decades — see [FS89, Kec99, Kan08, Gao09] for excellent surveys of the subject. The main goal of this research area is to classify equivalence relations by means of reductions: if E and F are equivalence relations on Polish or standard Borel spaces X and Y , then f : X → Y reduces E to F if and only if (1.1) x E x′ ⇔ f(x) F f(x′), for every x, x′ ∈ X. In order to obtain nontrivial results one usually imposes definability assump- tions on E and F and/or on the reduction f. For example one may assume that • E and F are Borel or analytic1 and f is continuous or Borel (as it is customary when studying actions of Polish groups on standard Borel spaces [BK96, Hjo00, KM04]), or that • E and F are projective and f is Borel [HS79], or that • E, F , and f belong to some inner model of determinacy, such as L(R)[Hjo95, Hjo00]. When the reducing function f is Borel we say that E is Borel reducible to F (in symbols E ≤B F ) and that f is a Borel reduction of E to F . If E ≤B F ≤B E, then E and F are said to be Borel bi-reducible, in symbols E ∼B F . Borel reducibility is usually interpreted both as a topological version of the ubiquitous notion of classification of mathematical objects, and as a tool for computing cardinalities of quotient spaces in an effective way. If E and F are equivalence relations, then it can be argued that the statement E ≤B F is a precise mathematical formulation of the following informal assertions: • the problem of classifying the elements of X up to E-equivalence is no more complex than the problem of classifying the elements of Y up to F -equivalence; • the elements of X can be classified (in a definable way) up to E-equivalence using the F - equivalence classes as invariants; • the quotient space X/E has cardinality less or equal than the cardinality of X/F , and this inequality can be witnessed in a concrete and definable way. The theory of Borel reducibility has been used to gauge the complexity of many natural problems. One striking example is given by the classification of countable structures up to isomorphism briefly described below, whose systematic study was initiated by H. Friedman and Stanley in [FS89]. In a pioneering work in the mid 70s [Vau75] Vaught observed that by ω identifying the universe of a countable structure with ω, the collection ModL of countable L- structures can be construed as a Polish space, and the isomorphism relation =∼ on this space is an analytic equivalence relation. In order to exploit this identification most effectively, first- order logic must be replaced by its infinitary version Lω1ω, where countable conjunctions and disjunctions are allowed [Kei71]: by a theorem of Lopez-Escobar the (Lω1ω-)elementary classes, ω that is the sets Modσ of all countable models of an Lω1ω-sentence σ, are exactly the Borel ω subsets of ModL which are invariant under isomorphism. It follows that each elementary class ω is a standard Borel subspace of ModL, and that the restriction of the isomorphism relation to ω ∼ ω ∼ω Modσ, denoted in this paper either by =↾ Modσ or by =σ, is an analytic equivalence relation, whose complexity can then be analyzed in terms of Borel reducibility. Other classification problems whose complexity with respect to ≤B has been widely studied in the literature include e.g. the classification of Polish metric spaces up to isometry [CGK01, GK03, Cle12, CMMR18b] and the classification of separable Banach spaces up to linear isometry [Mel07] or up to isomorphism [FLR09]. 1 1 As customary in descriptive set theory, analytic sets are also called Σ1. 2 CONTENTS 1.1.2. Quasi-orders and embeddability. The concept of reduction from (1.1) can be applied to arbitrary binary relations, such as partial orders and quasi-orders (also known as preorders) [HMS88]. Quasi-orders are reflexive and transitive relations, and their symmetrization gives rise to an equiv- ⊏ alence relation. For example, the embeddability relation ∼ between structures (graphs, combi- natorial trees, lattices, quasi-orders, partial orders, . ) is a quasi-order, and its symmetrization ⊏ ω is the relation ≈ of bi-embeddability. The restriction of ∼ to the Borel set Modσ, denoted by ⊏ ω ⊏ω ∼↾ Modσ or by ∼σ, is an analytic quasi-order. Similarly, the relation of bi-embeddability on ω ω ω Modσ, denoted by ≈↾ Modσ or ≈σ, is an analytic equivalence relation. In [LR05, Theorem 3.1] Louveau and Rosendal proved that it is not possible to classify (in a reasonable way) all countable structures up to bi-embeddability, as the embeddability relation ⊏ ∼ is as complex as possible with respect to ≤B (whence also ≈ is as complex as possible). ⊏ω Theorem 1.1 (Louveau-Rosendal). The embeddability relation ∼CT on countable combina- torial trees (i.e. connected acyclic graphs) is a ≤B-complete analytic quasi-order, that is: ⊏ω (a) ∼CT is an analytic quasi-order on CTω, the Polish space of countable combinatorial trees, and ⊏ω (b) every analytic quasi-order is Borel reducible to ∼CT. ω Thus also the bi-embeddability relation ≈CT on CTω is a ≤B-complete analytic equivalence rela- tion. Remark 1.2. In an abstract setting, it is not hard to find ≤B-complete quasi-orders and equivalence relations. In fact it is easy to show that for every pointclass Γ closed under Borel preimages, countable unions, and projections, the collection of quasi-orders (respectively: equiv- alence relations) in Γ admits a ≤B-complete element, i.e. there is a quasi-order (respectively, an equivalence relation) UΓ ∈ Γ such that R ≤B UΓ, for any quasi-order (respectively: equiv- alence relation) R ∈ Γ — see [LR05, Proposition 1.3] and the ensuing remark. Examples of 1 Γ as above are the projective classes Σn’s and S(κ), the collection of all κ-Souslin sets — see Definition 9.1. However such ≤B-complete UΓ’s are usually obtained by ad hoc constructions. In contrast, Theorem 1.1 provided the first concrete, natural example of a ≤B-complete analytic ω 2 equivalence relation: the relation ≈CT of bi-embeddability on combinatorial trees. A ≤B-complete analytic equivalence relation must contain a non-Borel equivalence class, since it reduces the equivalence relation ω ω (1.2) EA := {(x, y) ∈ 2 × 2 | x = y ∨ x, y ∈ A} , where A ⊆ ω2 is a proper analytic set. On the other hand, the equivalence classes of an equiva- lence relation EG induced by a continuous (or Borel) action of a Polish group G are Borel [Kec95, 1 Theorem 15.14], even when EG is Σ1 and not Borel. Therefore there is a striking difference be- tween the isomorphism relation =∼ (which is induced by a continuous action of the group Sym(ω) ⊏ of all permutations on the natural numbers) and the embeddability relation ∼: even a very sim- ∼ 1 ple relation like the EA above is not Borel reducible to =, while any Σ1 equivalence relation (in 1 ⊏ fact: any Σ1 quasi-order) is Borel reducible to ∼. Hjorth isolated a topological property, called turbulence, that characterizes when an equivalence relation induced by a continuous Polish group action is Borel reducible to =∼ [Hjo00]. ⊏ω The next example shows that ∼CT is also complete for partial orders of size ℵ1, in the sense ⊏ω that each such partial order embeds into the quotient order of ∼CT.
Recommended publications
  • Descriptive Set Theory of Complete Quasi-Metric Spaces
    数理解析研究所講究録 第 1790 巻 2012 年 16-30 16 Descriptive set theory of complete quasi-metric spaces Matthew de Brecht National Institute of Information and Communications Technology Kyoto, Japan Abstract We give a summary of results from our investigation into extending classical descriptive set theory to the entire class of countably based $T_{0}$ -spaces. Polish spaces play a central role in the descriptive set theory of metrizable spaces, and we suggest that countably based completely quasi-metrizable spaces, which we refer to as quasi-Polish spaces, play the central role in the extended theory. The class of quasi-Polish spaces is general enough to include both Polish spaces and $\omega$ -continuous domains, which have many applications in theoretical computer science. We show that quasi-Polish spaces are a very natural generalization of Polish spaces in terms of their topological characterizations and their complete- ness properties. In particular, a metrizable space is quasi-Polish if and only if it is Polish, and many classical theorems concerning Polish spaces, such as the Hausdorff-Kuratowski theorem, generalize to all quasi-Polish spaces. 1. Introduction Descriptive set theory has proven to be an invaluable tool for the study of separable metrizable spaces, and the techniques and results have been applied to many fields such as functional analysis, topological group theory, and math- ematical logic. Separable completely metrizable spaces, called Polish spaces, play a central role in classical descriptive set theory. These spaces include the space of natural numbers with the discrete topology, the real numbers with the Euclidean topology, as well as the separable Hilbert and Banach spaces.
    [Show full text]
  • Topology and Descriptive Set Theory
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector TOPOLOGY AND ITS APPLICATIONS ELSEVIER Topology and its Applications 58 (1994) 195-222 Topology and descriptive set theory Alexander S. Kechris ’ Department of Mathematics, California Institute of Technology, Pasadena, CA 91125, USA Received 28 March 1994 Abstract This paper consists essentially of the text of a series of four lectures given by the author in the Summer Conference on General Topology and Applications, Amsterdam, August 1994. Instead of attempting to give a general survey of the interrelationships between the two subjects mentioned in the title, which would be an enormous and hopeless task, we chose to illustrate them in a specific context, that of the study of Bore1 actions of Polish groups and Bore1 equivalence relations. This is a rapidly growing area of research of much current interest, which has interesting connections not only with topology and set theory (which are emphasized here), but also to ergodic theory, group representations, operator algebras and logic (particularly model theory and recursion theory). There are four parts, corresponding roughly to each one of the lectures. The first contains a brief review of some fundamental facts from descriptive set theory. In the second we discuss Polish groups, and in the third the basic theory of their Bore1 actions. The last part concentrates on Bore1 equivalence relations. The exposition is essentially self-contained, but proofs, when included at all, are often given in the barest outline. Keywords: Polish spaces; Bore1 sets; Analytic sets; Polish groups; Bore1 actions; Bore1 equivalence relations 1.
    [Show full text]
  • UNIVERSALLY BAIRE SETS and GENERIC ABSOLUTENESS TREVOR M. WILSON Introduction Generic Absoluteness Principles Assert That Certai
    UNIVERSALLY BAIRE SETS AND GENERIC ABSOLUTENESS TREVOR M. WILSON Abstract. We prove several equivalences and relative consistency re- 2 uBλ sults involving notions of generic absoluteness beyond Woodin's (Σ1) generic absoluteness for a limit of Woodin cardinals λ. In particular,e we R 2 uBλ prove that two-step 9 (Π1) generic absoluteness below a measur- able cardinal that is a limite of Woodin cardinals has high consistency 2 uBλ strength, and that it is equivalent with the existence of trees for (Π1) formulas. The construction of these trees uses a general method for building an absolute complement for a given tree T assuming many \failures of covering" for the models L(T;Vα) below a measurable car- dinal. Introduction Generic absoluteness principles assert that certain properties of the set- theoretic universe cannot be changed by the method of forcing. Some pro- perties, such as the truth or falsity of the Continuum Hypothesis, can always be changed by forcing. Accordingly, one approach to formulating generic ab- soluteness principles is to consider properties of a limited complexity such 1 1 as those corresponding to pointclasses in descriptive set theory: Σ2, Σ3, projective, and so on. (Another approach is to limit the class ofe allowede forcing notions. For a survey of results in this area, see [1].) Shoenfield’s 1 absoluteness theorem implies that Σ2 statements are always generically ab- solute. Generic absoluteness principlese for larger pointclasses tend to be equiconsistent with strong axioms of infinity, and they may also relate to the extent of the universally Baire sets. 1 For example, one-step Σ3 generic absoluteness is shown in [3] to be equiconsistent with the existencee of a Σ2-reflecting cardinal and to be equiv- 1 alent with the statement that every ∆2 set of reals is universally Baire.
    [Show full text]
  • Polish Spaces and Baire Spaces
    Polish spaces and Baire spaces Jordan Bell [email protected] Department of Mathematics, University of Toronto June 27, 2014 1 Introduction These notes consist of me working through those parts of the first chapter of Alexander S. Kechris, Classical Descriptive Set Theory, that I think are impor- tant in analysis. Denote by N the set of positive integers. I do not talk about universal spaces like the Cantor space 2N, the Baire space NN, and the Hilbert cube [0; 1]N, or \localization", or about Polish groups. If (X; τ) is a topological space, the Borel σ-algebra of X, denoted by BX , is the smallest σ-algebra of subsets of X that contains τ. BX contains τ, and is closed under complements and countable unions, and rather than talking merely about Borel sets (elements of the Borel σ-algebra), we can be more specific by talking about open sets, closed sets, and sets that are obtained by taking countable unions and complements. Definition 1. An Fσ set is a countable union of closed sets. A Gδ set is a complement of an Fσ set. Equivalently, it is a countable intersection of open sets. If (X; d) is a metric space, the topology induced by the metric d is the topology generated by the collection of open balls. If (X; τ) is a topological space, a metric d on the set X is said to be compatible with τ if τ is the topology induced by d.A metrizable space is a topological space whose topology is induced by some metric, and a completely metrizable space is a topological space whose topology is induced by some complete metric.
    [Show full text]
  • Descriptive Set Theory
    Descriptive Set Theory David Marker Fall 2002 Contents I Classical Descriptive Set Theory 2 1 Polish Spaces 2 2 Borel Sets 14 3 E®ective Descriptive Set Theory: The Arithmetic Hierarchy 27 4 Analytic Sets 34 5 Coanalytic Sets 43 6 Determinacy 54 7 Hyperarithmetic Sets 62 II Borel Equivalence Relations 73 1 8 ¦1-Equivalence Relations 73 9 Tame Borel Equivalence Relations 82 10 Countable Borel Equivalence Relations 87 11 Hyper¯nite Equivalence Relations 92 1 These are informal notes for a course in Descriptive Set Theory given at the University of Illinois at Chicago in Fall 2002. While I hope to give a fairly broad survey of the subject we will be concentrating on problems about group actions, particularly those motivated by Vaught's conjecture. Kechris' Classical Descriptive Set Theory is the main reference for these notes. Notation: If A is a set, A<! is the set of all ¯nite sequences from A. Suppose <! σ = (a0; : : : ; am) 2 A and b 2 A. Then σ b is the sequence (a0; : : : ; am; b). We let ; denote the empty sequence. If σ 2 A<!, then jσj is the length of σ. If f : N ! A, then fjn is the sequence (f(0); : : :b; f(n ¡ 1)). If X is any set, P(X), the power set of X is the set of all subsets X. If X is a metric space, x 2 X and ² > 0, then B²(x) = fy 2 X : d(x; y) < ²g is the open ball of radius ² around x. Part I Classical Descriptive Set Theory 1 Polish Spaces De¯nition 1.1 Let X be a topological space.
    [Show full text]
  • On Some Problem of Sierpi´Nski and Ruziewicz
    Ø Ñ ÅØÑØÐ ÈÙ ÐØÓÒ× DOI: 10.2478/tmmp-2014-0008 Tatra Mt. Math. Publ. 58 (2014), 91–99 ON SOME PROBLEM OF SIERPINSKI´ AND RUZIEWICZ CONCERNING THE SUPERPOSITION OF MEASURABLE FUNCTIONS. MICROSCOPIC HAMEL BASIS Aleksandra Karasinska´ — Elzbieta˙ Wagner-Bojakowska ABSTRACT. S. Ruziewicz and W. Sierpi´nski proved that each function f : R→R can be represented as a superposition of two measurable functions. Here, a streng- thening of this theorem is given. The properties of Lusin set and microscopic Hamel bases are considered. In this note, some properties concerning microscopic sets are considered. 1º ⊂ R ÒØÓÒ We will say that a set E is microscopic if for each ε>0there n exists a sequence {In}n∈N of intervals such that E ⊂ n∈N In,andm(In) ≤ ε for each n ∈ N. The notion of microscopic set on the real line was introduced by J. A p p e l l. The properties of these sets were studied in [1]. The authors proved, among others, that the family M of microscopic sets is a σ-ideal, which is situated between countable sets and sets of Lebesgue measure zero, more precisely, be- tween the σ-ideal of strong measure zero sets and sets with Hausdorff dimension zero (see [3]). Moreover, analogously as the σ-ideal of Lebesgue nullsets, M is orthogonal to the σ-ideal of sets of the first category, i.e., the real line can be decomposed into two complementary sets such that one is of the first category and the second is microscopic (compare [5, Lemma 2.2] or [3, Theorem 20.4]).
    [Show full text]
  • The Envelope of a Pointclass Under a Local Determinacy Hypothesis
    THE ENVELOPE OF A POINTCLASS UNDER A LOCAL DETERMINACY HYPOTHESIS TREVOR M. WILSON Abstract. Given an inductive-like pointclass Γ and assuming the Ax- iom of Determinacy, Martin identified and analyzede the pointclass con- taining the norm relations of the next semiscale beyond Γ, if one exists. We show that much of Martin's analysis can be carriede out assuming only ZF + DCR + Det(∆Γ). This generalization requires arguments from Kechris{Woodin [10] ande e Martin [13]. The results of [10] and [13] can then be recovered as immediate corollaries of the general analysis. We also obtain a new proof of a theorem of Woodin on divergent models of AD+, as well as a new result regarding the derived model at an inde- structibly weakly compact limit of Woodin cardinals. Introduction Given an inductive-like pointclass Γ, Martin introduced a pointclass (which we call the envelope of Γ, following [22])e whose main feature is that it con- tains the prewellorderingse of the next scale (or semiscale) beyond Γ, if such a (semi)scale exists. This work was distributed as \Notes on the nexte Suslin cardinal," as cited in Jackson [3]. It is unpublished, so we use [3] as our reference instead for several of Martin's arguments. Martin's analysis used the assumption of the Axiom of Determinacy. We reformulate the notion of the envelope in such a way that many of its essen- tial properties can by derived without assuming AD. Instead we will work in the base theory ZF+DCR for the duration of the paper, stating determinacy hypotheses only when necessary.
    [Show full text]
  • On a Notion of Smallness for Subsets of the Baire Space Author(S): Alexander S
    On a Notion of Smallness for Subsets of the Baire Space Author(s): Alexander S. Kechris Source: Transactions of the American Mathematical Society, Vol. 229 (May, 1977), pp. 191-207 Published by: American Mathematical Society Stable URL: http://www.jstor.org/stable/1998505 . Accessed: 22/05/2013 14:14 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to Transactions of the American Mathematical Society. http://www.jstor.org This content downloaded from 131.215.71.79 on Wed, 22 May 2013 14:14:52 PM All use subject to JSTOR Terms and Conditions TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 229, 1977 ON A NOTION OF SMALLNESS FOR SUBSETS OF THE BAIRE SPACE BY ALEXANDER S. KECHRIS ABSTRACT.Let us call a set A C o' of functionsfrom X into X a-bounded if there is a countablesequence of functions(a.: n E o} C w' such that every memberof A is pointwisedominated by an elementof that sequence. We study in this paper definabilityquestions concerningthis notion of smallnessfor subsets of o'. We show that most of the usual definability results about the structureof countablesubsets of o' have corresponding versionswhich hold about a-boundedsubsets of o'.
    [Show full text]
  • The Realm of Ordinal Analysis
    The Realm of Ordinal Analysis Michael Rathjen Department of Pure Mathematics, University of Leeds Leeds LS2 9JT, United Kingdom Denn die Pioniere der Mathematik hatten sich von gewissen Grundlagen brauchbare Vorstellungen gemacht, aus denen sich Schl¨usse,Rechnungsarten, Resultate ergaben, deren bem¨achtigten sich die Physiker, um neue Ergebnisse zu erhalten, und endlich kamen die Techniker, nahmen oft bloß die Resultate, setzten neue Rechnungen darauf und es entstanden Maschinen. Und pl¨otzlich, nachdem alles in sch¨onste Existenz gebracht war, kamen die Mathematiker - jene, die ganz innen herumgr¨ubeln, - darauf, daß etwas in den Grundlagen der ganzen Sache absolut nicht in Ordnung zu bringen sei; tats¨achlich, sie sahen zuunterst nach und fanden, daß das ganze Geb¨audein der Luft stehe. Aber die Maschinen liefen! Man muß daraufhin annehmen, daß unser Dasein bleicher Spuk ist; wir leben es, aber eigentlich nur auf Grund eines Irrtums, ohne den es nicht entstanden w¨are. ROBERT MUSIL: Der mathematische Mensch (1913) 1 Introduction A central theme running through all the main areas of Mathematical Logic is the classification of sets, functions or theories, by means of transfinite hierarchies whose ordinal levels measure their ‘rank’ or ‘complexity’ in some sense appropriate to the underlying context. In Proof Theory this is manifest in the assignment of ‘proof the- oretic ordinals’ to theories, gauging their ‘consistency strength’ and ‘computational power’. Ordinal-theoretic proof theory came into existence in 1936, springing forth from Gentzen’s head in the course of his consistency proof of arithmetic. To put it roughly, ordinal analyses attach ordinals in a given representation system to formal theories.
    [Show full text]
  • Determinacy and Large Cardinals
    Determinacy and Large Cardinals Itay Neeman∗ Abstract. The principle of determinacy has been crucial to the study of definable sets of real numbers. This paper surveys some of the uses of determinacy, concentrating specifically on the connection between determinacy and large cardinals, and takes this connection further, to the level of games of length ω1. Mathematics Subject Classification (2000). 03E55; 03E60; 03E45; 03E15. Keywords. Determinacy, iteration trees, large cardinals, long games, Woodin cardinals. 1. Determinacy Let ωω denote the set of infinite sequences of natural numbers. For A ⊂ ωω let Gω(A) denote the length ω game with payoff A. The format of Gω(A) is displayed in Diagram 1. Two players, denoted I and II, alternate playing natural numbers forming together a sequence x = hx(n) | n < ωi in ωω called a run of the game. The run is won by player I if x ∈ A, and otherwise the run is won by player II. I x(0) x(2) ...... II x(1) x(3) ...... Diagram 1. The game Gω(A). A game is determined if one of the players has a winning strategy. The set A is ω determined if Gω(A) is determined. For Γ ⊂ P(ω ), det(Γ) denotes the statement that all sets in Γ are determined. Using the axiom of choice, or more specifically using a wellordering of the reals, it is easy to construct a non-determined set A. det(P(ωω)) is therefore false. On the other hand it has become clear through research over the years that det(Γ) is true if all the sets in Γ are definable by some concrete means.
    [Show full text]
  • Weak*-Polish Banach Spaces HASKELL ROSENTHAL*
    JOURNAL OF FUNCTIONAL ANALYSIS 76, 267-316 (1988) Weak*-Polish Banach Spaces HASKELL ROSENTHAL* Department of Mathemattcs, The University of Texas at Austin, Austin, Texas 78712 Communicated by the Editors Received February 27, 1986 A Banach space X which is a subspace of the dual of a Banach space Y is said to be weak*-Polish proviced X is separable and the closed unit bail of X is Polish in the weak*-topology. X is said to be Polish provided it is weak*-Polish when regar- ded as a subspace of ,I’**. A variety of structural results arc obtained for Banach spaces with the Point of Continuity Property (PCP), using the unifying concept of weak*-Polish Banach spaces. It is proved that every weak*-Polish Banach space contains an (infinite-dimensional) weak*-closed subspace. This yields the result of Edgar-Wheeler that every Polish Banach space has a reflexive subspace. It also yields the result of Ghoussoub-Maurey that every Banach space with the PCP has a subspace isomorphic to a separable dual, in virtue of the following known result linking the PCP and weak*-Polish Banach spaces: A separable Banach space has the PCP if (Edgar-Wheeler) and only if (GhoussoubMaurey) it is isometric to a weak*-Polish subspace of the dual of some separable Banach space. (For com- pleteness, a proof of this result is also given.) It is proved that if X and Y are Banach spaces with Xc Y*, then X is weak*-Polish if and only if X has a weak*- continuous boundedly complete skipped-blocking decomposition.
    [Show full text]
  • Effective Descriptive Set Theory
    Effective Descriptive Set Theory Andrew Marks December 14, 2019 1 1 These notes introduce the effective (lightface) Borel, Σ1 and Π1 sets. This study uses ideas and tools from descriptive set theory and computability theory. Our central motivation is in applications of the effective theory to theorems of classical (boldface) descriptive set theory, especially techniques which have no classical analogues. These notes have many errors and are very incomplete. Some important topics not covered include: • The Harrington-Shore-Slaman theorem [HSS] which implies many of the theorems of Section 3. • Steel forcing (see [BD, N, Mo, St78]) • Nonstandard model arguments • Barwise compactness, Jensen's model existence theorem • α-recursion theory • Recent beautiful work of the \French School": Debs, Saint-Raymond, Lecompte, Louveau, etc. These notes are from a class I taught in spring 2019. Thanks to Adam Day, Thomas Gilton, Kirill Gura, Alexander Kastner, Alexander Kechris, Derek Levinson, Antonio Montalb´an,Dean Menezes and Riley Thornton, for helpful conversations and comments on earlier versions of these notes. 1 Contents 1 1 1 1 Characterizing Σ1, ∆1, and Π1 sets 4 1 1.1 Σn formulas, closure properties, and universal sets . .4 1.2 Boldface vs lightface sets and relativization . .5 1 1.3 Normal forms for Σ1 formulas . .5 1.4 Ranking trees and Spector boundedness . .7 1 1.5 ∆1 = effectively Borel . .9 1.6 Computable ordinals, hyperarithmetic sets . 11 1 1.7 ∆1 = hyperarithmetic . 14 x 1 1.8 The hyperjump, !1 , and the analogy between c.e. and Π1 .... 15 2 Basic tools 18 2.1 Existence proofs via completeness results .
    [Show full text]