The Primate Malarias

Total Page:16

File Type:pdf, Size:1020Kb

The Primate Malarias 3 Ecology of the Hosts in Relation to the Transmission of Malaria ASIA BECAUSE the ecology of human malaria has been discussed by many Parts of Southeast Asia are the only areas authors, we will focus our main attention on the for which reasonably complete information is transmission biology of the malarias of non- available, and proven natural vectors of non- human primates; man and his malarias will be human primate malaria have been identified included, but only in those situations where the only from West Malaysia (Wharton and Eyles, two groups of primates and their parasites 1961; Wharton et al, 1962; Eyles et al, 1963; become part of the same transmission system. and Cheong et al, 1965). In 1960, the U.S. The level of speciation in the plasmodia of Public Health Service (NIH, LPC) established a non-human primates is high; 17 species have cooperative project with the Institute for been described from Asia, 3 from Africa (not Medical Research in Kuala Lumpur, Malaysia, including 2 from Madagascan lemurs), and 2 to investigate the potential for the natural from the New World. The fundamental ecology transmission of malaria parasites of monkeys to of the malarias of apes and monkeys is similar to man. The baseline information on the ecology of that of the human species. Susceptible malaria in the area was essentially complete mosquitoes must live for a sufficient period of because the personnel of the Institute for time to allow for completion of sporogony and Medical Research had maintained a high degree they must have a predilection for returning to the of interest in the bionomics of anophelines of the same group of vertebrates for a second blood Malay Peninsula for many years. meal. In addition, it is essential that the parasite The NIH-IMR team approached the be able to maintain an infection in the vertebrate problem on an ecological basis, studying host long enough for the vector to become separately, but by the use of essentially the same infected. Some degree of chronicity is required, techniques, the several distinct types of too, since either the rapid destruction of the environments found on the Malay Peninsula parasite by the vertebrate host or the rapid which supported monkeys and their malarias destruction of the vertebrate host by the parasite (Fig. 1). The basic techniques used in these would be detrimental, if not fatal, to the studies were described in detail by Wharton et al maintenance of the transmission system. Our (1963). Briefly, they consisted of monkey-baited approach to the discussion of the ecology of the net traps erected on platforms in the forest malarias of apes and monkeys has for canopy and run in conjunction with human- convenience and continuity been organized on a baited net traps, of similar design, on the ground geographical basis. nearby. Mosquito collections were made from these traps from sunset to sunrise, and all 19 20 PRIMATE MALARIAS FIGURE 1.—Vectors of human and animal malarias in various ecological zones in West Malaysia (modified from Wharton et al, 1964). anophelines taken in the traps were dissected nemestrina. The anopheline fauna in this area was and examined for malaria parasites. Sporozoite- dominated by members of the Anopheles umbrosus positive salivary glands were inoculated group. Natural malaria infections were known to intravenously into malaria-free rhesus monkeys. occur frequently in this species complex in The 3 basic types of environments in the area Malaysia and Hodgkin (1956) suspected that some are: fresh water swamp forests, primary rain of these infections might be of monkey origin. forests, and mangrove forests. As was expected, most of the anophelines Fresh Water Swamp Forests. This type caught in human- and monkey-baited net traps of forest covers a large portion of lowland belonged to the A. umbrosus group, however, A. Malaysia either as valleys, in which water letifer was the only species which invaded the collects during the rainy season, or extensive flat monkey-baited net traps in the canopy in significant areas, which maintain some level of water numbers. Sporozoites from a large number of through much of the year. These areas support naturally infected mosquitoes (including A. considerable populations of monkeys, including umbrosus and A. roperi as well as A. letifer) were both macaques (Macaca sp.) and langurs inoculated into malaria-free monkeys, but no (Presbytis sp.). Investigations were conducted in infections resulted. During the same period, a swamp forest north of Kuala Lumpur, experimental infections were being studied in the Malaysia where malaria infections had been laboratory, in Kuala Lumpur, to establish the level found in both Macaca fascicularis and M. of susceptibility of Malaysian anophelines to ECOLOGY OF THE HOSTS IN RELATION TO THE TRANSMISSION OF MALARIA 21 monkey malaria. Plasmodium cynomolgi (B A. leucosphyrus group of mosquitoes, are never far strain), which was originally isolated from M. from any location in West Malaysia. Finally, it irus (= fascicularis) from the east coast of should be noted that 20 A. pujutensis were trapped Malaysia near Kuantan (Garnham, 1959), was in the swamp forest environment but none was used as the laboratory parasite model for these found infected. This mosquito is of more than studies. Anopheles letifer from the swamp forest passing interest because it is a member of the A. study area, located on the opposite side of the leucosphyrus group in which 3 species are proven main Malaysian mountain range from the B vectors of simian malaria in Malaysia. strain type locality of P. cynomolgi, were Primary Rain Forests. The rain forests of exposed to experimental infections. Oocyst Southeast Asia occupy hill areas over parts of development was poor and no sporozoite Indochina, Thailand, Burma, Malaysia, Indonesia, differentiation was seen. These results seemed to and the Philippines, and all of these areas have preclude the involvement of A. letifer in the certain biological features in common. All support transmission of simian malaria even though this populations of non-human primates, and, wherever anopheline would invade the forest canopy to investigations have been carried out, non-human feed on monkeys. Eventually, the malaria primate malarias have been found. A typical high infections in the A. umbrosus group of canopied rain forest, in a mountainous area mosquitoes in this environment were attributed approximately 20 miles north and east of Kuala to P. traguli of the Malaysian mouse deer, Lumpur, was selected as a site for the investigation Tragulus javanicus, (Wharton et al, 1963). The of the transmission of simian malaria. A. letifer story was, however, not complete. Mosquito trapping activities in the canopy, When a strain of P. cynomolgi was isolated from with monkey bait, and on the ground, with human the swamp forest study area and exposed to A. bait, produced small catches both in number of letifer from the same locality, it was found that individuals and number of species represented. sporozoites developed readily in the salivary However, 2 species of anophelines, A. balabacensis glands. Such highly specific strain relationships introlatus and A. leucosphyrus, were attracted to between parasite and mosquito host must, on monkeys in the canopy and to man on the ground. occasion, be very important in the epidemiology Thus, 2 possible mosquito liaisons between the of monkey malaria. It is not known how malaria parasites of man and monkeys had been frequently such specific relationships occur, but found. It also seemed significant that both of these they could be an important consideration in any species belonged to the A. leucosphyrus group. area where simian malaria exists in the absence Members of this species complex were known to be of expected vectors or where expected vectors primarily jungle breeders, and had been seriously cannot be specifically incriminated in the incriminated as vectors of human malaria in parts of transmission. North Malaysia, Thailand, Cambodia, Indochina, The epidemiology of simian malaria in the Burma, and Borneo. Specimens of both species, fresh water swamp forest of Malaysia is with sporozoite positive salivary glands, were confused by the high levels of natural mosquito collected at the rain forest site. The sporozoites infections with P. traguli. It may be, that the from the naturally infected A. b. introlatus produced same species of anopheline is carrying both an infection of P. inui when inoculated simian and mouse deer malaria and it is intravenously into malaria-free rhesus monkeys impossible, so far, to find the former in a (Wharton et al, 1962). Using similar techniques, a mixture so dominated by the latter. At any rate, naturally infected A. leucosphyrus, trapped in the the vector of simian malaria in this environment same area, was found to harbor an infection with P. remains unknown. It is possible that the cynomolgi (Eyles et al, 1963). monkeys become infected in another area, The fact that 2 members of the same species because troops undergo a fairly constant complex were vectors of simian malaria was migratory activity, and forested hills, with particularly interesting when it was considered that potential breeding sites for proven vectors of the other species, in the same group, were believed to 22 PRIMATE MALARIAS transmit human malaria in areas where simian Investigations to determine the vector of the malaria was found, also. Studies to investigate monkey malaria were immediately successful. An the possibility that a single species might be A. hackeri, collected at the base of a nipah palm responsible for the transmission of both simian during a daytime-resting catch, was found to have and human malaria, in the same environment, sporozoite positive salivary glands. The sporozoites were undertaken in a forest area of Cambodia produced a P. knowlesi infection following where the local authorities had experienced inoculation into a malaria-free rhesus monkey serious difficulties in trying to prevent (Wharton and Eyles, 1961).
Recommended publications
  • Basal Body Structure and Composition in the Apicomplexans Toxoplasma and Plasmodium Maria E
    Francia et al. Cilia (2016) 5:3 DOI 10.1186/s13630-016-0025-5 Cilia REVIEW Open Access Basal body structure and composition in the apicomplexans Toxoplasma and Plasmodium Maria E. Francia1* , Jean‑Francois Dubremetz2 and Naomi S. Morrissette3 Abstract The phylum Apicomplexa encompasses numerous important human and animal disease-causing parasites, includ‑ ing the Plasmodium species, and Toxoplasma gondii, causative agents of malaria and toxoplasmosis, respectively. Apicomplexans proliferate by asexual replication and can also undergo sexual recombination. Most life cycle stages of the parasite lack flagella; these structures only appear on male gametes. Although male gametes (microgametes) assemble a typical 9 2 axoneme, the structure of the templating basal body is poorly defined. Moreover, the rela‑ tionship between asexual+ stage centrioles and microgamete basal bodies remains unclear. While asexual stages of Plasmodium lack defined centriole structures, the asexual stages of Toxoplasma and closely related coccidian api‑ complexans contain centrioles that consist of nine singlet microtubules and a central tubule. There are relatively few ultra-structural images of Toxoplasma microgametes, which only develop in cat intestinal epithelium. Only a subset of these include sections through the basal body: to date, none have unambiguously captured organization of the basal body structure. Moreover, it is unclear whether this basal body is derived from pre-existing asexual stage centrioles or is synthesized de novo. Basal bodies in Plasmodium microgametes are thought to be synthesized de novo, and their assembly remains ill-defined. Apicomplexan genomes harbor genes encoding δ- and ε-tubulin homologs, potentially enabling these parasites to assemble a typical triplet basal body structure.
    [Show full text]
  • Molecular Data and the Evolutionary History of Dinoflagellates by Juan Fernando Saldarriaga Echavarria Diplom, Ruprecht-Karls-Un
    Molecular data and the evolutionary history of dinoflagellates by Juan Fernando Saldarriaga Echavarria Diplom, Ruprecht-Karls-Universitat Heidelberg, 1993 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES Department of Botany We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA November 2003 © Juan Fernando Saldarriaga Echavarria, 2003 ABSTRACT New sequences of ribosomal and protein genes were combined with available morphological and paleontological data to produce a phylogenetic framework for dinoflagellates. The evolutionary history of some of the major morphological features of the group was then investigated in the light of that framework. Phylogenetic trees of dinoflagellates based on the small subunit ribosomal RNA gene (SSU) are generally poorly resolved but include many well- supported clades, and while combined analyses of SSU and LSU (large subunit ribosomal RNA) improve the support for several nodes, they are still generally unsatisfactory. Protein-gene based trees lack the degree of species representation necessary for meaningful in-group phylogenetic analyses, but do provide important insights to the phylogenetic position of dinoflagellates as a whole and on the identity of their close relatives. Molecular data agree with paleontology in suggesting an early evolutionary radiation of the group, but whereas paleontological data include only taxa with fossilizable cysts, the new data examined here establish that this radiation event included all dinokaryotic lineages, including athecate forms. Plastids were lost and replaced many times in dinoflagellates, a situation entirely unique for this group. Histones could well have been lost earlier in the lineage than previously assumed.
    [Show full text]
  • University of Malaya Kuala Lumpur
    GENETIC DIVERSITY STUDY, EXPRESSION AND IMMUNOCHARACTERIZATION OF PLASMODIUM KNOWLESI MEROZOITE SURFACE PROTEIN-3 (MSP-3) IN ESCHERICHIA COLI JEREMY RYAN DE SILVA THESIS SUBMITTED IN FULLFILMENT OF THE REQUIREMENTSMalaya FOR THE DEGREE OF DOCTOR OF PHILOSOPHY of FACULTY OF MEDICINE UNIVERSITY OF MALAYA KUALA LUMPUR University 2017 UNIVERSITI MALAYA ORIGINAL LITERARY WORK DECLARATION Name of Candidate : Jeremy Ryan De Silva Registration / Matric No : MHA120057 Name of Degree : Doctor Of Philosophy (Ph.D) Title of Project Paper / Research Report / Dissertation / Thesis (“this Work”): Genetic diversity study, expression and immunocharacterization of Plasmodium Knowlesi Merozoite Surface Protein-3 (MSP-3) in Escherichia Coli Field of Study : Medical Parasitology I do solemnly and sincerely declare that: [1] I am the sole author / writer of this Work; [2] This Work is original; [3] Any use of any work in which copyright exists was done by way of fair dealing and for permitted purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title ofMalaya the Work and its authorship have been acknowledged in this Work; [4] I do not have any actual knowledge nor do I ought reasonably to know that the making of this work constitutes an infringement of any copyright work; [5] I hereby assign all and every rights in the copyrightof to this Work to the University of Malaya (“UM”), who henceforth shall be owner of the copyright in this Work and that any reproduction or use in any form or by any means whatsoever is prohibited without the written consent of UM having been first had and obtained; [6] I am fully aware that if in the course of making this Work I have infringed any copyright whether intentionally or otherwise, I may be subject to legal action or any other action as may be determined by UM.
    [Show full text]
  • Texto Completo
    Ministério da Saúde Fundação Oswaldo Cruz Centro de Pesquisas René Rachou Programa de Pós-Graduação em Ciências da Saúde Estudo Molecular dos Parasitos Causadores da Malária Simiana no Centro de Primatologia do Rio de Janeiro, Brasil por Denise Anete Madureira de Alvarenga Belo Horizonte Dezembro/2014 DISSERTAÇÃO MBCM-CPqRR D.A.M. ALVARENGA 2014 Alvarenga, DAM Ministério da Saúde Fundação Oswaldo Cruz Centro de Pesquisas René Rachou Programa de Pós-Graduação em Ciências da Saúde Estudo Molecular dos Parasitos Causadores da Malária Simiana no Centro de Primatologia do Rio de Janeiro, Brasil por Denise Anete Madureira de Alvarenga Dissertação apresentada com vistas à obtenção do Título de Mestre em Ciências na área de concentração Biologia Celular e Molecular. Orientação: Dra. Cristiana Ferreira Alves de Brito Co-orientação: Dra. Taís Nóbrega de Sousa Belo Horizonte Dezembro/2014 Alvarenga, DAM II Catalogação-na-fonte Rede de Bibliotecas da FIOCRUZ Biblioteca do CPqRR Segemar Oliveira Magalhães CRB/6 1975 A473e 2014 Alvarenga, Denise Anete Madureira. Estudo Molecular dos Parasitos Causadores da Malária Simiana no Centro de Primatologia do Rio de Janeiro, Brasil / Denise Anete Madureira de Alvarenga. – Belo Horizonte, 2014. XXI, 58 f.: il.; 210 x 297mm Bibliografia: f. 70 - 77 Dissertação (mestrado) – Dissertação para obtenção do título de Mestre em Ciências pelo Programa de Pós- Graduação em Ciências da Saúde do Centro de Pesquisas René Rachou. Área de concentração: Biologia Celular e Molecular. 1. Malária Vivax/genética 2. Plasmodium vivax /imunologia 3. Reservatórios de Doenças/classificação I. Título. II. Brito, Cristiana Ferreira Alves (Orientação). III. Souza, Taís Nóbrega (Co-orientação) CDD – 22.
    [Show full text]
  • Ana Júlia Dutra Nunes Prevalência De Infecção
    ANA JÚLIA DUTRA NUNES PREVALÊNCIA DE INFECÇÃO POR Plasmodium spp. E SUA ASSOCIAÇÃO COM OS PARÂMETROS BIOQUÍMICOS E HEMATOLÓGICOS DE Alouatta guariba clamitans (CABRERA, 1940) (PRIMATES: ATELIDAE) DE VIDA LIVRE JOINVILLE, 2019 ANA JÚLIA DUTRA NUNES PREVALÊNCIA DE INFECÇÃO POR Plasmodium spp. E SUA ASSOCIAÇÃO COM OS PARÂMETROS BIOQUÍMICOS E HEMATOLÓGICOS DE Alouatta guariba clamitans (CABRERA, 1940) (PRIMATES: ATELIDAE) DE VIDA LIVRE. Dissertação de mestrado apresentada como requisito parcial para obtenção do título de Mestre em Saúde e Meio Ambiente, na Universidade da Região de Joinville. Orientadora: Dra. Marta Jussara Cremer. Coorientadora: Dra. Cristiana Ferreira Alves de Brito. JOINVILLE, 2019 Catalogação na publicação pela Biblioteca Universitária da Univille Nunes, Ana Júlia Dutra N972p Prevalência de infecção por Plasmodium spp. e sua associação com os parâmetros bioquímicos e hematológicos de Alouatta guariba clamitans (Cabrera, 1940) (Primates: Atelidae) de vida livre. / Ana Júlia Dutra Nunes; orientadora Dra. Marta Jussara Cremer, coorientadora Dra. Cristiana Ferreira Alves de Brito. – Joinville: UNIVILLE, 2019. 65 p.: il. ; 30 cm Dissertação (Mestrado em Saúde e Meio Ambiente – Universidade da Região de Joinville) 1. Alouatta guariba clamitans Cabrera. 2. Malária. 3. Conservação de espécies. I. Cremer, Marta Jussara (orient.). II. Brito, Cristiana Ferreira Alves de (coord.). III. Título. CDD 636.200896951 Elaborada por Christiane de Viveiros Cardozo – CRB-14/778 Termo de Aprovação "Prevalência da Infecção por Plasmodium spp e sua Associação com os Parâmetros Bioquímicos e Hematológicos de Alouatta guariba clamitans (Cabrera, 1940) (Primates: Atelidae) de Vida Livre" por Ana Júlia Dutra Nunes Dissertação julgada para a obtenção do título de Mestra em Saúde e Meio Ambiente, área de concentração Saúde e Meio Ambiente e aprovada em sua forma final pelo Programa de Pós- Graduação em Saúde e Meio Ambiente.
    [Show full text]
  • Genetically Modified Baculoviruses for Pest
    INSECT CONTROL BIOLOGICAL AND SYNTHETIC AGENTS This page intentionally left blank INSECT CONTROL BIOLOGICAL AND SYNTHETIC AGENTS EDITED BY LAWRENCE I. GILBERT SARJEET S. GILL Amsterdam • Boston • Heidelberg • London • New York • Oxford Paris • San Diego • San Francisco • Singapore • Sydney • Tokyo Academic Press is an imprint of Elsevier Academic Press, 32 Jamestown Road, London, NW1 7BU, UK 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA 525 B Street, Suite 1800, San Diego, CA 92101-4495, USA ª 2010 Elsevier B.V. All rights reserved The chapters first appeared in Comprehensive Molecular Insect Science, edited by Lawrence I. Gilbert, Kostas Iatrou, and Sarjeet S. Gill (Elsevier, B.V. 2005). All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publishers. Permissions may be sought directly from Elsevier’s Rights Department in Oxford, UK: phone (þ44) 1865 843830, fax (þ44) 1865 853333, e-mail [email protected]. Requests may also be completed on-line via the homepage (http://www.elsevier.com/locate/permissions). Library of Congress Cataloging-in-Publication Data Insect control : biological and synthetic agents / editors-in-chief: Lawrence I. Gilbert, Sarjeet S. Gill. – 1st ed. p. cm. Includes bibliographical references and index. ISBN 978-0-12-381449-4 (alk. paper) 1. Insect pests–Control. 2. Insecticides. I. Gilbert, Lawrence I. (Lawrence Irwin), 1929- II. Gill, Sarjeet S. SB931.I42 2010 632’.7–dc22 2010010547 A catalogue record for this book is available from the British Library ISBN 978-0-12-381449-4 Cover Images: (Top Left) Important pest insect targeted by neonicotinoid insecticides: Sweet-potato whitefly, Bemisia tabaci; (Top Right) Control (bottom) and tebufenozide intoxicated by ingestion (top) larvae of the white tussock moth, from Chapter 4; (Bottom) Mode of action of Cry1A toxins, from Addendum A7.
    [Show full text]
  • A Review of the Mosquito Species (Diptera: Culicidae) of Bangladesh Seth R
    Irish et al. Parasites & Vectors (2016) 9:559 DOI 10.1186/s13071-016-1848-z RESEARCH Open Access A review of the mosquito species (Diptera: Culicidae) of Bangladesh Seth R. Irish1*, Hasan Mohammad Al-Amin2, Mohammad Shafiul Alam2 and Ralph E. Harbach3 Abstract Background: Diseases caused by mosquito-borne pathogens remain an important source of morbidity and mortality in Bangladesh. To better control the vectors that transmit the agents of disease, and hence the diseases they cause, and to appreciate the diversity of the family Culicidae, it is important to have an up-to-date list of the species present in the country. Original records were collected from a literature review to compile a list of the species recorded in Bangladesh. Results: Records for 123 species were collected, although some species had only a single record. This is an increase of ten species over the most recent complete list, compiled nearly 30 years ago. Collection records of three additional species are included here: Anopheles pseudowillmori, Armigeres malayi and Mimomyia luzonensis. Conclusions: While this work constitutes the most complete list of mosquito species collected in Bangladesh, further work is needed to refine this list and understand the distributions of those species within the country. Improved morphological and molecular methods of identification will allow the refinement of this list in years to come. Keywords: Species list, Mosquitoes, Bangladesh, Culicidae Background separation of Pakistan and India in 1947, Aslamkhan [11] Several diseases in Bangladesh are caused by mosquito- published checklists for mosquito species, indicating which borne pathogens. Malaria remains an important cause of were found in East Pakistan (Bangladesh).
    [Show full text]
  • FIELD GUIDE to WARMWATER FISH DISEASES in CENTRAL and EASTERN EUROPE, the CAUCASUS and CENTRAL ASIA Cover Photographs: Courtesy of Kálmán Molnár and Csaba Székely
    SEC/C1182 (En) FAO Fisheries and Aquaculture Circular I SSN 2070-6065 FIELD GUIDE TO WARMWATER FISH DISEASES IN CENTRAL AND EASTERN EUROPE, THE CAUCASUS AND CENTRAL ASIA Cover photographs: Courtesy of Kálmán Molnár and Csaba Székely. FAO Fisheries and Aquaculture Circular No. 1182 SEC/C1182 (En) FIELD GUIDE TO WARMWATER FISH DISEASES IN CENTRAL AND EASTERN EUROPE, THE CAUCASUS AND CENTRAL ASIA By Kálmán Molnár1, Csaba Székely1 and Mária Láng2 1Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary 2 National Food Chain Safety Office – Veterinary Diagnostic Directorate, Budapest, Hungary FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Ankara, 2019 Required citation: Molnár, K., Székely, C. and Láng, M. 2019. Field guide to the control of warmwater fish diseases in Central and Eastern Europe, the Caucasus and Central Asia. FAO Fisheries and Aquaculture Circular No.1182. Ankara, FAO. 124 pp. Licence: CC BY-NC-SA 3.0 IGO The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO.
    [Show full text]
  • Bakalářská Práce
    MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA ÚSTAV BOTANIKY A ZOOLOGIE Bakalářská práce Brno 2013 Kateřina Skulinová MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA ÚSTAV BOTANIKY A ZOOLOGIE PARAZITI GASTROINTESTINÁLNÍHO TRAKTU VOLNĚ ŽIJÍCÍCH GIBONŮ (HYLOBATES ALBIBARBIS) Z KALIMANTANU Bakalářská práce Kateřina Skulinová Vedoucí práce: MVDr. Ivona Foitová, Ph.D. Brno 2013 Bibliografický záznam Autor: Kateřina Skulinová Přírodovědecká fakulta, Masarykova univerzita Ústav botaniky a zoologie Název práce: Paraziti gastrointestinálního traktu volně žijících gibonů (Hylobates albibarbis) z Kalimantanu Studijní program: Ekologická a evoluční biologie Studijní obor: Ekologická a evoluční biologie, směr Zoologie Vedoucí práce: MVDr. Ivona Foitová, Ph.D. Akademický rok: 2012/2013 Počet stran: 39+6 Klíčová slova: Gibon, Hylobates albibarbis, gastrointestinální paraziti, Borneo, Kalimantan, Bibliographic Entry Author Kateřina Skulinová Faculty of Science, Masaryk University Department of Botany and Zoology Title of Thesis: Gastrointestinal parasites of wild Bornean agille gibons (Hylobates albibarbis) Degree programme: Ecological and evolutionary biology Ecological and evolutionary biology, specialization Field of Study: Zoology Supervisor: MVDr. Ivona Foitová, Ph.D. Academic Year: 2012/2013 Number of Pages: 39+6 Keywords: Gibbon, Hylobates albibarbis, gastrointestinal parasites, Kalimantan, Borneo Abstrakt V této práci jsou předkládány výsledky parazitologického vyšetření 15 vzorků trusu nasbíraných v roce 2010 od devíti divokých gibonů bělobradých
    [Show full text]
  • The Dominant Anopheles Vectors of Human Malaria in the Asia-Pacific
    Sinka et al. Parasites & Vectors 2011, 4:89 http://www.parasitesandvectors.com/content/4/1/89 RESEARCH Open Access The dominant Anopheles vectors of human malaria in the Asia-Pacific region: occurrence data, distribution maps and bionomic précis Marianne E Sinka1*, Michael J Bangs2, Sylvie Manguin3, Theeraphap Chareonviriyaphap4, Anand P Patil1, William H Temperley1, Peter W Gething1, Iqbal RF Elyazar5, Caroline W Kabaria6, Ralph E Harbach7 and Simon I Hay1,6* Abstract Background: The final article in a series of three publications examining the global distribution of 41 dominant vector species (DVS) of malaria is presented here. The first publication examined the DVS from the Americas, with the second covering those species present in Africa, Europe and the Middle East. Here we discuss the 19 DVS of the Asian-Pacific region. This region experiences a high diversity of vector species, many occurring sympatrically, which, combined with the occurrence of a high number of species complexes and suspected species complexes, and behavioural plasticity of many of these major vectors, adds a level of entomological complexity not comparable elsewhere globally. To try and untangle the intricacy of the vectors of this region and to increase the effectiveness of vector control interventions, an understanding of the contemporary distribution of each species, combined with a synthesis of the current knowledge of their behaviour and ecology is needed. Results: Expert opinion (EO) range maps, created with the most up-to-date expert knowledge of each DVS distribution, were combined with a contemporary database of occurrence data and a suite of open access, environmental and climatic variables.
    [Show full text]
  • Genetic Diversity and Habitats of Two Enigmatic Marine Alveolate Lineages
    AQUATIC MICROBIAL ECOLOGY Vol. 42: 277–291, 2006 Published March 29 Aquat Microb Ecol Genetic diversity and habitats of two enigmatic marine alveolate lineages Agnès Groisillier1, Ramon Massana2, Klaus Valentin3, Daniel Vaulot1, Laure Guillou1,* 1Station Biologique, UMR 7144, CNRS, and Université Pierre & Marie Curie, BP74, 29682 Roscoff Cedex, France 2Department de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CMIMA, CSIC. Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain 3Alfred Wegener Institute for Polar Research, Am Handelshafen 12, 27570 Bremerhaven, Germany ABSTRACT: Systematic sequencing of environmental SSU rDNA genes amplified from different marine ecosystems has uncovered novel eukaryotic lineages, in particular within the alveolate and stramenopile radiations. The ecological and geographic distribution of 2 novel alveolate lineages (called Group I and II in previous papers) is inferred from the analysis of 62 different environmental clone libraries from freshwater and marine habitats. These 2 lineages have been, up to now, retrieved exclusively from marine ecosystems, including oceanic and coastal waters, sediments, hydrothermal vents, and perma- nent anoxic deep waters and usually represent the most abundant eukaryotic lineages in environmen- tal genetic libraries. While Group I is only composed of environmental sequences (118 clones), Group II contains, besides environmental sequences (158 clones), sequences from described genera (8) (Hema- todinium and Amoebophrya) that belong to the Syndiniales, an atypical order of dinoflagellates exclu- sively composed of marine parasites. This suggests that Group II could correspond to Syndiniales, al- though this should be confirmed in the future by examining the morphology of cells from Group II. Group II appears to be abundant in coastal and oceanic ecosystems, whereas permanent anoxic waters and hy- drothermal ecosystems are usually dominated by Group I.
    [Show full text]
  • Plasmodium Youngi Eyles, Fong, Dunn, Guinn, Warren, and Sandosham, 1964
    14 Plasmodium youngi Eyles, Fong, Dunn, Guinn, Warren, and Sandosham, 1964 et al, 1965, 1966) and in Thailand (Ward and THE first report of a true Cadigan, 1966; Cadigan et al, 1969). malaria from the gibbon was that of Rodhain In May of 1962, personnel of the Far East who described Plasmodium hylobati in 1941. Research Unit (NIH) located in Kuala Lumpur, Earlier, Fraser (1909) mentions finding a Malaysia, obtained a young gibbon (Hylobates "malaria-like parasite" Plasmodium kochi in lar) which had been captured in the state of Hylobates symphalangus (= Symphalangus Kalantan in peninsular Malaysia. The animal syndactylus) in Malaya. Plasmodium kochi is harbored a true Plasmodium which did not fit the actually a hepatocystis considered generally to description of P. hylobati. Eyles and his be limited to the monkeys. However, Shiroishi et coworkers transferred the parasite to other al (1968) reported Hepatocystis sp. in Hylobates gibbons and after careful study concluded it was concolor from northern Thailand and therefore a new species. They named the parasite the Fraser parasite could have been a Plasmodium youngi in honor of the American representative of either genus. It probably was a malariologist, Dr. Martin D. Young. plasmodium since we know now that true malarias are common in the gibbons of peninsular Malaysia (Eyles et al, 1964; Warren 163 PLASMODIUM YOUNGI 165 Cycle in the Blood adult forms fill the host cell (Fig. 28). The cytoplasm of the microgametocyte stains PLATE XXIV reddish-purple and exhibits a large deep reddish- pink nucleus sometimes with a deeper staining The youngest parasites are frequently ring- bar-like area.
    [Show full text]