University of Groningen on the Elucidation of a Tumour Suppressor

Total Page:16

File Type:pdf, Size:1020Kb

University of Groningen on the Elucidation of a Tumour Suppressor University of Groningen On the elucidation of a tumour suppressor role of 3p in lung cancer Elst, Arja ter IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2006 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Elst, A. T. (2006). On the elucidation of a tumour suppressor role of 3p in lung cancer. s.n. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 27-09-2021 Chapter 1 Candidate lung tumour suppressor regions at the short arm of chromosome 3. What evidence is there? Arja ter Elst Charles H.C.M. Buys Department of Medical Genetics, University Medical Center Groningen, Groningen, The Netherlands LUNG CANCER AND THE SHORT ARM OF CHROMOSOME 3 Lung cancer is the leading cause of cancer death among both men and women in the western world. Consistent chromosomal aberrations occurring in lung tumours may provide a clue to the somatic genetic events leading to tumour development. Deletions of the short arm of chromosome 3 are a most common abnormality in lung cancer. They have been reported to occur in approximately 75% of non small cell lung cancer (NSCLC) tumours and in up to 100% of small cell lung cancer (SCLC) tumours (reviewed in Kok et al., 1997; Zabarovsky et al., 2002). Such deletions have also been found in the histological normal tissue surrounding tumours and in preneoplastic and preinvasive lesions (reveiwed in Kok et al., 1997). In addition, 3p deletions have been found in histologically normal tissue of about 50% of smokers and former smokers, not in control individuals (Wistuba et al., 1997). This suggests that losses at the short arm of chromosome 3 represent an early chromosomal change in the development of lung tumours. Moreover, introduction by microcell- mediated chromosome transfer of a normal human chromosome 3 into a lung adenocarcinoma cell line, A549, resulted in a suppression of growth of the transfected cell line in nude mice compared to the growth of the parental cell line (Satoh et al., 1993). The region of interest could be confined by the discovery of overlapping homozygous deletions in three different SCLC cell lines, NCI-H740, GLC20 and NCI-H1450, with a smallest overlap of 370 kb (Daly et al., 1993; Kok et al., 1994; Roche et al., 1996). When a cosmid contig was constructed for the 370 kb smallest region of overlap, a search for genes by cDNA library screening and CpG island identification revealed that the region was gene-rich (Wei et al., 1996). Sequencing of the whole region led by experimental and informatics methods to the identification of 19 genes (Lerman and Minna, 2000). These genes will be discussed later in this chapter. Chapter 1 LOSS OF SEGMENTS OF THE SHORT ARM OF CHROMOSOME 3 IN A VARIETY OF TUMOUR TYPES Hemizygous and homozygous deletions of the short arm of chromosome 3 are also found in a multitude of other epithelial cancers, including renal cell carcinoma, head and neck carcinoma, nasopharyngeal carcinoma, malignant mesothelioma, and uterine cervix carcinoma (Kok et al., 1997). For lung cancer, three non-overlapping deletion regions were described 3p25, 3p21.3 and 3p12-p14 (Hibi et al., 1992). The number of distinct regions on the short arm of chromosome 3 that have been implicated in the development of tumours, has been expanded to seven in recent years. These include the regions indicated in the following as 3p22 AP20, 3p21.3 CER1 and CER2, 3p21 D3F15S2 region, 3p21.3 LUCA, 3p14 FHIT and 3p12 ROBO1 (Fig. 1). The 3p22 AP20 region In small cell lung cancer (SCLC) homozygous deletions at the AP20 region have been reported to occur in the large majority of cases (Senchenko et al., 2004). The smallest region of overlap of homozygous deletions in this region was found in a breast cancer cell line and in a renal cancer cell line (RCC) and mapped between the markers D3S3623 and D3S1298 (Fig.1). This region contains four genes: APRG1, coding for AP20 region protein; ITGA9, coding for integrin alpha 9; CTDSPL, encoding CTD (carboxy-terminal domain, RNA polymerase II, polypeptide A) small phosphatase-like and VILL, coding for villin-like. Altered expression of CTDSPL was detected in a panel of epithelial cancer biopsies and cell lines (Kashuba et al., 2004). In addition, clones from a CTDSPL-transfected RCC cell line and a CTDSPL- transfected SCLC cell line showed an inhibition of tumour growth in nude mice in comparison to the growth of the non-transfected parental cell lines (Kashuba et al., 2004). The 3p21.3 CER1 and CER2 regions SCID tumours caused by cell lines carrying a human chromosome 3 on a mouse fibrosarcoma background show non-random elimination of 3p21.3 sequences that are supposed to contain tumour suppressor genes (Kholodnyuk et al., 1997). Szeles et al. (1997) defined the genetic length of the eliminated region designated CER1, common elimination region 1, as 1.6 cM flanked by D3S1029 and D3S643. The 8 Introduction Figure 1. A map of the short arm of chromosome 3 giving the position of the genes and markers located in the region corresponding with the deletion. physical size of CER1 was further restricted to approx. 1 Mb after the region was covered with a PAC contig (Yang et al., 1999). Seventeen genes are located in CER1 (Fig. 1), whose telomeric border is at D3S3582, while its centromeric border is in the first intron of LRRC2 (Kiss et al., 2002). One of these 17 genes, LTF, coding for lactoferrin, was tested for tumourigenicity by injecting SCID mice with clones from a mouse fibrosarcoma cell line transfected with a PAC containing the gene. The LTF 9 Chapter 1 promoter sequences appeared to become hypermethylated and expression of LTF was lost in derived tumours (Yang et al., 2003). Expression of LTF was also found absent in 18 of 37 SCLC cell lines, 11 of 43 NSCLC cell lines and 7 of 13 primary NSCLC tumours (Iijima et al., 2005). When a human nonpapillary renal cell carcinoma cell line was used as recipient of the human chromosome 3, CER1 appeared to become also eliminated on a human background. The elimination region is flanked by D3S3582 and CCR5, i.e. about 250 kb shorter than CER1 on a mouse background (Kholodnyuk et al., 2002). In addition, a second common elimination region was found, CER2, located between marker RH94338 and marker SHGC154057. In CER2 (Fig.1), seven genes have been identified, including two genes coding for chemokine receptors (Kholodnyuk et al., 2002). It may be noted that in CER1 seven of the 17 genes are encoding chemokine receptors. The 3p21.3 D3F15S2 region UBE1L coding for ubiquitin-activating enzyme E1-like, was isolated from a region considered by Kok et al. (1987) as most consistently reduced to hemizygosity in SCLC, the D3F15S2 locus. The gene was picked up by hybridisation of a lung cDNA library with DNA from a human 3p21 fragment in a Chinese hamster-human hybrid (Carritt et al., 1992). UBE1L spans about 8.5 of genomic DNA. It has 26 exons and an open reading frame of 1009 nucleotides. The gene encodes a member of the E1 ubiquitin-activating enzyme family, which are involved in the modification of proteins with ubiquitin in order to target abnormal or short-lived proteins for degradation. The mRNA concentration of UBE1L in SCLC cell lines was found to be 0.5%-3% of that in normal lung tissue. No mutations or rearrangements of the remaining allele were, however, found in SCLC (Kok et al., 1993). UBE1L expression was found to be enhanced after treatment of an acute promyelocytic leukemia cell line with all-trans- retinoic acid (RA), which induces remission in acute promyelocytic leukemia. UBE1L might mediate degradation of the oncogenic PML/RA receptor of the t(15:17) rearrangement found in acute promyelocytic leukemia (Kitareewan et al., 2002). Treatment of immortalised human bronchial cells with RA also resulted in a higher expression of UBE1L and cotransfection of UBE1L with CCND1 in these cells resulted in a repression of CCND1 in a UBE1L dosage dependent manner (Pitha- Rowe et al., 2004). Since overexpression of Cyclin D1 is frequently observed in tumours and may contribute to tumourigenesis, this is an interesting observation. 10 Introduction The 3p21.3 LUCA region As already discussed this region contains 19 genes (Fig.1). Further homozygous deletions of 3p21.3 were found by FISH in three uncultured lung squamous cell carcinoma tumours, at marker D3S2968 (Todd et al., 1997) and by real-time PCR in four uncultured RCC tumours and four uncultured breast cancer tumours at marker D3S3874 (Senchenko et al., 2004). A mouse fibrosarcoma cell line, A9, containing 2 Mb of the human chromosome 3 which included the 370-kb critical region, showed reduction of tumour growth in a tumourigenicity test (Killary et al., 1992).
Recommended publications
  • A Flexible Tool for Visualizing Heterogeneity Between Studies In
    G3: Genes|Genomes|Genetics Early Online, published on May 18, 2016 as doi:10.1534/g3.116.029439 ForestPMPlot: a flexible tool for visualizing heterogeneity between studies in meta-analysis Eun Yong Kang1, Yurang Park2, Xiao Li3, Ayellet V. Segre`3, Buhm Han4,*, and Eleazar Eskin1,5,* 1Department of Computer Science, University of California, Los Angeles, CA, USA 2Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea 3The Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02142, USA. 4Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea 5Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA *These authors contributed equally to this work May 17, 2016 Abstract Meta-analysis has become a popular tool for genetic association studies to combine different genetic studies. A key challenge in meta-analysis is heterogeneity or the differences in effect sizes between studies. Heterogeneity complicates the interpretation of meta-analyses. In this paper, we describe ForestPMPlot, a flexible visualization tool for analyzing studies included in a meta-analysis. The main feature of the tool is visualizing the differences in the effect sizes of the studies to understand why the studies exhibit heterogeneity for a particular phenotype 1 © The Author(s) 2013. Published by the Genetics Society of America. and locus pair under different conditions. We show the application of this tool to interpret a meta-analysis of 17 mouse studies and to interpret a multi-tissue eQTL study. 1 Introduction Meta-analysis has become a popular tool for genetic association studies to achieve higher power in identifying genetic variants that affect a trait (Evangelou and Ioannidis, 2013).
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Location Analysis of Estrogen Receptor Target Promoters Reveals That
    Location analysis of estrogen receptor ␣ target promoters reveals that FOXA1 defines a domain of the estrogen response Jose´ e Laganie` re*†, Genevie` ve Deblois*, Ce´ line Lefebvre*, Alain R. Bataille‡, Franc¸ois Robert‡, and Vincent Gigue` re*†§ *Molecular Oncology Group, Departments of Medicine and Oncology, McGill University Health Centre, Montreal, QC, Canada H3A 1A1; †Department of Biochemistry, McGill University, Montreal, QC, Canada H3G 1Y6; and ‡Laboratory of Chromatin and Genomic Expression, Institut de Recherches Cliniques de Montre´al, Montreal, QC, Canada H2W 1R7 Communicated by Ronald M. Evans, The Salk Institute for Biological Studies, La Jolla, CA, July 1, 2005 (received for review June 3, 2005) Nuclear receptors can activate diverse biological pathways within general absence of large scale functional data linking these putative a target cell in response to their cognate ligands, but how this binding sites with gene expression in specific cell types. compartmentalization is achieved at the level of gene regulation is Recently, chromatin immunoprecipitation (ChIP) has been used poorly understood. We used a genome-wide analysis of promoter in combination with promoter or genomic DNA microarrays to occupancy by the estrogen receptor ␣ (ER␣) in MCF-7 cells to identify loci recognized by transcription factors in a genome-wide investigate the molecular mechanisms underlying the action of manner in mammalian cells (20–24). This technology, termed 17␤-estradiol (E2) in controlling the growth of breast cancer cells. ChIP-on-chip or location analysis, can therefore be used to deter- We identified 153 promoters bound by ER␣ in the presence of E2. mine the global gene expression program that characterize the Motif-finding algorithms demonstrated that the estrogen re- action of a nuclear receptor in response to its natural ligand.
    [Show full text]
  • Noelia Díaz Blanco
    Effects of environmental factors on the gonadal transcriptome of European sea bass (Dicentrarchus labrax), juvenile growth and sex ratios Noelia Díaz Blanco Ph.D. thesis 2014 Submitted in partial fulfillment of the requirements for the Ph.D. degree from the Universitat Pompeu Fabra (UPF). This work has been carried out at the Group of Biology of Reproduction (GBR), at the Department of Renewable Marine Resources of the Institute of Marine Sciences (ICM-CSIC). Thesis supervisor: Dr. Francesc Piferrer Professor d’Investigació Institut de Ciències del Mar (ICM-CSIC) i ii A mis padres A Xavi iii iv Acknowledgements This thesis has been made possible by the support of many people who in one way or another, many times unknowingly, gave me the strength to overcome this "long and winding road". First of all, I would like to thank my supervisor, Dr. Francesc Piferrer, for his patience, guidance and wise advice throughout all this Ph.D. experience. But above all, for the trust he placed on me almost seven years ago when he offered me the opportunity to be part of his team. Thanks also for teaching me how to question always everything, for sharing with me your enthusiasm for science and for giving me the opportunity of learning from you by participating in many projects, collaborations and scientific meetings. I am also thankful to my colleagues (former and present Group of Biology of Reproduction members) for your support and encouragement throughout this journey. To the “exGBRs”, thanks for helping me with my first steps into this world. Working as an undergrad with you Dr.
    [Show full text]
  • The Landscape of Human Mutually Exclusive Splicing
    bioRxiv preprint doi: https://doi.org/10.1101/133215; this version posted May 2, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. The landscape of human mutually exclusive splicing Klas Hatje1,2,#,*, Ramon O. Vidal2,*, Raza-Ur Rahman2, Dominic Simm1,3, Björn Hammesfahr1,$, Orr Shomroni2, Stefan Bonn2§ & Martin Kollmar1§ 1 Group of Systems Biology of Motor Proteins, Department of NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany 2 Group of Computational Systems Biology, German Center for Neurodegenerative Diseases, Göttingen, Germany 3 Theoretical Computer Science and Algorithmic Methods, Institute of Computer Science, Georg-August-University Göttingen, Germany § Corresponding authors # Current address: Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland $ Current address: Research and Development - Data Management (RD-DM), KWS SAAT SE, Einbeck, Germany * These authors contributed equally E-mail addresses: KH: [email protected], RV: [email protected], RR: [email protected], DS: [email protected], BH: [email protected], OS: [email protected], SB: [email protected], MK: [email protected] - 1 - bioRxiv preprint doi: https://doi.org/10.1101/133215; this version posted May 2, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Analysis of SEMA3B Methylation and Expression Patterns in Gastric Cancer Tissue and Cell Lines
    ONCOLOGY REPORTS 31: 1211-1218, 2014 Analysis of SEMA3B methylation and expression patterns in gastric cancer tissue and cell lines RENPIN CHEN1, XIAOJU ZHUGE1, ZHIMING HUANG1, DEYI LU1, XIAOHUA YE2, CHAO CHEN1, JIEYU YU1 and GUANGRONG LU3 1Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035; 2Department of Gastroenterology, Jinhua Municipal Central Hospital, Jinhua, Zhejiang 321000; 3Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China Received November 3, 2013; Accepted December 19, 2013 DOI: 10.3892/or.2014.2972 Abstract. The family of semaphorins has been demonstrated Introduction to possess tumor suppressor activity, in which semaphorin 3B (SEMA3B) is differentially expressed in several types of Gastric cancer (GC) is the 4th most common cancer and the tumors. The relationship between SEMA3B expression and its 2nd leading cause of cancer-related mortality worldwide (1). clinical significance in gastric cancer (GC) is currently unclear. Although treatment measures are being developed, the In the present study, the expression and methylation status of prognosis of GC remains poor and is correlated with tumor the SEMA3B gene were detected by quantitative PCR and invasion (2). Development and oncogenesis of GC remains bisulfite sequencing PCR (BSP). Data indicated that the levels controversial and involves diverse factors, due to complex of SEMA3B mRNA decreased in gastric tumor tissues and the genetic backgrounds. Semaphorins are a large family of methylation status of SEMA3B in the tumor group was higher membrane-bound and cytoplasmic proteins, with up to than the paired normal tissues.
    [Show full text]
  • Human Semaphorin 3B (SEMA3B) Located at Chromosome 3P21.3 Suppresses Tumor Formation in an Adenocarcinoma Cell Line1
    [CANCER RESEARCH 62, 542–546, January 15, 2002] Human Semaphorin 3B (SEMA3B) Located at Chromosome 3p21.3 Suppresses Tumor Formation in an Adenocarcinoma Cell Line1 Christin Tse, Ruinua H. Xiang, Todd Bracht, and Susan L. Naylor2 Sagres Discovery, Davis, California 95616 [C. T.], and Department of Cellular and Structural Biology, The University of Texas Health Science Center, San Antonio, Texas 78229-3900 [R. H. X., T. B., S. L. N.] ABSTRACT role in axonal guidance and can be classified as either membrane bound (classes 1, 4, 5, and 6) or secreted (classes 2 and 3) (Refs. The short arm of chromosome 3 has been shown to exhibit high loss of 21–23). All semaphorins contain ϳ500 amino acid NH -terminal heterozygosity in several types of cancer including ovarian, kidney, lung, 2 sema domains, an immunoglobulin-like domain (with the exception of and testicular cancers. In particular, overlapping homozygous deletions in lung cancers have been identified in region 3p21.3. Semaphorin 3B, a gene class 1 semaphorins), and a basic COOH-terminal domain (24). The that resides within this region, has been proposed to be involved in role of the secreted class 3 semaphorins in axonal guidance has been tumorigenesis. To address this hypothesis, we have examined the effects of clearly demonstrated; however, their role(s) in nonneuronal tissue semaphorin 3B on HEY cells, an ovarian cancer cell line. HEY cells remains to be elucidated (25). The receptors for the class 3 semaphor- expressing semaphorin 3B exhibited a diminished tumorigenicity in ins are the neuropilin receptors (21, 26, 27). In neuronal tissue, BALB/c nu/nu mice.
    [Show full text]
  • Development of Novel Analysis and Data Integration Systems to Understand Human Gene Regulation
    Development of novel analysis and data integration systems to understand human gene regulation Dissertation zur Erlangung des Doktorgrades Dr. rer. nat. der Fakult¨atf¨urMathematik und Informatik der Georg-August-Universit¨atG¨ottingen im PhD Programme in Computer Science (PCS) der Georg-August University School of Science (GAUSS) vorgelegt von Raza-Ur Rahman aus Pakistan G¨ottingen,April 2018 Prof. Dr. Stefan Bonn, Zentrum f¨urMolekulare Neurobiologie (ZMNH), Betreuungsausschuss: Institut f¨urMedizinische Systembiologie, Hamburg Prof. Dr. Tim Beißbarth, Institut f¨urMedizinische Statistik, Universit¨atsmedizin, Georg-August Universit¨at,G¨ottingen Prof. Dr. Burkhard Morgenstern, Institut f¨urMikrobiologie und Genetik Abtl. Bioinformatik, Georg-August Universit¨at,G¨ottingen Pr¨ufungskommission: Prof. Dr. Stefan Bonn, Zentrum f¨urMolekulare Neurobiologie (ZMNH), Referent: Institut f¨urMedizinische Systembiologie, Hamburg Prof. Dr. Tim Beißbarth, Institut f¨urMedizinische Statistik, Universit¨atsmedizin, Korreferent: Georg-August Universit¨at,G¨ottingen Prof. Dr. Burkhard Morgenstern, Weitere Mitglieder Institut f¨urMikrobiologie und Genetik Abtl. Bioinformatik, der Pr¨ufungskommission: Georg-August Universit¨at,G¨ottingen Prof. Dr. Carsten Damm, Institut f¨urInformatik, Georg-August Universit¨at,G¨ottingen Prof. Dr. Florentin W¨org¨otter, Physikalisches Institut Biophysik, Georg-August-Universit¨at,G¨ottingen Prof. Dr. Stephan Waack, Institut f¨urInformatik, Georg-August Universit¨at,G¨ottingen Tag der m¨undlichen Pr¨ufung: der 30. M¨arz2018
    [Show full text]
  • A Network Medicine Approach for Drug Repurposing in Duchenne Muscular Dystrophy
    G C A T T A C G G C A T genes Article A Network Medicine Approach for Drug Repurposing in Duchenne Muscular Dystrophy Salvo Danilo Lombardo 1 , Maria Sofia Basile 2 , Rosella Ciurleo 2, Alessia Bramanti 2, Antonio Arcidiacono 3, Katia Mangano 3 , Placido Bramanti 2, Ferdinando Nicoletti 3,* and Paolo Fagone 3 1 Department of Structural & Computational Biology at the Max Perutz Labs, University of Vienna, 1010 Vienna, Austria; [email protected] 2 IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; sofi[email protected] (M.S.B.); [email protected] (R.C.); [email protected] (A.B.); [email protected] (P.B.) 3 Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy; [email protected] (A.A.); [email protected] (K.M.); [email protected] (P.F.) * Correspondence: [email protected] Abstract: Duchenne muscular dystrophy (DMD) is a progressive hereditary muscular disease caused by a lack of dystrophin, leading to membrane instability, cell damage, and inflammatory response. However, gene-editing alone is not enough to restore the healthy phenotype and additional treat- ments are required. In the present study, we have first conducted a meta-analysis of three microarray datasets, GSE38417, GSE3307, and GSE6011, to identify the differentially expressed genes (DEGs) be- tween healthy donors and DMD patients. We have then integrated this analysis with the knowledge Citation: Lombardo, S.D.; Basile, obtained from DisGeNET and DIAMOnD, a well-known algorithm for drug–gene association discov- M.S.; Ciurleo, R.; Bramanti, A.; eries in the human interactome.
    [Show full text]
  • Changes in the Gene Expression Profile During Spontaneous Migraine Attacks
    www.nature.com/scientificreports OPEN Changes in the gene expression profle during spontaneous migraine attacks Lisette J. A. Kogelman1,7*, Katrine Falkenberg1,7, Alfonso Buil2, Pau Erola3, Julie Courraud4, Susan Svane Laursen4, Tom Michoel5, Jes Olesen1 & Thomas F. Hansen1,2,6* Migraine attacks are delimited, allowing investigation of changes during and outside attack. Gene expression fuctuates according to environmental and endogenous events and therefore, we hypothesized that changes in RNA expression during and outside a spontaneous migraine attack exist which are specifc to migraine. Twenty-seven migraine patients were assessed during a spontaneous migraine attack, including headache characteristics and treatment efect. Blood samples were taken during attack, two hours after treatment, on a headache-free day and after a cold pressor test. RNA- Sequencing, genotyping, and steroid profling were performed. RNA-Sequences were analyzed at gene level (diferential expression analysis) and at network level, and genomic and transcriptomic data were integrated. We found 29 diferentially expressed genes between ‘attack’ and ‘after treatment’, after subtracting non-migraine specifc genes, that were functioning in fatty acid oxidation, signaling pathways and immune-related pathways. Network analysis revealed mechanisms afected by changes in gene interactions, e.g. ‘ion transmembrane transport’. Integration of genomic and transcriptomic data revealed pathways related to sumatriptan treatment, i.e. ‘5HT1 type receptor mediated signaling pathway’. In conclusion, we uniquely investigated intra-individual changes in gene expression during a migraine attack. We revealed both genes and pathways potentially involved in the pathophysiology of migraine and/or migraine treatment. With a world-wide prevalence of 14.4% and global estimates of 5.6 years lost to disability, migraine is placed as the 2nd most disabling disease by the World Health Organization 1.
    [Show full text]
  • Inter-Species Differences in Response to Hypoxia in Ipsc-Derived Cardiomyocytes from Humans and Chimpanzees
    bioRxiv preprint doi: https://doi.org/10.1101/382895; this version posted August 2, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Inter-species differences in response to hypoxia in iPSC-derived cardiomyocytes from humans and chimpanzees Michelle C. Ward1* and Yoav Gilad1,2* 1Department of Medicine, University of Chicago, Chicago, IL, USA 2Department of Human Genetics, University of Chicago, Chicago, IL, USA *Correspondence should be addressed to M.C.W ([email protected]), and Y.G ([email protected]). 1 bioRxiv preprint doi: https://doi.org/10.1101/382895; this version posted August 2, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Abstract Despite anatomical similarities, there appear to be differences in susceptibility to cardiovascular disease between primates. For example, humans are prone to ischemia-induced myocardial infarction unlike chimpanzees, which tend to suffer from fibrotic disease. However, it is challenging to determine the relative contributions of genetic and environmental effects to complex disease phenotypes within and between primates. The ability to differentiate cardiomyocytes from induced pluripotent stem cells (iPSCs), now allows for direct inter-species comparisons of the gene regulatory response to disease-relevant perturbations. A consequence of ischemia is oxygen deprivation.
    [Show full text]
  • UC San Diego Electronic Theses and Dissertations
    UC San Diego UC San Diego Electronic Theses and Dissertations Title Cardiac Stretch-Induced Transcriptomic Changes are Axis-Dependent Permalink https://escholarship.org/uc/item/7m04f0b0 Author Buchholz, Kyle Stephen Publication Date 2016 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO Cardiac Stretch-Induced Transcriptomic Changes are Axis-Dependent A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Bioengineering by Kyle Stephen Buchholz Committee in Charge: Professor Jeffrey Omens, Chair Professor Andrew McCulloch, Co-Chair Professor Ju Chen Professor Karen Christman Professor Robert Ross Professor Alexander Zambon 2016 Copyright Kyle Stephen Buchholz, 2016 All rights reserved Signature Page The Dissertation of Kyle Stephen Buchholz is approved and it is acceptable in quality and form for publication on microfilm and electronically: Co-Chair Chair University of California, San Diego 2016 iii Dedication To my beautiful wife, Rhia. iv Table of Contents Signature Page ................................................................................................................... iii Dedication .......................................................................................................................... iv Table of Contents ................................................................................................................ v List of Figures ...................................................................................................................
    [Show full text]