2012 Noyce Conference Program

Total Page:16

File Type:pdf, Size:1020Kb

2012 Noyce Conference Program NSF Robert Noyce Teacher Scholarship Program Conference Building Excellence in STEM Teaching CONFERENCE PROGRAM May 23-25, 2012 Washington, D.C. 2013 AAAS ANNUAL MEETING 14–18 February • Boston Call for Symposium Proposals Symposium proposals for the 2013 AAAS Annual Meeting are now being solicited. To submit a proposal, visit www.aaas.org/meetings. The deadline for submission is Thursday, 26 April 2012. The Beauty and Benefi ts of Science The theme for the meeting points to the “unreasonable effectiveness” of the scientifi c enterprise in creating economic growth, solving societal problems, and satisfying the essential human drive to understand the world in which we live. The phrase, “unreasonable effectiveness,” was coined in 1960 by physicist Eugene Wigner, who explored the duality of mathematics — both beautiful unto itself, and also eminently practical, often in unexpected ways. The same duality exists in all fi elds of science. Basic research can be seen as a quest to understand the beauty that underlies our universe and the myriad phenomena that it contains. We now appreciate the reality of a much richer set of connections. Fundamental scientifi c understanding creates whole landscapes on which practical applications may fl ourish. Basic research may create territories that, only later, become the real estate for new industries. Equally important are the cases where the “pull” of environmental or societal problems drives fundamentally new basic research. The program of the 2013 AAAS Annual Meeting will highlight the rich and complicated connections between basic and applied research, and how they bring about both practical benefi ts and the beauty of pure understanding. Call for Poster Submissions Online entries will be accepted at www.aaas.org/meetings beginning 14 May 2012. Student Poster Competition Open to college undergraduate and graduate students only The competition recognizes the individual efforts of students who are actively working toward a college-level degree. Winners in each category receive a cash award and framed certifi cate, and are congratulated in the journal, Science. General Poster Session Open to postdocs and professionals This session provides an opportunity for postdocs and professionals to present their research to the broad community of scientists attending the AAAS Annual Meeting. NSF Robert Noyce Teacher Scholarship Program Conference Building Excellence in STEM Teaching May 23-25, 2012 Renaissance Washington DC Hotel Co-hosted by American Association for the Advancement of Science (AAAS) Education and Human Resources Program (EHR) and National Science Foundation (NSF) Division of Undergraduate Education (DUE) NSF Grant DUE‐1138038 Abstracts published in this program reflect the individual views of the authors and not necessarily that of AAAS, its Council, Board of Directors, ©AAAS 2012 Officers, or the views of the institutions with which the authors are ISBN 978‐0‐87168‐749‐4 affiliated. Presentation of ideas, products, or publications at AAAS’ meetings or the reporting of them in news accounts does not constitute Conference Program Editors: Yolanda S. George, AAAS, endorsement by AAAS. Education and Human Resources Programs Donna Behar, AAAS, Education and Human Resources Programs Betty Calinger, AAAS, Education and Human Resources Programs Conference Program Cover Design: Janel Kiley, AAAS, Office of Public Programs Conference Program Design: Donna Behar, AAAS, Education and Human Resources Programs CONTENTS About the NSF Robert Noyce Teacher Scholarship Program .................................... Page 6 About the American Association for the Advancement of Science (AAAS) ............ Page 6 Conference Agenda ......................................................................................................... Page 7‐8 Renaissance Washington DC Hotel Floor Plans ............................................................... Page 9 Speaker and Key Staff Biographies .................................................................................. Page 10 Washington DC Subway System Map .............................................................................. Page 13 Workshop Abstracts (By Session) .................................................................................... Page 14‐37 (Highlighted workshops are of particular interest to Scholars.) PI Poster Abstracts (Alphabetized by Institution) ............................................................ Page A1‐A71 Noyce Scholar/Fellow Poster Abstracts (Alphabetized by Institution) ............................ Page A72 Map of Washington DC ................................................................................................... Page A89 Poster Abstract Index ..................................................................................................... Page A90 ABOUT National Science Foundation (NSF) Robert and receive salary supplements while fulfilling a 4‐year teach‐ Noyce Teacher Scholarship Program ing requirement. The program also supports the develop‐ ment of NSF Master Teaching Fellows by providing profes‐ The Robert Noyce Teacher Scholarship Program, first author‐ sional development and salary supplements while they are ized under the National Science Foundation Authorization Act teaching for five years in a high need school district. A goal of of 2002 (P.L. 107‐368) and reauthorized in 2007 under the the program is to recruit individuals with strong STEM back‐ America COMPETES Act (P.L. 110‐69) and the America COM‐ grounds who might otherwise not have considered a career PETES Reauthorization Act of 2010 responds to the critical in K‐12 teaching. need for K‐12 teachers of science, technology, engineering, and mathematics (STEM) by encouraging talented STEM stu‐ The American Association for the Advancement of Science dents and professionals to pursue teaching careers in ele‐ (AAAS) is working with the NSF Robert Noyce Teacher Schol‐ mentary and secondary schools. arship Program to identify and disseminate information about effective practices and strategies for attracting, select‐ The program provides funding to institutions of higher educa‐ ing, and preparing new K‐12 STEM teachers and retaining tion to provide scholarships, stipends, and programmatic them in the STEM teacher workforce. Project components support to recruit and prepare STEM majors and profession‐ include: als to become K‐12 teachers. Scholarship and stipend recipi‐ • Co‐sponsoring and implementing the 2009, 2010, 2011, ents are required to complete two years of teaching in a high‐ and 2012 NSF Robert Noyce Teacher Scholarship need school district for each year of support. The program Program annual conferences. seeks to increase the number of K‐12 teachers with strong • Producing a general publication that highlights the STEM content knowledge who teach in high‐ need school accomplishments of the NSF Noyce Teacher Scholarship districts. Program. In addition, the program supports the recruitment and devel‐ • Developing and maintaining an NSF Noyce Teacher opment of NSF Teaching Fellows, STEM professionals who Scholarship Program Web site, http://nsfnoyce.org. complete Master’s degrees leading to teacher certification • Organizing proposal preparation workshops. American Association for the Advancement of winning news correspondents reporting from an array of Science (AAAS) countries. The American Association for the Advancement of Science For the latest research news, log onto EurekAlert!, (AAAS) is the world’s largest general scientific society, and www.eurekalert.org, the premier science‐news Web site, a publisher of the journal, Science (www.sciencemag.org) as Service of AAAS. For education and career resources visit well as Science Translational Medicine the AAAS website at http://www.aaas.org/. (www.sciencetranslationalmedicine.org) and Science Signaling (www.sciencesignaling.org). AAAS was founded in 1848, and includes some 261 affiliated societies and academies of science, serving 10 million individuals. Science has the largest paid circulation of any peer‐reviewed general science journal in the world, with an estimated total readership of 1 million. The non‐profit AAAS (www.aaas.org) is open to all and fulfills its mission to “advance science and serve society” through initiatives in science policy; international programs; science education; and more. AAAS is a global organization, with offices in Washington, D.C. and Cambridge, U.K., and award‐ 6 2012 NSF Robert Noyce Teacher Scholarship Program Conference AGENDA WEDNESDAY, MAY 23, 2012 9:15 am ‐ 10:30 am Concurrent Workshops: Session I (Meeting Rooms 2‐15) 3:30 pm ‐ 5:00 pm Museum Tours for Scholars and Fellows (optional) 10:45 am ‐ 11:45 am Panel: Voices from the Field (Grand Registration) (Grand Ballroom North & Central) Moderator: 4:30 pm ‐ 5:30 pm New Awardees Session with V. Celeste Carter, Program Director, National Science Foundation (NSF) DUE, NSF (Mount Vernon Square) Joan Prival, Noyce Lead Program Panelists: (Scholars) Director, Division of Undergraduate Jessie Campbell, Luella High School, Education (DUE), NSF Locust Grove, GA Mindy Chapell, Jane Adams High, Mary Lee Ledbetter, Program Chicago, IL Director, DUE, NSF Ginnie Chu, Pine High School and Noyce Monitoring System Grace High School, Santa Rosa, CA Chris Griffith, ICF International Emily Koehler, De Smet High School, De Smet, SD 7:00 pm ‐ 10:00 pm Registration (Grand Registration) Jamario Twitty, Lakeview Middle Poster Setup (Renaissance Ballroom) School, Greenville, SC Abner Zorilla, Community Academy
Recommended publications
  • Wind River Vxworks Platforms 3.8
    Wind River VxWorks Platforms 3.8 The market for secure, intelligent, Table of Contents Build System ................................ 24 connected devices is constantly expand- Command-Line Project Platforms Available in ing. Embedded devices are becoming and Build System .......................... 24 VxWorks Edition .................................2 more complex to meet market demands. Workbench Debugger .................. 24 New in VxWorks Platforms 3.8 ............2 Internet connectivity allows new levels of VxWorks Simulator ....................... 24 remote management but also calls for VxWorks Platforms Features ...............3 Workbench VxWorks Source increased levels of security. VxWorks Real-Time Operating Build Configuration ...................... 25 System ...........................................3 More powerful processors are being VxWorks 6.x Kernel Compatibility .............................3 considered to drive intelligence and Configurator ................................. 25 higher functionality into devices. Because State-of-the-Art Memory Host Shell ..................................... 25 Protection ..................................3 real-time and performance requirements Kernel Shell .................................. 25 are nonnegotiable, manufacturers are VxBus Framework ......................4 Run-Time Analysis Tools ............... 26 cautious about incorporating new Core Dump File Generation technologies into proven systems. To and Analysis ...............................4 System Viewer ........................
    [Show full text]
  • Intel Quartus Prime Pro Edition User Guide: Programmer Send Feedback
    Intel® Quartus® Prime Pro Edition User Guide Programmer Updated for Intel® Quartus® Prime Design Suite: 21.2 Subscribe UG-20134 | 2021.07.21 Send Feedback Latest document on the web: PDF | HTML Contents Contents 1. Intel® Quartus® Prime Programmer User Guide..............................................................4 1.1. Generating Primary Device Programming Files........................................................... 5 1.2. Generating Secondary Programming Files................................................................. 6 1.2.1. Generating Secondary Programming Files (Programming File Generator)........... 7 1.2.2. Generating Secondary Programming Files (Convert Programming File Dialog Box)............................................................................................. 11 1.3. Enabling Bitstream Security for Intel Stratix 10 Devices............................................ 18 1.3.1. Enabling Bitstream Authentication (Programming File Generator)................... 19 1.3.2. Specifying Additional Physical Security Settings (Programming File Generator).............................................................................................. 21 1.3.3. Enabling Bitstream Encryption (Programming File Generator).........................22 1.4. Enabling Bitstream Encryption or Compression for Intel Arria 10 and Intel Cyclone 10 GX Devices.................................................................................................. 23 1.5. Generating Programming Files for Partial Reconfiguration.........................................
    [Show full text]
  • A Superscalar Out-Of-Order X86 Soft Processor for FPGA
    A Superscalar Out-of-Order x86 Soft Processor for FPGA Henry Wong University of Toronto, Intel [email protected] June 5, 2019 Stanford University EE380 1 Hi! ● CPU architect, Intel Hillsboro ● Ph.D., University of Toronto ● Today: x86 OoO processor for FPGA (Ph.D. work) – Motivation – High-level design and results – Microarchitecture details and some circuits 2 FPGA: Field-Programmable Gate Array ● Is a digital circuit (logic gates and wires) ● Is field-programmable (at power-on, not in the fab) ● Pre-fab everything you’ll ever need – 20x area, 20x delay cost – Circuit building blocks are somewhat bigger than logic gates 6-LUT6-LUT 6-LUT6-LUT 3 6-LUT 6-LUT FPGA: Field-Programmable Gate Array ● Is a digital circuit (logic gates and wires) ● Is field-programmable (at power-on, not in the fab) ● Pre-fab everything you’ll ever need – 20x area, 20x delay cost – Circuit building blocks are somewhat bigger than logic gates 6-LUT 6-LUT 6-LUT 6-LUT 4 6-LUT 6-LUT FPGA Soft Processors ● FPGA systems often have software components – Often running on a soft processor ● Need more performance? – Parallel code and hardware accelerators need effort – Less effort if soft processors got faster 5 FPGA Soft Processors ● FPGA systems often have software components – Often running on a soft processor ● Need more performance? – Parallel code and hardware accelerators need effort – Less effort if soft processors got faster 6 FPGA Soft Processors ● FPGA systems often have software components – Often running on a soft processor ● Need more performance? – Parallel
    [Show full text]
  • EDN Magazine, December 17, 2004 (.Pdf)
    ᮋ HE BEST 100 PRODUCTS OF 2004 encompass a range of architectures and technologies Tand a plethora of categories—from analog ICs to multimedia to test-and-measurement tools. All are innovative, but, of the thousands that manufacturers announce each year and the hundreds that EDN reports on, only about 100 hot products make our readers re- ally sit up and take notice. Here are the picks from this year's crop. We present the basic info here. To get the whole scoop and find out why these products are so compelling, go to the Web version of this article on our Web site at www.edn.com. There, you'll find links to the full text of the articles that cover these products' dazzling features. ANALOG ICs Power Integrations COMMUNICATIONS NetLogic Microsystems Analog Devices LNK306P Atheros Communications NSE5512GLQ network AD1954 audio DAC switching power converter AR5005 Wi-Fi chip sets search engine www.analog.com www.powerint.com www.atheros.com www.netlogicmicro.com D2Audio Texas Instruments Fulcrum Microsystems Parama Networks XR125 seven-channel VCA8613 FM1010 six-port SPI-4,2 PNI8040 add-drop module eight-channel VGA switch chip multiplexer www.d2audio.com www.ti.com www.fulcrummicro.com www.paramanet.com International Rectifier Wolfson Microelectronics Motia PMC-Sierra IR2520D CFL ballast WM8740 audio DAC Javelin smart-antenna IC MSP2015, 2020, 4000, and power controller www.wolfsonmicro.com www.motia.com 5000 VoIP gateway chips www.irf.com www.pmc-sierra.com www.edn.com December 17, 2004 | edn 29 100 Texas Instruments Intel DISCRETE SEMICONDUCTORS
    [Show full text]
  • Introduction to Intel® FPGA IP Cores
    Introduction to Intel® FPGA IP Cores Updated for Intel® Quartus® Prime Design Suite: 20.3 Subscribe UG-01056 | 2020.11.09 Send Feedback Latest document on the web: PDF | HTML Contents Contents 1. Introduction to Intel® FPGA IP Cores..............................................................................3 1.1. IP Catalog and Parameter Editor.............................................................................. 4 1.1.1. The Parameter Editor................................................................................. 5 1.2. Installing and Licensing Intel FPGA IP Cores.............................................................. 5 1.2.1. Intel FPGA IP Evaluation Mode.....................................................................6 1.2.2. Checking the IP License Status.................................................................... 8 1.2.3. Intel FPGA IP Versioning............................................................................. 9 1.2.4. Adding IP to IP Catalog...............................................................................9 1.3. Best Practices for Intel FPGA IP..............................................................................10 1.4. IP General Settings.............................................................................................. 11 1.5. Generating IP Cores (Intel Quartus Prime Pro Edition)...............................................12 1.5.1. IP Core Generation Output (Intel Quartus Prime Pro Edition)..........................13 1.5.2. Scripting IP Core Generation....................................................................
    [Show full text]
  • North American Company Profiles 8X8
    North American Company Profiles 8x8 8X8 8x8, Inc. 2445 Mission College Boulevard Santa Clara, California 95054 Telephone: (408) 727-1885 Fax: (408) 980-0432 Web Site: www.8x8.com Email: [email protected] Fabless IC Supplier Regional Headquarters/Representative Locations Europe: 8x8, Inc. • Bucks, England U.K. Telephone: (44) (1628) 402800 • Fax: (44) (1628) 402829 Financial History ($M), Fiscal Year Ends March 31 1992 1993 1994 1995 1996 1997 1998 Sales 36 31 34 20 29 19 50 Net Income 5 (1) (0.3) (6) (3) (14) 4 R&D Expenditures 7 7 7 8 8 11 12 Capital Expenditures — — — — 1 1 1 Employees 114 100 105 110 81 100 100 Ownership: Publicly held. NASDAQ: EGHT. Company Overview and Strategy 8x8, Inc. is a worldwide leader in the development, manufacture and deployment of an advanced Visual Information Architecture (VIA) encompassing A/V compression/decompression silicon, software, subsystems, and consumer appliances for video telephony, videoconferencing, and video multimedia applications. 8x8, Inc. was founded in 1987. The “8x8” refers to the company’s core technology, which is based upon Discrete Cosine Transform (DCT) image compression and decompression. In DCT, 8-pixel by 8-pixel blocks of image data form the fundamental processing unit. 2-1 8x8 North American Company Profiles Management Paul Voois Chairman and Chief Executive Officer Keith Barraclough President and Chief Operating Officer Bryan Martin Vice President, Engineering and Chief Technical Officer Sandra Abbott Vice President, Finance and Chief Financial Officer Chris McNiffe Vice President, Marketing and Sales Chris Peters Vice President, Sales Michael Noonen Vice President, Business Development Samuel Wang Vice President, Process Technology David Harper Vice President, European Operations Brett Byers Vice President, General Counsel and Investor Relations Products and Processes 8x8 has developed a Video Information Architecture (VIA) incorporating programmable integrated circuits (ICs) and compression/decompression algorithms (codecs) for audio/video communications.
    [Show full text]
  • Intel® Arria® 10 Device Overview
    Intel® Arria® 10 Device Overview Subscribe A10-OVERVIEW | 2020.10.20 Send Feedback Latest document on the web: PDF | HTML Contents Contents Intel® Arria® 10 Device Overview....................................................................................... 3 Key Advantages of Intel Arria 10 Devices........................................................................ 4 Summary of Intel Arria 10 Features................................................................................4 Intel Arria 10 Device Variants and Packages.....................................................................7 Intel Arria 10 GX.................................................................................................7 Intel Arria 10 GT............................................................................................... 11 Intel Arria 10 SX............................................................................................... 14 I/O Vertical Migration for Intel Arria 10 Devices.............................................................. 17 Adaptive Logic Module................................................................................................ 17 Variable-Precision DSP Block........................................................................................18 Embedded Memory Blocks........................................................................................... 20 Types of Embedded Memory............................................................................... 21 Embedded Memory Capacity in
    [Show full text]
  • Demystifying Internet of Things Security Successful Iot Device/Edge and Platform Security Deployment — Sunil Cheruvu Anil Kumar Ned Smith David M
    Demystifying Internet of Things Security Successful IoT Device/Edge and Platform Security Deployment — Sunil Cheruvu Anil Kumar Ned Smith David M. Wheeler Demystifying Internet of Things Security Successful IoT Device/Edge and Platform Security Deployment Sunil Cheruvu Anil Kumar Ned Smith David M. Wheeler Demystifying Internet of Things Security: Successful IoT Device/Edge and Platform Security Deployment Sunil Cheruvu Anil Kumar Chandler, AZ, USA Chandler, AZ, USA Ned Smith David M. Wheeler Beaverton, OR, USA Gilbert, AZ, USA ISBN-13 (pbk): 978-1-4842-2895-1 ISBN-13 (electronic): 978-1-4842-2896-8 https://doi.org/10.1007/978-1-4842-2896-8 Copyright © 2020 by The Editor(s) (if applicable) and The Author(s) This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made. The images or other third party material in this book are included in the book’s Creative Commons license, unless indicated otherwise in a credit line to the material.
    [Show full text]
  • Moore's Law Motivation
    Motivation: Moore’s Law • Every two years: – Double the number of transistors CprE 488 – Embedded Systems Design – Build higher performance general-purpose processors Lecture 8 – Hardware Acceleration • Make the transistors available to the masses • Increase performance (1.8×↑) Joseph Zambreno • Lower the cost of computing (1.8×↓) Electrical and Computer Engineering Iowa State University • Sounds great, what’s the catch? www.ece.iastate.edu/~zambreno rcl.ece.iastate.edu Gordon Moore First, solve the problem. Then, write the code. – John Johnson Zambreno, Spring 2017 © ISU CprE 488 (Hardware Acceleration) Lect-08.2 Motivation: Moore’s Law (cont.) Motivation: Dennard Scaling • The “catch” – powering the transistors without • As transistors get smaller their power density stays melting the chip! constant 10,000,000,000 2,200,000,000 Transistor: 2D Voltage-Controlled Switch 1,000,000,000 Chip Transistor Dimensions 100,000,000 Count Voltage 10,000,000 ×0.7 1,000,000 Doping Concentrations 100,000 Robert Dennard 10,000 2300 Area 0.5×↓ 1,000 130W 100 Capacitance 0.7×↓ 10 0.5W 1 Frequency 1.4×↑ 0 Power = Capacitance × Frequency × Voltage2 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 Power 0.5×↓ Zambreno, Spring 2017 © ISU CprE 488 (Hardware Acceleration) Lect-08.3 Zambreno, Spring 2017 © ISU CprE 488 (Hardware Acceleration) Lect-08.4 Motivation Dennard Scaling (cont.) Motivation: Dark Silicon • In mid 2000s, Dennard scaling “broke” • Dark silicon – the fraction of transistors that need to be powered off at all times (due to power + thermal
    [Show full text]
  • Integrated Circuit Design
    ICD Integrated Circuit Design Assessment Informal Coursework LEdit Gate Layout Integrated Circuit Design Examination Books Digital Integrated Circuits Iain McNally Jan Rabaey PrenticeHall lectures Principles of CMOS VLSI Design ACircuits and Systems Perspective Koushik Maharatna Neil Weste David Harris AddisonWesley lectures Notes Resources httpusersecssotonacukbimnotesicd History Integrated Circuit Design Iain McNally First Transistor John Bardeen Walter Brattain and William Shockley Bell Labs Content Integrated Circuits Proposed Introduction Geoffrey Dummer Royal Radar Establishment prototype failed Overview of Technologies Layout First Integrated Circuit Design Rules and Abstraction Jack Kilby Texas Instruments Coinventor Cell Design and Euler Paths First Planar Integrated Circuit System Design using StandardCells Robert Noyce Fairchild Coinventor Pass Transistor Circuits First Commercial ICs Storage Simple logic functions from TI and Fairchild PLAs Moores Law Gordon Moore Fairchild observes the trends in integration Wider View History History Moores Law Moores Law a Selffullling Prophesy Predicts exponential growth in the number of components per chip The whole industry uses the Moores Law curve to plan new fabrication facilities Doubling Every Year In Gordon Moore observed that the number of components per chip had Slower wasted investment doubled every year since and predicted that the trend would continue through to Must keep up with the Joneses Moore describes his initial growth predictions
    [Show full text]
  • HOW DID SILICON VALLEY BECOME SILICON VALLEY? Three Surprising Lessons for Other Cities and Regions
    HOW DID SILICON VALLEY BECOME SILICON VALLEY? Three Surprising Lessons for Other Cities and Regions a report from: supported by: 2 / How Silicon Valley Became "Silicon Valley" This report was created by Rhett Morris and Mariana Penido. They wish to thank Jona Afezolli, Fernando Fabre, Mike Goodwin, Matt Lerner, and Han Sun who provided critical assistance and input. For additional information on this research, please contact Rhett Morris at [email protected]. How Silicon Valley Became "Silicon Valley" / 3 INTRODUCTION THE JOURNALIST Don Hoefler coined the York in the chip industry.4 No one expected the term “Silicon Valley” in a 1971 article about region to become a hub for these technology computer chip companies in the San Francisco companies. Bay Area.1 At that time, the region was home to Silicon Valley’s rapid development offers many prominent chip businesses, such as Intel good news to other cities and regions. This and AMD. All of these companies used silicon report will share the story of its creation and to manufacture their chips and were located in analyze the steps that enabled it to grow. While a farming valley south of the city. Hoefler com- it is impossible to replicate the exact events that bined these two facts to create a new name for established this region 50 years ago, the devel- the area that highlighted the success of these opment of Silicon Valley can provide insights chip businesses. to leaders in communities across the world. Its Silicon Valley is now the most famous story illustrates three important lessons for cul- technology hub in the world, but it was a very tivating high-growth companies and industries: different place before these businesses devel- oped.
    [Show full text]
  • Altera Petition
    No. In the Supreme Court of the United States ALTERA CORPORATION & S UBSIDIARIES, Petitioners, v. COMMISSIONER OF INTERNAL REVENUE, Respondent. On Petition for a Writ of Certiorari to the United States Court of Appeals for the Ninth Circuit PETITION FOR A WRIT OF CERTIORARI G INGER D. ANDERS NICOLE A. SAHARSKY Munger Tolles & Olson LLP Counsel of Record 1155 F Street NW BRIAN D. NETTER Washington, DC 20004 MINH NGUYEN-DANG Mayer Brown LLP MARK R. YOHALEM 1999 K Street NW Munger Tolles & Olson LLP Washington, DC 20006 350 S. Grand Avenue (202) 263-3000 Los Angeles, CA 90071 [email protected] A. DUANE WEBBER DONALD M. FALK PHILLIP J. TAYLOR Mayer Brown LLP JOSEPH B. JUDKINS 3000 El Camino Real #300 Baker & McKenzie LLP Palo Alto, CA 94306 815 Connecticut Avenue NW Washington, DC 20006 THOMAS KITTLE-KAMP WILLIAM G. MCGARRITY Mayer Brown LLP 71 S. Wacker Drive Chicago, IL 60606 Counsel for Petitioners QUESTIONS PRESENTED For nearly a century, federal tax treatment of agreements between related companies (such as par- ents and subsidiaries) has depended on the “arm’s- length” standard: If unrelated companies operating at arm’s length would share a cost, then related com- panies must share the cost as well. 26 U.S.C. 482; 26 C.F.R. 1.482-1(b)(1). The United States has incorpo- rated the arm’s-length standard into many tax trea- ties, and all major developed nations now follow it. In 2003, the Treasury Department promulgated a regulation, purporting to follow the arm’s-length standard, in which it required related companies to share the cost of stock-based employee compensation.
    [Show full text]