Digital Signatures in Storage for Arbitrating Possible Dis- Putes Later

Total Page:16

File Type:pdf, Size:1020Kb

Digital Signatures in Storage for Arbitrating Possible Dis- Putes Later APPLICATIONS SUCH AS banking, stock ments. Validation refers to the process of use some information that is unique to trading, and the sale and purchase of mer- certifying the contents of the document, the sender to prevent both forgery and chandise are increasingly emphasizing while authentication refers to the process denial; it must be relatively easy to pro- electronic transactions to minimize opera- of certifying the sender of the document. duce; it must be relatively easy to recog- tional costs and provide enhanced ser- In this article, the terms document and nize and verify the authenticity of digital vices. This has led to phenomenal increas- message are used interchangeably. signature; it must be computationally infeasible to forge a digital signa- ture either by constructing a new message for an existing digital sig- nature or constructing a fraudulent digital signature for a given mes- sage; and it must be practical to ret- copies of the digital signatures in storage for arbitrating possible dis- putes later. To verify that the received docu- ment is indeed from the claimed sender and that the contents have not been altered, several proce- dures, called authentication tech- niques, have been developed. However, message authentication techniques cannot be directly used Digital signatures as digital signatures due to inade- quacies of authentication tech- niques. For example, although mes- sage authentication protects the two parties exchanging messages from a S.R. SUBRAMANYA AND BYUNG K. YI third party, it does not protect the two parties against each other. In addition, elementary authentication schemes produce signatures that are as long as the message themselves. Basic notions and terminology Digital signatures are computed ©DIGITALVISION, STOCKBYTE, COMSTOCK based on the documents (message/ information) that need to be signed and on some private information es in the amounts of electronic documents Conventional and held only by the sender. In practice, that are generated, processed, and stored digital signature characteristics instead of using the whole message, a in computers and transmitted over net- A conventional signature has the fol- hash function is applied to the message works. This electronic information han- lowing salient characteristics: relative ease to obtain the message digest. A hash dled in these applications is valuable and of establishing that the signature is authen- function, in this context, takes an arbi- sensitive and must be protected against tic, the difficulty of forging a signature, the trary-sized message as input and pro- tampering by malicious third parties (who nontransferability of the signature, the dif- duces a fixed-size message digest as out- are neither the senders nor the recipients ficulty of altering the signature, and the put. Among the commonly used hash of the information). Sometimes, there is a nonrepudiation of signature to ensure functions in practice are MD-5 (message need to prevent the information or items that the signer cannot later deny signing. digest 5) and SHA (secure hash algo- related to it (such as date/time it was cre- A digital signature should have all the rithm). These algorithms are fairly sophis- ated, sent, and received) from being tam- aforementioned features of a conven- ticated and ensure that it is highly pered with by the sender (originator) tional signature plus a few more as digi- improbable for two different messages to and/or the recipient. tal signatures are being used in practical, be mapped to the same hash value. Traditionally, paper documents are but sensitive, applications such as secure There are two broad techniques used in validated and certified by written signa- e-mail and credit card transactions over digital signature computation—symmetric tures, which work fairly well as a means the Internet. Since a digital signature is key cryptosystem and public-key cryp- of providing authenticity. For electronic just a sequence of zeroes and ones, it is tosystem (cryptosystem broadly refers to documents, a similar mechanism is nec- desirable for it to have the following an encryption technique). In the symmet- essary. Digital signatures, which are noth- properties: the signature must be a bit ric key system, a secret key known only ing but a string of ones and zeroes gen- pattern that depends on the message to the sender and the legitimate receiver erated by using a digital signature algo- being signed (thus, for the same origina- is used. However, there must be a rithm, serve the purpose of validation tor, the digital signature is different for unique key between any two pairs of and authentication of electronic docu- different documents); the signature must users. Thus, as the number of user pairs MARCH/APRIL 2006 0278-6648/06/$20.00 © 2006 IEEE 5 public key. The combination of encrypt- Message ed message and signature, together with the encrypted symmetric key, form the digital envelope containing the signed Hash Message Signature Digital Message message. Figure 6 shows the process of Function Digest Function Signature opening a digital envelope, recovering Sender’s the message, and verifying the signa- Private Key ture. First, the symmetric key is recov- ered using the recipient’s private key. Fig. 1 Creating a digital signature This is then used to decrypt and recover the message and the digital signature. increases, it becomes extremely difficult message digest is compared with the The digital signature is then verified as to generate, distribute, and keep track of one recovered from the signature. If they described earlier. the secret keys. match, then it ensures that the message A public key cryptosystem, on the has indeed been sent by the (claimed) Direct and arbitrated other hand, uses a pair of keys: a pri- sender and that it has not been altered. digital signature vate key, known only to its owner, and A variety of modes have been pro- a public key, known to everyone who Creating and opening posed for digital signatures that fall into wishes to communicate with the owner. a digital envelope two basic categories: direct and arbitrat- For confidentiality of the message to be A digital envelope is the equivalent of ed. The direct digital signature involves sent to the owner, it would be encrypt- a sealed envelope containing an unsigned only the communicating parties, sender ed with the owner’s public key, which letter. The outline of creating a digital and receiver. This is the simplest type of now could only be decrypted by the envelope is shown in Fig. 3. The message digital signature. It is assumed that the owner, the person with the correspond- is encrypted by the sender using a ran- recipient knows the public key of the ing private key. For purposes of domly generated symmetric key. The sender. In a simple scheme, a digital sig- authentication, a message would be symmetric key itself is encrypted using the nature may be formed by encrypting the encrypted with the private key of the intended recipient’s public key. The com- entire message or the hash code of the originator or sender, who we will refer bination of the encrypted message and message with the sender’s private key. to as A. This message could be decrypted the encrypted symmetric key is the digital Confidentiality can be provided by fur- by anyone using the public key of A. If envelope. The process of opening the dig- ther encrypting the entire message plus this yields the proper message, then it ital envelope and recovering the contents signature with either the receiver’s pub- is evident that the message was indeed is shown in Fig. 4. First, the encrypted lic key encryption or the shared secret encrypted by the private key of A, and symmetric key is recovered by a decryp- key, which is conventional encryption. A thus only A could have sent it. tion using the recipient’s private key. sender may later deny sending a particu- Subsequently, the encrypted message is lar message by claiming that the private Creating and verifying decrypted using the symmetric key. key was lost or stolen and that someone a digital signature else forged his signature. One way to A simple generic scheme for creating Creating and opening digital overcome this is to include a time stamp and verifying a digital signature is shown envelopes carrying signed messages with every message and requiring notifi- in Figs. 1 and 2, respectively. A hash The process of creating a digital cation of loss of key to the proper function is applied to the message that envelope containing a signed message is authority. In case of dispute, a trusted yields a fixed-size message digest. The shown in Fig. 5. A digital signature is third party may view the message and its signature function uses the message created by the signature function using signature to arbitrate the dispute. digest and the sender’s private key to the message digest of the message and In the arbitrated signature scheme, generate the digital signature. A very the sender’s private key. The original there is a trusted third party called the simple form of the digital signature is message and the digital signature are arbiter. Every signed message from a obtained by encrypting the message then encrypted by the sender using a sender A to a receiver B goes first to an digest using the sender’s private key. randomly generated key and a symmet- arbiter T, who subjects the message and The message and the signature can now ric-key algorithm. The symmetric key its signature to a number of tests to be sent to the recipient. The message is itself is encrypted using the recipient’s check its origin and content. The mes- unencrypted and can be read by any- one.
Recommended publications
  • Public-Key Cryptography
    Public Key Cryptography EJ Jung Basic Public Key Cryptography public key public key ? private key Alice Bob Given: Everybody knows Bob’s public key - How is this achieved in practice? Only Bob knows the corresponding private key Goals: 1. Alice wants to send a secret message to Bob 2. Bob wants to authenticate himself Requirements for Public-Key Crypto ! Key generation: computationally easy to generate a pair (public key PK, private key SK) • Computationally infeasible to determine private key PK given only public key PK ! Encryption: given plaintext M and public key PK, easy to compute ciphertext C=EPK(M) ! Decryption: given ciphertext C=EPK(M) and private key SK, easy to compute plaintext M • Infeasible to compute M from C without SK • Decrypt(SK,Encrypt(PK,M))=M Requirements for Public-Key Cryptography 1. Computationally easy for a party B to generate a pair (public key KUb, private key KRb) 2. Easy for sender to generate ciphertext: C = EKUb (M ) 3. Easy for the receiver to decrypt ciphertect using private key: M = DKRb (C) = DKRb[EKUb (M )] Henric Johnson 4 Requirements for Public-Key Cryptography 4. Computationally infeasible to determine private key (KRb) knowing public key (KUb) 5. Computationally infeasible to recover message M, knowing KUb and ciphertext C 6. Either of the two keys can be used for encryption, with the other used for decryption: M = DKRb[EKUb (M )] = DKUb[EKRb (M )] Henric Johnson 5 Public-Key Cryptographic Algorithms ! RSA and Diffie-Hellman ! RSA - Ron Rives, Adi Shamir and Len Adleman at MIT, in 1977. • RSA
    [Show full text]
  • Public Key Cryptography And
    PublicPublic KeyKey CryptographyCryptography andand RSARSA Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 [email protected] Audio/Video recordings of this lecture are available at: http://www.cse.wustl.edu/~jain/cse571-11/ Washington University in St. Louis CSE571S ©2011 Raj Jain 9-1 OverviewOverview 1. Public Key Encryption 2. Symmetric vs. Public-Key 3. RSA Public Key Encryption 4. RSA Key Construction 5. Optimizing Private Key Operations 6. RSA Security These slides are based partly on Lawrie Brown’s slides supplied with William Stallings’s book “Cryptography and Network Security: Principles and Practice,” 5th Ed, 2011. Washington University in St. Louis CSE571S ©2011 Raj Jain 9-2 PublicPublic KeyKey EncryptionEncryption Invented in 1975 by Diffie and Hellman at Stanford Encrypted_Message = Encrypt(Key1, Message) Message = Decrypt(Key2, Encrypted_Message) Key1 Key2 Text Ciphertext Text Keys are interchangeable: Key2 Key1 Text Ciphertext Text One key is made public while the other is kept private Sender knows only public key of the receiver Asymmetric Washington University in St. Louis CSE571S ©2011 Raj Jain 9-3 PublicPublic KeyKey EncryptionEncryption ExampleExample Rivest, Shamir, and Adleman at MIT RSA: Encrypted_Message = m3 mod 187 Message = Encrypted_Message107 mod 187 Key1 = <3,187>, Key2 = <107,187> Message = 5 Encrypted Message = 53 = 125 Message = 125107 mod 187 = 5 = 125(64+32+8+2+1) mod 187 = {(12564 mod 187)(12532 mod 187)... (1252 mod 187)(125 mod 187)} mod 187 Washington University in
    [Show full text]
  • CS 255: Intro to Cryptography 1 Introduction 2 End-To-End
    Programming Assignment 2 Winter 2021 CS 255: Intro to Cryptography Prof. Dan Boneh Due Monday, March 1st, 11:59pm 1 Introduction In this assignment, you are tasked with implementing a secure and efficient end-to-end encrypted chat client using the Double Ratchet Algorithm, a popular session setup protocol that powers real- world chat systems such as Signal and WhatsApp. As an additional challenge, assume you live in a country with government surveillance. Thereby, all messages sent are required to include the session key encrypted with a fixed public key issued by the government. In your implementation, you will make use of various cryptographic primitives we have discussed in class—notably, key exchange, public key encryption, digital signatures, and authenticated encryption. Because it is ill-advised to implement your own primitives in cryptography, you should use an established library: in this case, the Stanford Javascript Crypto Library (SJCL). We will provide starter code that contains a basic template, which you will be able to fill in to satisfy the functionality and security properties described below. 2 End-to-end Encrypted Chat Client 2.1 Implementation Details Your chat client will use the Double Ratchet Algorithm to provide end-to-end encrypted commu- nications with other clients. To evaluate your messaging client, we will check that two or more instances of your implementation it can communicate with each other properly. We feel that it is best to understand the Double Ratchet Algorithm straight from the source, so we ask that you read Sections 1, 2, and 3 of Signal’s published specification here: https://signal.
    [Show full text]
  • Choosing Key Sizes for Cryptography
    information security technical report 15 (2010) 21e27 available at www.sciencedirect.com www.compseconline.com/publications/prodinf.htm Choosing key sizes for cryptography Alexander W. Dent Information Security Group, University Of London, Royal Holloway, UK abstract After making the decision to use public-key cryptography, an organisation still has to make many important decisions before a practical system can be implemented. One of the more difficult challenges is to decide the length of the keys which are to be used within the system: longer keys provide more security but mean that the cryptographic operation will take more time to complete. The most common solution is to take advice from information security standards. This article will investigate the methodology that is used produce these standards and their meaning for an organisation who wishes to implement public-key cryptography. ª 2010 Elsevier Ltd. All rights reserved. 1. Introduction being compromised by an attacker). It also typically means a slower scheme. Most symmetric cryptographic schemes do The power of public-key cryptography is undeniable. It is not allow the use of keys of different lengths. If a designer astounding in its simplicity and its ability to provide solutions wishes to offer a symmetric scheme which provides different to many seemingly insurmountable organisational problems. security levels depending on the key size, then the designer However, the use of public-key cryptography in practice is has to construct distinct variants of a central design which rarely as simple as the concept first appears. First one has to make use of different pre-specified key lengths.
    [Show full text]
  • Basics of Digital Signatures &
    > DOCUMENT SIGNING > eID VALIDATION > SIGNATURE VERIFICATION > TIMESTAMPING & ARCHIVING > APPROVAL WORKFLOW Basics of Digital Signatures & PKI This document provides a quick background to PKI-based digital signatures and an overview of how the signature creation and verification processes work. It also describes how the cryptographic keys used for creating and verifying digital signatures are managed. 1. Background to Digital Signatures Digital signatures are essentially “enciphered data” created using cryptographic algorithms. The algorithms define how the enciphered data is created for a particular document or message. Standard digital signature algorithms exist so that no one needs to create these from scratch. Digital signature algorithms were first invented in the 1970’s and are based on a type of cryptography referred to as “Public Key Cryptography”. By far the most common digital signature algorithm is RSA (named after the inventors Rivest, Shamir and Adelman in 1978), by our estimates it is used in over 80% of the digital signatures being used around the world. This algorithm has been standardised (ISO, ANSI, IETF etc.) and been extensively analysed by the cryptographic research community and you can say with confidence that it has withstood the test of time, i.e. no one has been able to find an efficient way of cracking the RSA algorithm. Another more recent algorithm is ECDSA (Elliptic Curve Digital Signature Algorithm), which is likely to become popular over time. Digital signatures are used everywhere even when we are not actually aware, example uses include: Retail payment systems like MasterCard/Visa chip and pin, High-value interbank payment systems (CHAPS, BACS, SWIFT etc), e-Passports and e-ID cards, Logging on to SSL-enabled websites or connecting with corporate VPNs.
    [Show full text]
  • Chapter 2 the Data Encryption Standard (DES)
    Chapter 2 The Data Encryption Standard (DES) As mentioned earlier there are two main types of cryptography in use today - symmet- ric or secret key cryptography and asymmetric or public key cryptography. Symmet- ric key cryptography is the oldest type whereas asymmetric cryptography is only being used publicly since the late 1970’s1. Asymmetric cryptography was a major milestone in the search for a perfect encryption scheme. Secret key cryptography goes back to at least Egyptian times and is of concern here. It involves the use of only one key which is used for both encryption and decryption (hence the use of the term symmetric). Figure 2.1 depicts this idea. It is necessary for security purposes that the secret key never be revealed. Secret Key (K) Secret Key (K) ? ? - - - - Plaintext (P ) E{P,K} Ciphertext (C) D{C,K} Plaintext (P ) Figure 2.1: Secret key encryption. To accomplish encryption, most secret key algorithms use two main techniques known as substitution and permutation. Substitution is simply a mapping of one value to another whereas permutation is a reordering of the bit positions for each of the inputs. These techniques are used a number of times in iterations called rounds. Generally, the more rounds there are, the more secure the algorithm. A non-linearity is also introduced into the encryption so that decryption will be computationally infeasible2 without the secret key. This is achieved with the use of S-boxes which are basically non-linear substitution tables where either the output is smaller than the input or vice versa. 1It is claimed by some that government agencies knew about asymmetric cryptography before this.
    [Show full text]
  • Selecting Cryptographic Key Sizes
    J. Cryptology (2001) 14: 255–293 DOI: 10.1007/s00145-001-0009-4 © 2001 International Association for Cryptologic Research Selecting Cryptographic Key Sizes Arjen K. Lenstra Citibank, N.A., 1 North Gate Road, Mendham, NJ 07945-3104, U.S.A. [email protected] and Technische Universiteit Eindhoven Eric R. Verheul PricewaterhouseCoopers, GRMS Crypto Group, Goudsbloemstraat 14, 5644 KE Eindhoven, The Netherlands eric.verheul@[nl.pwcglobal.com, pobox.com] Communicated by Andrew Odlyzko Received September 1999 and revised February 2001 Online publication 14 August 2001 Abstract. In this article we offer guidelines for the determination of key sizes for symmetric cryptosystems, RSA, and discrete logarithm-based cryptosystems both over finite fields and over groups of elliptic curves over prime fields. Our recommendations are based on a set of explicitly formulated parameter settings, combined with existing data points about the cryptosystems. Key words. Symmetric key length, Public key length, RSA, ElGamal, Elliptic curve cryptography, Moore’s law. 1. Introduction 1.1. The Purpose of This Paper Cryptography is one of the most important tools that enable e-commerce because cryp- tography makes it possible to protect electronic information. The effectiveness of this protection depends on a variety of mostly unrelated issues such as cryptographic key size, protocol design, and password selection. Each of these issues is equally important: if a key is too small, or if a protocol is badly designed or incorrectly used, or if a pass- word is poorly selected or protected, then the protection fails and improper access can be gained. In this article we give some guidelines for the determination of cryptographic key sizes.
    [Show full text]
  • Signal E2E-Crypto Why Can’T I Hold All These Ratchets
    Signal E2E-Crypto Why Can’t I Hold All These Ratchets oxzi 23.03.2021 In the next 30 minutes there will be I a rough introduction in end-to-end encrypted instant messaging, I an overview of how Signal handles those E2E encryption, I and finally a demo based on a WeeChat plugin. Historical Background I Signal has not reinvented the wheel - and this is a good thing! I Goes back to Off-the-Record Communication (OTR)1. OTR Features I Perfect forward secrecy I Deniable authentication 1Borisov, Goldberg, and Brewer. “Off-the-record communication, or, why not to use PGP”, 2004 Influence and Evolution I OTR influenced the Signal Protocol, Double Ratchet. I Double Ratchet influence OMEMO; supports many-to-many communication. I Also influenced Olm, E2E encryption of the Matrix protocol. I OTR itself was influenced by this, version four was introduced in 2018. Double Ratchet The Double Ratchet algorithm is used by two parties to exchange encrypted messages based on a shared secret key. The Double Ratchet algorithm2 is essential in Signal’s E2E crypto. But first, some basics. 2Perrin, and Marlinspike. “The Double Ratchet Algorithm”, 2016 Cryptographic Ratchet A ratchet is a cryptographic function that only moves forward. In other words, one cannot easily reverse its output. Triple Ratchet, I guess.3 3By Salvatore Capalbi, https://www.flickr.com/photos/sheldonpax/411551322/, CC BY-SA 2.5 Symmetric-Key Ratchet Symmetric-Key Ratchet In everyday life, Keyed-Hash Message Authentication Code (HMAC) or HMAC-based KDFs (HKDF) are used. func ratchet(ckIn[]byte)(ckOut, mk[]byte){ kdf := hmac.New(sha256.New, ckIn) kdf.Write(c) // publicly known constant c out := kdf.Sum(nil) return out[:32], out[32:] } ck0 :=[]byte{0x23, 0x42, ...} // some initial shared secret ck1, mk1 := ratchet(ck0) ck2, mk2 := ratchet(ck1) Diffie-Hellman Key Exchange Diffie-Hellman Key Exchange Diffie-Hellman Key Exchange Originally, DH uses primitive residue classes modulo n.
    [Show full text]
  • The Mathematics of the RSA Public-Key Cryptosystem Burt Kaliski RSA Laboratories
    The Mathematics of the RSA Public-Key Cryptosystem Burt Kaliski RSA Laboratories ABOUT THE AUTHOR: Dr Burt Kaliski is a computer scientist whose involvement with the security industry has been through the company that Ronald Rivest, Adi Shamir and Leonard Adleman started in 1982 to commercialize the RSA encryption algorithm that they had invented. At the time, Kaliski had just started his undergraduate degree at MIT. Professor Rivest was the advisor of his bachelor’s, master’s and doctoral theses, all of which were about cryptography. When Kaliski finished his graduate work, Rivest asked him to consider joining the company, then called RSA Data Security. In 1989, he became employed as the company’s first full-time scientist. He is currently chief scientist at RSA Laboratories and vice president of research for RSA Security. Introduction Number theory may be one of the “purest” branches of mathematics, but it has turned out to be one of the most useful when it comes to computer security. For instance, number theory helps to protect sensitive data such as credit card numbers when you shop online. This is the result of some remarkable mathematics research from the 1970s that is now being applied worldwide. Sensitive data exchanged between a user and a Web site needs to be encrypted to prevent it from being disclosed to or modified by unauthorized parties. The encryption must be done in such a way that decryption is only possible with knowledge of a secret decryption key. The decryption key should only be known by authorized parties. In traditional cryptography, such as was available prior to the 1970s, the encryption and decryption operations are performed with the same key.
    [Show full text]
  • Analysing and Patching SPEKE in ISO/IEC
    1 Analysing and Patching SPEKE in ISO/IEC Feng Hao, Roberto Metere, Siamak F. Shahandashti and Changyu Dong Abstract—Simple Password Exponential Key Exchange reported. Over the years, SPEKE has been used in several (SPEKE) is a well-known Password Authenticated Key Ex- commercial applications: for example, the secure messaging change (PAKE) protocol that has been used in Blackberry on Blackberry phones [11] and Entrust’s TruePass end-to- phones for secure messaging and Entrust’s TruePass end-to- end web products. It has also been included into international end web products [16]. SPEKE has also been included into standards such as ISO/IEC 11770-4 and IEEE P1363.2. In the international standards such as IEEE P1363.2 [22] and this paper, we analyse the SPEKE protocol as specified in the ISO/IEC 11770-4 [24]. ISO/IEC and IEEE standards. We identify that the protocol is Given the wide usage of SPEKE in practical applications vulnerable to two new attacks: an impersonation attack that and its inclusion in standards, we believe a thorough allows an attacker to impersonate a user without knowing the password by launching two parallel sessions with the victim, analysis of SPEKE is both necessary and important. In and a key-malleability attack that allows a man-in-the-middle this paper, we revisit SPEKE and its variants specified in (MITM) to manipulate the session key without being detected the original paper [25], the IEEE 1363.2 [22] and ISO/IEC by the end users. Both attacks have been acknowledged by 11770-4 [23] standards.
    [Show full text]
  • Private-Key and Public-Key Encryption
    University of Illinois, Urbana Champaign LECTURE CS 598DK Special Topics in Cryptography Instructor: Dakshita Khurana Scribe: Aniket Murhekar, Rucha Kulkarni Date: September 11, 2019 5 Private-Key and Public-Key Encryption We discussed pseudo-random functions in the last lecture. In this lecture, we focus on encryption schemes. Today we will cover the following topics. • Define private-key and public-key encryption schemes and understand what it means for them to be secure. • Define and distinguish between single-message and multi-message encryption schemes. • Construct a private-key encryption scheme using pseudo-random functions (PRFs) and present a proof of its security. • Show that a secure single-message public key encryption scheme is also a secure multi- message encryption scheme. • Describe a public key encryption scheme, El-Gamal. 5.1 Recap: Pseudo-random functions Recall from the last lecture that a pseudo-random function is a family of functions which, intuitively speaking, behaves like a randomly chosen function would behave. More concretely, we say that a function family F : f0; 1gk × f0; 1gl ! f0; 1gm is pseudo- random if no efficient adversary A can distinguish the function F (s; ·) (for a uniformly chosen s) from a function chosen uniformly at random from the set F of all functions from f0; 1gl to f0; 1gm. Here our adversaries are non-uniform probabilistic polynomial-time Turing machines with oracle access to either F (s; ·) or a function in F. Thus, Definition 5.1. Pseudo-random function (PRF). A family of functions F : f0; 1gk × f0; 1gl ! f0; 1gm is said to be pseudo-random if for all non-uniform probabilistic polynomial- time oracle Turing machines A, we have that: jPr[AF (s;·)(1k) = 1] − Pr[Af (1k) = 1]j ≤ negl(k) where the first probability is taken over the uniform choice of s 2 f0; 1gk and the random- ness of A, and the second probability is taken over the uniform choice of f 2 F and the randomness of A.
    [Show full text]
  • Data Encryption Standard (DES)
    6 Data Encryption Standard (DES) Objectives In this chapter, we discuss the Data Encryption Standard (DES), the modern symmetric-key block cipher. The following are our main objectives for this chapter: + To review a short history of DES + To defi ne the basic structure of DES + To describe the details of building elements of DES + To describe the round keys generation process + To analyze DES he emphasis is on how DES uses a Feistel cipher to achieve confusion and diffusion of bits from the Tplaintext to the ciphertext. 6.1 INTRODUCTION The Data Encryption Standard (DES) is a symmetric-key block cipher published by the National Institute of Standards and Technology (NIST). 6.1.1 History In 1973, NIST published a request for proposals for a national symmetric-key cryptosystem. A proposal from IBM, a modifi cation of a project called Lucifer, was accepted as DES. DES was published in the Federal Register in March 1975 as a draft of the Federal Information Processing Standard (FIPS). After the publication, the draft was criticized severely for two reasons. First, critics questioned the small key length (only 56 bits), which could make the cipher vulnerable to brute-force attack. Second, critics were concerned about some hidden design behind the internal structure of DES. They were suspicious that some part of the structure (the S-boxes) may have some hidden trapdoor that would allow the National Security Agency (NSA) to decrypt the messages without the need for the key. Later IBM designers mentioned that the internal structure was designed to prevent differential cryptanalysis.
    [Show full text]