UNIVERSALLY BAIRE SETS and GENERIC ABSOLUTENESS TREVOR M. WILSON Introduction Generic Absoluteness Principles Assert That Certai
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
E-RECURSIVE INTUITIONS in Memoriam Professor Joseph R. Shoenfield Contents 1. Initial Intuitions 1 2. E-Recursively Enumerable V
E-RECURSIVE INTUITIONS GERALD E. SACKS In Memoriam Professor Joseph R. Shoenfield Abstract. An informal sketch (with intermittent details) of parts of E-Recursion theory, mostly old, some new, that stresses intu- ition. The lack of effective unbounded search is balanced by the availability of divergence witnesses. A set is E-closed iff it is tran- sitive and closed under the application of partial E-recursive func- tions. Some finite injury, forcing, and model theoretic construc- tions can be adapted to E-closed sets that are not 1 admissible. Reflection plays a central role. Contents 1. Initial Intuitions 1 2. E-Recursively Enumerable Versus 1 4 3. E-Recursion Versus -Recursion 6 4. Selection and Reflection 8 5. Finite Injury Arguments and Post’sProblem 12 6. Forcing: C.C.C. Versus Countably Closed 13 7. Model-Theoretic Completeness and Compactness 14 References 16 1. Initial Intuitions One of the central intuitions of classical recursion theory is the effec- tiveness of unbounded search. Let A be a nonempty recursively enu- merable set of nonnegative integers. A member of A can be selected by simply enumerating A until some member appears. This procedure, known as unbounded search, consists of following instructions until a termination point is reached. What eventually appears is not merely Date: December 10, 2010. My thanks to the organizers of "Effective Mathematics of the Uncountable," CUNY Graduate Center, August 2009, for their kind invitation. 1 E-RECURSIVEINTUITIONS 2 some number n A but a computation that reveals n A. Unbounded search in its full2 glory consists of enumerating all computations2 until a suitable computation, if it exists, is found. -
Descriptive Set Theory
Descriptive Set Theory David Marker Fall 2002 Contents I Classical Descriptive Set Theory 2 1 Polish Spaces 2 2 Borel Sets 14 3 E®ective Descriptive Set Theory: The Arithmetic Hierarchy 27 4 Analytic Sets 34 5 Coanalytic Sets 43 6 Determinacy 54 7 Hyperarithmetic Sets 62 II Borel Equivalence Relations 73 1 8 ¦1-Equivalence Relations 73 9 Tame Borel Equivalence Relations 82 10 Countable Borel Equivalence Relations 87 11 Hyper¯nite Equivalence Relations 92 1 These are informal notes for a course in Descriptive Set Theory given at the University of Illinois at Chicago in Fall 2002. While I hope to give a fairly broad survey of the subject we will be concentrating on problems about group actions, particularly those motivated by Vaught's conjecture. Kechris' Classical Descriptive Set Theory is the main reference for these notes. Notation: If A is a set, A<! is the set of all ¯nite sequences from A. Suppose <! σ = (a0; : : : ; am) 2 A and b 2 A. Then σ b is the sequence (a0; : : : ; am; b). We let ; denote the empty sequence. If σ 2 A<!, then jσj is the length of σ. If f : N ! A, then fjn is the sequence (f(0); : : :b; f(n ¡ 1)). If X is any set, P(X), the power set of X is the set of all subsets X. If X is a metric space, x 2 X and ² > 0, then B²(x) = fy 2 X : d(x; y) < ²g is the open ball of radius ² around x. Part I Classical Descriptive Set Theory 1 Polish Spaces De¯nition 1.1 Let X be a topological space. -
On Some Problem of Sierpi´Nski and Ruziewicz
Ø Ñ ÅØÑØÐ ÈÙ ÐØÓÒ× DOI: 10.2478/tmmp-2014-0008 Tatra Mt. Math. Publ. 58 (2014), 91–99 ON SOME PROBLEM OF SIERPINSKI´ AND RUZIEWICZ CONCERNING THE SUPERPOSITION OF MEASURABLE FUNCTIONS. MICROSCOPIC HAMEL BASIS Aleksandra Karasinska´ — Elzbieta˙ Wagner-Bojakowska ABSTRACT. S. Ruziewicz and W. Sierpi´nski proved that each function f : R→R can be represented as a superposition of two measurable functions. Here, a streng- thening of this theorem is given. The properties of Lusin set and microscopic Hamel bases are considered. In this note, some properties concerning microscopic sets are considered. 1º ⊂ R ÒØÓÒ We will say that a set E is microscopic if for each ε>0there n exists a sequence {In}n∈N of intervals such that E ⊂ n∈N In,andm(In) ≤ ε for each n ∈ N. The notion of microscopic set on the real line was introduced by J. A p p e l l. The properties of these sets were studied in [1]. The authors proved, among others, that the family M of microscopic sets is a σ-ideal, which is situated between countable sets and sets of Lebesgue measure zero, more precisely, be- tween the σ-ideal of strong measure zero sets and sets with Hausdorff dimension zero (see [3]). Moreover, analogously as the σ-ideal of Lebesgue nullsets, M is orthogonal to the σ-ideal of sets of the first category, i.e., the real line can be decomposed into two complementary sets such that one is of the first category and the second is microscopic (compare [5, Lemma 2.2] or [3, Theorem 20.4]). -
Strong Logics of First and Second Order∗
Strong Logics of First and Second Order∗ Peter Koellner Abstract In this paper we investigate strong logics of first and second order that have certain absoluteness properties. We begin with an investigation of first order logic and the strong logics ω-logic and β-logic, isolating two facets of absoluteness, namely, generic invariance and faithfulness. It turns out that absoluteness is relative in the sense that stronger background assumptions secure greater degrees of absoluteness. Our aim is to investigate the hierarchies of strong logics of first and second order that are generically invariant and faithful against the backdrop of the strongest large cardinal hypotheses. We show that there is a close correspondence between the two hierarchies and we characterize the strongest logic in each hierarchy. On the first-order side, this leads to a new presentation of Woodin’s Ω-logic. On the second-order side, we compare the strongest logic with full second-order logic and argue that the comparison lends support to Quine’s claim that second-order logic is really set theory in sheep’s clothing. This paper is concerned with strong logics of first and second order. At the most abstract level, a strong logic of first-order has the following general form: Let L be a first-order language and let Φ(x) be a formula that defines a class of L-structures. Then, for a recursively enumerable set T of sentences of L, and for a sentence ϕ of L set T |=Φ(x) ϕ iff for all L-structures M such that Φ(M), if M |= T then M |= ϕ. -
On a Notion of Smallness for Subsets of the Baire Space Author(S): Alexander S
On a Notion of Smallness for Subsets of the Baire Space Author(s): Alexander S. Kechris Source: Transactions of the American Mathematical Society, Vol. 229 (May, 1977), pp. 191-207 Published by: American Mathematical Society Stable URL: http://www.jstor.org/stable/1998505 . Accessed: 22/05/2013 14:14 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to Transactions of the American Mathematical Society. http://www.jstor.org This content downloaded from 131.215.71.79 on Wed, 22 May 2013 14:14:52 PM All use subject to JSTOR Terms and Conditions TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 229, 1977 ON A NOTION OF SMALLNESS FOR SUBSETS OF THE BAIRE SPACE BY ALEXANDER S. KECHRIS ABSTRACT.Let us call a set A C o' of functionsfrom X into X a-bounded if there is a countablesequence of functions(a.: n E o} C w' such that every memberof A is pointwisedominated by an elementof that sequence. We study in this paper definabilityquestions concerningthis notion of smallnessfor subsets of o'. We show that most of the usual definability results about the structureof countablesubsets of o' have corresponding versionswhich hold about a-boundedsubsets of o'. -
The Determined Property of Baire in Reverse Math
THE DETERMINED PROPERTY OF BAIRE IN REVERSE MATH ERIC P. ASTOR, DAMIR DZHAFAROV, ANTONIO MONTALBAN,´ REED SOLOMON, AND LINDA BROWN WESTRICK Abstract. We define the notion of a determined Borel code in reverse math, and consider the principle DPB, which states that every determined Borel set has the property of Baire. We show that this principle is strictly weaker than ATR0. Any !-model of DPB must be closed under hyperarithmetic reduction, but DPB is not a theory of hyperarithmetic analysis. We show that whenever M ⊆ 2! is the second-order part of an !-model of DPB, then for every Z 2 M, 1 there is a G 2 M such that G is ∆1-generic relative to Z. The program of reverse math aims to quantify the strength of the various ax- ioms and theorems of ordinary mathematics by assuming only a weak base the- ory (RCA0) and then determining which axioms and theorems can prove which others over that weak base. Five robust systems emerged, (in order of strength, 1 RCA0; WKL; ACA0; ATR0; Π1-CA) with most theorems of ordinary mathematics be- ing equivalent to one of these five (earning this group the moniker \the big five"). The standard reference is [Sim09]. In recent decades, most work in reverse math has focused on the theorems that do not belong to the big five but are in the vicinity of ACA0. Here we discuss two principles which are outside of the big five and located in the general vicinity of ATR0: the property of Baire for determined Borel sets (DPB) and the Borel dual Ramsey theorem for 3 partitions and ` colors 3 (Borel-DRT` ). -
Abstract Model for Measure and Category
Lakehead University Knowledge Commons,http://knowledgecommons.lakeheadu.ca Electronic Theses and Dissertations Retrospective theses 1975 Abstract model for measure and category Ho, S. M. Francis http://knowledgecommons.lakeheadu.ca/handle/2453/859 Downloaded from Lakehead University, KnowledgeCommons AN ABSTRACT MODEL FOR MEASURE AND CATEGORY A thesis submitted to Lakehead University in partial fulfillment of the requriements. for the Degree of Master of Science by S. M. Francis HO ProQuest Number: 10611588 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. ProOuest ProQuesbl 0611588 Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author. All rights reserved. This work Is protected against unauthorized copying under Title 17, United States Code Microform Edition ® ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106 - 1346 THES^ /M Sc. j-'i (o "7 Copyright (c) S. M. Francis Ho 1975 Canadian Th esis on Microfiche No. 30971 226585 ACKNOWLEDGEMENTS I would like to express my^ deep gratitude to my super- visor, Professor S. A. Naimpally, for his advice, encouragement and patience during the preparation of this thesis. I would like to thank Professor W. Eames for his valu- able suggestions and patience to read through the thesis. i ABSTRACT This thesis is an attempt to establish an abstract model for Lebesgue measure and Baire categorjr. -
Forcing? Thomas Jech
WHAT IS... ? Forcing? Thomas Jech What is forcing? Forcing is a remarkably powerful case that there exists no proof of the conjecture technique for the construction of models of set and no proof of its negation. theory. It was invented in 1963 by Paul Cohen1, To make this vague discussion more precise we who used it to prove the independence of the will first elaborate on the concepts of theorem and Continuum Hypothesis. He constructed a model proof. of set theory in which the Continuum Hypothesis What are theorems and proofs? It is a use- (CH) fails, thus showing that CH is not provable ful fact that every mathematical statement can from the axioms of set theory. be expressed in the language of set theory. All What is the Continuum Hypothesis? In 1873 mathematical objects can be regarded as sets, and Georg Cantor proved that the continuum is un- relations between them can be reduced to expres- countable: that there exists no mapping of the set sions that use only the relation ∈. It is not essential N of all integers onto the set R of all real numbers. how it is done, but it can be done: For instance, Since R contains N, we have 2ℵ0 > ℵ , where 2ℵ0 0 integers are certain finite sets, rational numbers and ℵ are the cardinalities of R and N, respec- 0 are pairs of integers, real numbers are identified tively. A question arises whether 2ℵ0 is equal to with Dedekind cuts in the rationals, functions the cardinal ℵ1, the immediate successor of ℵ0. -
THE NON-ABSOLUTENESS of MODEL EXISTENCE in UNCOUNTABLE CARDINALS for Lω1,Ω Throughout, We Assume Φ Is an L Ω1,Ω Sentence Wh
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Diposit Digital de Documents de la UAB THE NON-ABSOLUTENESS OF MODEL EXISTENCE IN UNCOUNTABLE CARDINALS FOR L!1;! SY-DAVID FRIEDMAN∗, TAPANI HYTTINENy, AND MARTIN KOERWIENz Abstract. For sentences φ of L!1;!, we investigate the question of absolute- ness of φ having models in uncountable cardinalities. We first observe that having a model in @1 is an absolute property, but having a model in @2 is not as it may depend on the validity of the Continuum Hypothesis. We then consider the GCH context and provide sentences for any α 2 !1 n f0; 1;!g for which the existence of a model in @α is non-absolute (relative to large cardinal hypotheses). Throughout, we assume φ is an L!1;! sentence which has infinite models. By L¨owenheim-Skolem, φ must have a countable model, so the property \having a countable model" is an absolute property of such sentences in the sense that its validity does not depend on the properties of the set theoretic universe we work in, i.e. it is a consequence of ZFC. A main tool for absoluteness considerations is Shoenfields absoluteness Theorem (Theorem 25.20 in [7]). It states that any 1 1 property expressed by either a Σ2 or a Π2 formula is absolute between transitive models of ZFC. The purpose of this paper is to investigate the question of how far we can replace \countable" by higher cardinalities. As John Baldwin observed in [2], it follows from results of [6] that the property of φ having arbitrarily large models is absolute (it can be expressed in form of the existence of an infinite indiscernible sequence, which by Shoenfield absoluteness is absolute). -
Souslin Quasi-Orders and Bi-Embeddability of Uncountable
Souslin quasi-orders and bi-embeddability of uncountable structures Alessandro Andretta Luca Motto Ros Author address: Universita` di Torino, Dipartimento di Matematica, Via Carlo Alberto, 10, 10123 Torino, Italy E-mail address: [email protected] Universita` di Torino, Dipartimento di Matematica, Via Carlo Alberto, 10, 10123 Torino, Italy E-mail address: [email protected] arXiv:1609.09292v2 [math.LO] 18 Mar 2019 Contents 1. Introduction 1 2. Preliminaries and notation 14 3. The generalized Cantor space 22 4. Generalized Borel sets 30 5. Generalized Borel functions 37 6. The generalized Baire space and Baire category 41 7. Standard Borel κ-spaces, κ-analyticquasi-orders,andspacesofcodes 47 8. Infinitary logics and models 55 9. κ-Souslin sets 65 10. The main construction 76 11. Completeness 85 12. Invariant universality 91 13. An alternative approach 106 14. Definable cardinality and reducibility 115 15. Some applications 126 16. Further completeness results 132 Indexes 147 Concepts 147 Symbols 148 Bibliography 151 iii Abstract We provide analogues of the results from [FMR11, CMMR13] (which correspond to the case κ = ω) for arbitrary κ-Souslin quasi-orders on any Polish space, for κ an infinite cardinal smaller than the cardinality of R. These generalizations yield a variety of results concerning the complexity of the embeddability relation between graphs or lattices of size κ, the isometric embeddability relation between complete metric spaces of density character κ, and the linear isometric embeddability relation between (real or complex) Banach spaces of density κ. Received by the editor March 19, 2019. 2010 Mathematics Subject Classification. 03E15, 03E60, 03E45, 03E10, 03E47. -
Definable Combinatorics of Graphs and Equivalence Relations
Definable Combinatorics of Graphs and Equivalence Relations Thesis by Connor Meehan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 22, 2018 © 2018 Connor Meehan ORCID: 0000-0002-7596-2437 All rights reserved ii ACKNOWLEDGEMENTS iii I would like to firstly thank my advisor, Alexander Kechris, for his patience, encouragement, and mentorship throughout my time as a graduate student. I would like to thank the department of mathematics at the California Institute of Technology for its surprisingly effective efforts at fostering a sense of community. I would like to thank Ronnie Chen for his constant companionship, our countless discussions (mathematical or otherwise), and his astute perspectives shared within. I owe great thanks to William Chan for profoundly increasing the enjoyment of my graduate studies, for supplying an outlet for my frustrations, and most of all, for his friendship. I would also like to thank Duncan Palamourdas for our brief and inspiring correspondence. I would like to thank my parents, Deborah and Stephen Meehan, for their support for me while I pursued my dreams. I would like to thank Cassandra Chan for showing that she cared. Lastly, I would like to thank both the Natural Sciences and Engineering Research Council of Canada and the National Science Foundation. This research is partially supported by NSERC PGS D and by NSF grant DMS-1464475. ABSTRACT iv Let D = ¹X; Dº be a Borel directed graph on a standard Borel space X and let χB ¹Dº be its Borel chromatic number. -
Absoluteness Results in Set Theory
Absoluteness Results in Set Theory Peter Holy Juli 2007 Diplomarbeit eingereicht zur Erlangung des akademischen Grades Magister der Naturwissenschaften an der Fakult¨atf¨urNaturwissenschaften und Mathematik der Universit¨atWien Abstract We investigate the consistency strength of various absoluteness 1 principles. Following S. Friedman, we show that Σ3-absoluteness for arbitrary set-forcing has the consistency strength of a reflecting car- dinal. Following J. Bagaria, we show that Σ1(Hω2 )-absoluteness for ω1-preserving forcing is inconsistent and that for any partial ordering P ,Σ1(Hω2 )-absoluteness for P is equivalent to BFA(P ), the bounded forcing axiom for P - and hence Σ1(Hω2 )-absoluteness for ccc forcing is equiconsistent with ZFC. Then, following S. Shelah and M. Goldstern, we show that BPFA, the forcing axiom for the class of proper posets, is equiconsistent with the existence of a reflecting cardinal. We review that for any partial ordering P ,Σ1(Hω2 )-absoluteness for P implies 1 Σ3-absoluteness for P and finally, following S. Friedman, we turn back 1 to investigate the consistency strength of Σ3-absoluteness for various 1 classes of forcings: We show that Σ3-absoluteness for proper (or even 1 semiproper) forcing is equiconsistent with ZFC, that Σ3-absoluteness for ω1-preserving forcing is equiconsistent with the existence of a re- 1 flecting cardinal, that Σ3-absoluteness for ω1-preserving class forcing is inconsistent, that, under the additional assumption that ω1 is inac- 1 cessible to reals, Σ3-absoluteness for proper forcing has the consistency 1 strength of a reflecting cardinal and finally that Σ3-absoluteness for stationary-preserving forcing has the consistency strength of a reflect- ing cardinal.