A Course Material on Maintenance Engineering by Mr. ERSIVAKUMAR
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Before You Continue
NASA/CR–2015-218982 Application of SAE ARP4754A to Flight Critical Systems Eric M. Peterson Electron International II, Inc., Phoenix, Arizona November 2015 NASA STI Program . in Profile Since its founding, NASA has been dedicated to the CONFERENCE PUBLICATION. advancement of aeronautics and space science. The Collected papers from scientific and technical NASA scientific and technical information (STI) conferences, symposia, seminars, or other program plays a key part in helping NASA maintain meetings sponsored or this important role. co-sponsored by NASA. The NASA STI program operates under the auspices SPECIAL PUBLICATION. Scientific, of the Agency Chief Information Officer. It collects, technical, or historical information from NASA organizes, provides for archiving, and disseminates programs, projects, and missions, often NASA’s STI. The NASA STI program provides access concerned with subjects having substantial to the NTRS Registered and its public interface, the public interest. NASA Technical Reports Server, thus providing one of the largest collections of aeronautical and space TECHNICAL TRANSLATION. science STI in the world. Results are published in both English-language translations of foreign non-NASA channels and by NASA in the NASA STI scientific and technical material pertinent to Report Series, which includes the following report NASA’s mission. types: Specialized services also include organizing TECHNICAL PUBLICATION. Reports of and publishing research results, distributing completed research or a major significant phase of specialized research announcements and feeds, research that present the results of NASA providing information desk and personal search Programs and include extensive data or theoretical support, and enabling data exchange services. analysis. Includes compilations of significant scientific and technical data and information For more information about the NASA STI program, deemed to be of continuing reference value. -
Quality Assurance, Process Engineer
THOMMEN AIRCRAFT EQUIPMENT Renowned Swiss manufacturer of high precision Aviation Instruments, Air Data Computers, Digital Chronometers and Mission Equipment Established in 1853 under Revue Thommen AG, Thommen Aircraft Equipment Ltd is a renowned Swiss manufacturer of high precision aviation instruments, avionics and mission equipment. The company has celebrated its 100 years anniversary of supplying aviation products to its customers. Thommen Aircraft Equipment AG is currently in the phase of introducing several innovative and exciting products to the market and will gradually increase the general product offering in the course of 2018/2019. To sustain the new company plans, product development, we are looking to hire a skilled and experienced Quality Assurance / Process Engineer – Avionics 100% (m/f) The person will be responsible for leading activities involving Product Lifecycle Management processes. Focused on improving processes and tools, the position is ideal for a candidate seeking a broad technical and business process career. The position offers the opportunity to work as part of a global team which will require flexibility to support activities across multiple time zones for following process development activities. Our culture is to hire only the finest talent and to uphold our values of teamwork, accountability, humor, efficiency, candor and continual improvement. Responsibilities & Tasks • Develop DO-178C and DO-254 process compliance and quality plan, (QAP, SQAP HQAP) • Responsible for reporting assessment and evaluation -
Safety Assessment Processes of ARP4761: Major Revision
Safety Assessment Processes of ARP4761: Major Revision Jim Marko Manager, Aircraft Integration & Safety Assessment 14 November 2018 Presentation Outline • What is changing • ARP4761 Relationship to ARP4754A Development Assurance • New methods • Changes to existing methods • Safety methods other than ARP4761A 14 November 2018 2 ARP4761A Safety Assessment Process What’s happening to ARP 4761? • Revision commenced in early 2012 within the SAE S18 Aircraft & Systems Development and Safety Assessment Committee. • Essentially a near complete revision of the document that is nearing publication. • New processes and analytical methods being added to reflect the trend towards more highly integrated and increasingly complex system designs. • Introduces the concept of Aircraft-Level safety assessment to complement the traditional system-level safety assessment approach. 14 November 2018 3 Current ARP 4761 Rev- New Appendices for ARP 4761 Other Appendices Rev A Developments Functional Hazard Aircraft Functional Hazard Assessment Single Event Effects Assessment AIR 6218 Preliminary System Safety Preliminary Aircraft Safety Assessment Assessment System Functional Hazard Assessment In-Service Safety System Safety Assessment Aircraft Safety Assessment Assessment ARP 5150/5151 FTA, DD, FMEA, Markov Cascading Effects Analysis Common Mode Analysis Development Assurance Assignment Particular Risk Analysis Model Based Safety Assessment Zonal Safety Analysis Contiguous Example Contiguous Example 14 November 2018 4 ARP4761A Safety Assessment Process Interactions ARP 4754A Development Assurance Processes 14 November 2018 5 ARP4761 Relationship to ARP4754A Development Assurance • Modern aircraft architecture is increasingly becoming a “system-of-systems”, where many systems interact with and are dependent upon each other to perform aircraft functional objectives. • The era of having federated systems that can be correctly and completely assessed in silos, independent from other systems, is rapidly closing. -
Bachelor of Science in Industrial Engineering Student Handbook
Bachelor of Science in Industrial Engineering Student Handbook Table of Contents Welcome ......................................................................................................................... 1 From the Undergraduate Program Chair .................................................................................................. 1 About the Profession & Program ..................................................................................... 2 Faculty ............................................................................................................................. 5 Admission Requirements ................................................................................................ 6 Degree Requirements ..................................................................................................... 7 Curriculum ..................................................................................................................... 10 IE Course Descriptions .................................................................................................. 11 Technical Electives........................................................................................................ 13 Non-IE Engineering Electives (Engineering Science Breadth) ...................................... 16 Directed Electives.......................................................................................................... 16 Academic Policies ........................................................................................................ -
Integrated Product Support (IPS) Elements Guidebook Has Now Also Been Extensively Updated to Reflect Current Policy and Guidance
Product Support Management IPS Elements Guidebook Forward In October 2009, Section 805 of Public Law 111-84 established the key leadership position of Product Support Manager (PSM) and reiterated DoD’s commitment to life cycle product support management. By 2010, the Office of the Assistant Secretary of Defense (ASD) Logistics and Materiel Readiness (L&MR) concluded the seminal work to develop and implement a Product Support Business Model (PSBM) and published a series of Guidebooks to assist the Product Support Manager (PSM) in the execution of his or her duties. These Guidebooks included the “DoD Product Support Manager Guidebook”, the “DoD Product Support Business Case Assessment (BCA) Guidebook” and the “DoD Logistics Assessment (LA) Guidebook”. Since 2010, the existing Product Support Guidebooks have been updated and a few new ones have been developed to fill information gaps. This Integrated Product Support (IPS) Elements Guidebook has now also been extensively updated to reflect current policy and guidance. It picks up where the Product Support Manager Guidebook Appendix A left off in describing the 12 IPS Elements. Program Managers, Product Support Managers and Life Cycle Logisticians should use this Guidebook as a reference source and training aid supporting their responsibilities, tailored to the needs of each program. The term “Integrated” in the term “Integrated Product Support Element” is critical. The Product Support Manager must understand how each element is affected by and linked with the others and should employ all -
Overview of DO-178C
Table of Contents Overview of Section 450.141 ................................................................................2 Overview of Section AC 450.141-1 ........................................................................2 Overview of DO-178C ............................................................................................3 Implementing AC 450.141-1 Using DO-178C.........................................................4 Identification of Computing System Safety Items ................................................... 5 Levels of Criticality ........................................................................................................... 7 Safety Requirements ................................................................................................ 9 Development Processes ........................................................................................ 12 Application Materials ............................................................................................. 21 AC 450.141-1 Process Summary ........................................................................ 22 References ......................................................................................................... 23 List of Tables Table 1 Identification of Computing System Safety Items ......................................... 6 Table 2 Levels of Criticality .......................................................................................... 7 Table 3 Safety Requirements ...................................................................................... -
Total Productive Maintenance: a Case Study in Manufacturing Industry
Global Journal of researches in engineering Industrial engineering Volume 12 Issue 1 Version 1.0 February 2012 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Inc. (USA) Online ISSN: 2249-4596 Print ISSN:0975-5861 Total Productive Maintenance: A Case Study in Manufacturing Industry By Melesse Workneh Wakjira, Ajit Pal Singh Adama Science & Technology University Abstract - The purpose of this paper is to evaluate the contributions of total productive maintenance (TPM) initiatives towards improving manufacturing performance in Ethiopian malt manufacturing industry. The correlations between various TPM implementation dimensions and manufacturing performance improvements have been evaluated and validated by employing overall equipment effectiveness (OEE) in boiler plant. The research focuses upon the significant contributions of TPM implementation success factors like top management leadership and involvement, traditional maintenance practices and holistic TPM implementation initiatives, towards affecting improvements in manufacturing performance in the Ethiopian industry. The study establishes that focused TPM implementation over a reasonable time period can strategically contribute towards realization of significant manufacturing performance enhancements. The study highlights the strong potential of TPM implementation initiatives in affecting organizational performance improvements. The achievements of Ethiopian manufacturing organizations through proactive TPM initiatives have been evaluated and -
The Costs and Benefits of Advanced Maintenance in Manufacturing
NIST AMS 100-18 The Costs and Benefits of Advanced Maintenance in Manufacturing Douglas S. Thomas This publication is available free of charge from: https://doi.org/10.6028/NIST.AMS.100-18 NIST AMS 100-18 The Costs and Benefits of Advanced Maintenance in Manufacturing Douglas S. Thomas Applied Economics Office Engineering Laboratory This publication is available free of charge from: https://doi.org/10.6028/NIST.AMS.100-18 April 2018 U.S. Department of Commerce Wilbur L. Ross, Jr., Secretary National Institute of Standards and Technology Walter Copan, NIST Director and Under Secretary of Commerce for Standards and Technology Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose. Photo Credit: The Chrysler 200 Factory Tour, an interactive online experience using Google Maps Business View technology, takes consumers inside the new 5-million-square-foot Sterling Heights Assembly Plant for a behind-the-scenes peek at how the 2015 Chrysler 200 is built. http://media.fcanorthamerica.com/homepage.do?mid=1 Contents Executive Summary ............................................................................................................... iii Introduction .................................................................................................................... -
Intro to ARP4754A 140723
Guidelines for Development of Civil Aircraft and Systems Introduction to ARP4754A 23 July, 2014 Avionics Systems Evolution • Early Aviation: mainly mechanical equipment • 1960’s: increased electronic controls • 1970’s: analog equipment supported by low level, simple software DO-178 • 1980’s: integrated digital systems ARP4754 • 1990’s: PLDs, ASICs, FPGAs and other CEH ARP4761 • 2000’s: highly integrated & complex DO-254 ARP4754A systems Esterline Control Systems Introduction to ARP4754A SAE ARP4754 Background • During preparation of DO178B, it was determined that system level information was needed as input to Software Development process. • FAA requested SAE to prepare an ARP for demonstrating regulatory compliance for highly-integrated or complex avionics systems. • A Systems Integration Requirements Task group (SIRT) was formed to draft the ARP, which became ARP4754. Esterline Control Systems Introduction to ARP4754A SAE ARP4754 Background • Since harmonization was deemed highly desirable, representatives of both the FAA and JAA were engaged. • Working group WG-42 was formed to coordinate European input to the SIRT group. • The SIRT group members included those with direct design & support experience in: – Large commercial aircraft – Commuter aircraft – Commercial & general aviation avionics – Jet engines, and – Engine controls Esterline Control Systems Introduction to ARP4754A SAE ARP4754 Background • Formal & informal links with RTCA & SAE committees SC-167, SC-180 and S-18. • 14CFR/CS 25.1309 harmonization working group was involved. • Decision to focus on fundamental principles of certification Vs providing a “very specific list of certification steps” • ARP4754 published in 1996 Esterline Control Systems Introduction to ARP4754A SAE ARP4754A Background • Written / published in Dec 2010 by S-18 & WG- 63 committees. -
Standardization Roadmap for Unmanned Aircraft Systems, Version 1.0
Standardization roadmap For Unmanned Aircraft Systems, Version 1.0 Prepared by the ANSI Unmanned Aircraft Systems Standardization Collaborative (UASSC) December 2018 ©2018 American National Standards Institute (ANSI). All rights reserved. Published by ANSI. Printed in the United States of America. Limited License: This material may be copied without permission from ANSI only for non-commercial and non-promotional purposes and if and to the extent that text is not altered or deleted in any fashion and the ANSI copyright is clearly noted as set forth immediately above. No part of this publication may be re- produced or distributed in any form or by any means, or stored in a database or retrieval system, except as permitted by the Limited License or under Sections 107 or 108 of the U.S. Copyright Act, without prior written permission of the publisher. Material in this publication is for educational purposes. Neither the publisher nor the authors assume any liability for any errors or omissions or for how this publication or its contents are used or interpreted or for any consequences resulting directly or indirectly from the use of this publication. For legal or other advice, please consult your personal lawyer or the appropriate professional. The views expressed by the individuals in this publication do not necessarily reflect the views shared by the companies they are employed by (or the companies mentioned in this publication). The employment status and affiliations of authors with the companies referenced are subject to change. Table of Contents Table of Contents ………………………………………………………………………………………………………………………………. 3 Acknowledgments …..………………………………………………………………………………………………………………………… 7 Executive Summary …………………………………………………………………………………………………………………………. 15 Summary Table of Gaps and Recommendations………………………………………………………………………………. -
ANSI UASSC Standardization Roadmap for Unmanned Aircraft Systems – V2 Page 3 of 410
STANDARDIZATION ROADMAP For Unmanned Aircraft Systems, Version 2.0 Prepared by the ANSI Unmanned Aircraft Systems Standardization Collaborative (UASSC): June 2020 ©2020 American National Standards Institute (ANSI). All rights reserved. Published by ANSI. Printed in the United States of America. Limited License: This material may be copied without permission from ANSI only for non- commercial and non-promotional purposes and if and to the extent that text is not altered or deleted in any fashion and the ANSI copyright is clearly noted as set forth immediately above. No part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, except as permitted by the Limited License or under Sections 107 or 108 of the U.S. Copyright Act, without prior written permission of the publisher. Material in this publication is for educational purposes. Neither the publisher nor the authors assume any liability for any errors or omissions or for how this publication or its contents are used or interpreted or for any consequences resulting directly or indirectly from the use of this publication. For legal or other advice, please consult your personal lawyer or the appropriate professional. The views expressed by the individuals in this publication do not necessarily reflect the views shared by the companies they are employed by (or the companies mentioned in this publication). The employment status and affiliations of authors with the companies referenced are subject to change. Table of Contents Table of Contents …………………………………………………………………………………………………………………………….. 3 Acknowledgments …………………………………………………………………………………………………………………………… 9 Executive Summary …………………………………………………………………………………………………………………………. 19 Summary of Major Changes from Version 1.0 …………………………………………………………………………………. -
Architecture-Led Safety Process
Architecture-Led Safety Process Peter H. Feiler Julien Delange David P. Gluch John D. McGregor December 2016 TECHNICAL REPORT CMU/SEI-2016-TR-012 Software Solutions Division Distribution Statement A: Approved for Public Release; Distribution is Unlimited http://www.sei.cmu.edu Copyright 2016 Carnegie Mellon University This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineer- ing Institute, a federally funded research and development center. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the United States Department of Defense. This report was prepared for the SEI Administrative Agent AFLCMC/PZM 20 Schilling Circle, Bldg 1305, 3rd floor Hanscom AFB, MA 01731-2125 NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT. [Distribution Statement A] This material has been approved for public release and unlimited distribu- tion. Please see Copyright notice for non-US Government use and distribution. Internal use:* Permission to reproduce this material and to prepare derivative works from this material for internal use is granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative works.