Extraction, Isolation, and Identification of Bioactive Compounds from Plant
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Synopsis of Phaseoleae (Leguminosae, Papilionoideae) James Andrew Lackey Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1977 A synopsis of Phaseoleae (Leguminosae, Papilionoideae) James Andrew Lackey Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Botany Commons Recommended Citation Lackey, James Andrew, "A synopsis of Phaseoleae (Leguminosae, Papilionoideae) " (1977). Retrospective Theses and Dissertations. 5832. https://lib.dr.iastate.edu/rtd/5832 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1.The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. -
Add a Tuber to the Pod: on Edible Tuberous Legumes
LEGUME PERSPECTIVES Add a tuber to the pod: on edible tuberous legumes The journal of the International Legume Society Issue 19 • November 2020 IMPRESSUM ISSN Publishing Director 2340-1559 (electronic issue) Diego Rubiales CSIC, Institute for Sustainable Agriculture Quarterly publication Córdoba, Spain January, April, July and October [email protected] (additional issues possible) Editor-in-Chief Published by M. Carlota Vaz Patto International Legume Society (ILS) Instituto de Tecnologia Química e Biológica António Xavier Co-published by (Universidade Nova de Lisboa) CSIC, Institute for Sustainable Agriculture, Córdoba, Spain Oeiras, Portugal Instituto de Tecnologia Química e Biológica António Xavier [email protected] (Universidade Nova de Lisboa), Oeiras, Portugal Technical Editor Office and subscriptions José Ricardo Parreira Salvado CSIC, Institute for Sustainable Agriculture Instituto de Tecnologia Química e Biológica António Xavier International Legume Society (Universidade Nova de Lisboa) Apdo. 4084, 14080 Córdoba, Spain Oeiras, Portugal Phone: +34957499215 • Fax: +34957499252 [email protected] [email protected] Legume Perspectives Design Front cover: Aleksandar Mikić Ahipa (Pachyrhizus ahipa) plant at harvest, [email protected] showing pods and tubers. Photo courtesy E.O. Leidi. Assistant Editors Svetlana Vujic Ramakrishnan Nair University of Novi Sad, Faculty of Agriculture, Novi Sad, Serbia AVRDC - The World Vegetable Center, Shanhua, Taiwan Vuk Đorđević Ana María Planchuelo-Ravelo Institute of Field and Vegetable Crops, Novi Sad, Serbia National University of Córdoba, CREAN, Córdoba, Argentina Bernadette Julier Diego Rubiales Institut national de la recherche agronomique, Lusignan, France CSIC, Institute for Sustainable Agriculture, Córdoba, Spain Kevin McPhee Petr Smýkal North Dakota State University, Fargo, USA Palacký University in Olomouc, Faculty of Science, Department of Botany, Fred Muehlbauer Olomouc, Czech Republic USDA, ARS, Washington State University, Pullman, USA Frederick L. -
Brief Guide to the Nomenclature of Organic Chemistry
1 Brief Guide to the Nomenclature of Table 1: Components of the substitutive name Organic Chemistry (4S,5E)-4,6-dichlorohept-5-en-2-one for K.-H. Hellwich (Germany), R. M. Hartshorn (New Zealand), CH3 Cl O A. Yerin (Russia), T. Damhus (Denmark), A. T. Hutton (South 4 2 Africa). E-mail: [email protected] Sponsoring body: Cl 6 CH 5 3 IUPAC Division of Chemical Nomenclature and Structure suffix for principal hept(a) parent (heptane) one Representation. characteristic group en(e) unsaturation ending chloro substituent prefix 1 INTRODUCTION di multiplicative prefix S E stereodescriptors CHEMISTRY The universal adoption of an agreed nomenclature is a key tool for 2 4 5 6 locants ( ) enclosing marks efficient communication in the chemical sciences, in industry and Multiplicative prefixes (Table 2) are used when more than one for regulations associated with import/export or health and safety. fragment of a particular kind is present in a structure. Which kind of REPRESENTATION The International Union of Pure and Applied Chemistry (IUPAC) multiplicative prefix is used depends on the complexity of the provides recommendations on many aspects of nomenclature.1 The APPLIED corresponding fragment – e.g. trichloro, but tris(chloromethyl). basics of organic nomenclature are summarized here, and there are companion documents on the nomenclature of inorganic2 and Table 2: Multiplicative prefixes for simple/complicated entities polymer3 chemistry, with hyperlinks to original documents. An No. Simple Complicated No. Simple Complicated AND overall -
Andrographolides and Traditionally Used Andrographis Paniculata As Potential Adaptogens: Implications for Therapeutic Innovation
Review Andrographolides and traditionally used Andrographis paniculata as potential adaptogens: Implications for therapeutic innovation Ajit Kumar Thakur1, Shyam Sunder Chatterjee2,§, Vikas Kumar1,* 1Neuropharmacology Research Laboratory, Department of Pharmaceutics, Indian Institute of Technology (Banaras Hindu University), Varanasi-221 005, India 2Stettiner Straße 1, Karlsruhe, Germany ABSTRACT Andrographis paniculata (Burm. F.) Wall. Ex Nees (Family: Anthaceae) is a traditionally known Ayurvedic medicinal plant. Several well-controlled clinical trials conducted during recent years have consistently reconfirmed that Andrographis paniculata extracts are effective in suppressing cardinal symptoms of diverse inflammatory and infectious diseases. Despite extensive efforts though, many questions concerning bioactive constituents of such extracts and their modes of actions still remain unanswered. Amongst diverse diterpene lactones isolated to date from such extracts, andrographolide is often considered to be the major, representative, or bioactive secondary metabolite of the plant. Therefore, it has attracted considerable attention of several drug discovery laboratories as a lead molecule potentially useful for identifying structurally and functionally novel drug. Critical analysis of available preclinical and clinical information on Andrographis paniculata extracts and pure andrographolide strongly suggest that they are pharmacologically polyvalent and that they possess adaptogenic properties. Aim of this communication is to summarize and -
Pharmacognostical and Phytochemical Investigation of Sida
International Journal of Pharmacy and Pharmaceutical Sciences Academic Sciences ISSN- 0975-1491 Vol 4, Issue 1, 2012 Research Article PHARMACOGNOSTIC AND PHYTOCHEMICAL INVESTIGATION OF SIDA CORDIFOLIA L.-A THREATENED MEDICINAL HERB PRAMOD V. PATTAR.* AND M. JAYARAJ. P. G. Department of Botany, Karnatak University, Dharwad, Karnataka, India. Email: [email protected] Received: 12 Feb 2011, Revised and Accepted: 18 May 2011 ABSTRACT Sida cordifolia L. is threatened medicinal herb, belongs to the family Malvaceae. The plant is used in traditional system of medicine for healing various diseases. However, the present study was aimed to evaluate the parameters to determine the quality of the plant. This study comprises of morphological, microscopical and preliminary phytochemical investigations of the herb. Keywords: Malvaceae, Pharmacognosy, Phytochemical screening, Sida cordifolia L. INTRODUCTION Drying of plant material Sida cordifolia L. is commonly known as “Indian Ephedra”, Bala The whole plant material of Sida cordifolia L. was subjected to shade (Sanskrit), Hetthuti-gida (Kannada) and Country Mallow (English) is drying for about 10 weeks. The shade dried plant material was further an important medicinal herb belongs to the family Malvaceae. The crushed to powder and the powder was passed through the mesh 22 whole plant of Sida cordifolia is used as medicinal herb, because leaves and stored in air tight container for further analysis. contain small quantities of both ephedrine and pseudoephidrine1, roots and seeds contain alkaloid ephedrine, vasicinol, vasicinone, and Macroscopic and microscopic analysis 2,3,4 N-methyl tryptophan and is extensively used as a common herbal The macroscopic and microscopic examinations of plant studied were 5, 6 drug . -
Structure, Biology and Chemistry of Plumbago Auriculata (Plumbaginaceae)
Structure, Biology and Chemistry of Plumbago auriculata (Plumbaginaceae) By Karishma Singh A dissertation submitted in partial fulfillment of the academic requirements for the degree of Doctor of Philosophy in Biolgical Sciences School of Life Sciences College of Agriculture, Engineering and Science University of Kwa-Zulu Natal Westville Durban South Africa 30 November 2017 i DEDICATION To my daughter Ardraya Naidoo, she has given me the strength and encouragement to excel and be a positive role model for her. “Laying Down the Footsteps She Can Be Proud To Follow” ii ABSTRACT Plumbago auriculata Lam. is endemic to South Africa and is often cultivated for its ornamental and medicinal uses throughout the world. Belonging to the family Plumbaginaceae this species contains specialized secretory structures on the leaves and calyces. This study focused on the micromorphological, chemical and biological aspects of the species. Micromorphological studies revealed the presence of salt glands on the adaxial and abaxial surface of leaves and two types of trichomes on the calyces. “Transefer cells” were reported for the first time in the genus. The secretory process of the salt glands was further enhanced by the presence of mitochondria, ribosomes, vacuoles, dictyosomes and rough endoplasmic reticulum cisternae. Histochemical and phytochemical studies revealed the presence of important secondary metabolites that possess many medicinal properties which were further analyzed by Gas chromatography-mass spectrometry (GC-MC) identifying the composition of compounds in the leaf and calyx extracts. A novel attempt at synthesizing silver nanoparticles proved leaf and calyx extracts to be efficient reducing and capping agents that further displayed good antibacterial activity against gram- positive and gram-negative bacteria. -
Madhuca Longifolia (J.Koenig Ex L.) J
REVIEW ARTICLE A Review on Pharmacological Approach of the Therapeutic Property of Madhuca longifolia (J.Koenig ex L.) J. f. Macbr. Flower Bibha Mishra A*, Usha T Post graduate and Research Department of Foods and Nutrition, Ethiraj College for Women, Chennai-600 008, India. *Correspondence: [email protected] ABSTRACT Liver plays an important role in maintaining the metabolic function and excretion of toxins from the body. An injury or liver dysfunction caused by consumption of toxic chemicals, excessive alcohol and microbes result in a challenging condition called hepatotoxicity. Madhuca longifolia belonging to Sapotaceae family is found to possess pharmacological properties in the treatment of various diseases. The present review aims at compiling the hepatoprotective effect of Mahua flower based on various experimental studies. Methanolic extract of Mahua flower exhibited hepatoprotective property when administered at different dosages in rat was found to lower the levels of SGPT, SGOT, ALP and total bilirubin simultaneously increasing serum total proteins and albumin. The ethanolic extract also showed hepatoprotective activity against paracetamol induced hepatotoxicity in albino rats when administered in dosage of 500 and 750 mg/kg body weight by stimulating the healing and regeneration of hepatocytes. Hepatoprotective activity might be due to the effect of extractsagainst the cellular leakage and loss of function of the cell membrane in hepatocytes. The protective effect might be due to the presence of alkaloids, flavonoids and phenolics. Future prospects include purification and characterization of phyto-compounds present in the Madhucalongifolia flower. Further studies on mechanism of action will lead to discovery of novel therapeutic agents for the treatment hepatic diseases. -
Asckepiadaceae)
BLUMEA 26(1980)65-79 A revision ofthe genus Sarcolobus (Asckepiadaceae) R.E. Rintz Summary A revision ofthe Sarcolobus is with the four complete genus given a key to species. The genus is shown to both possess coronal and non-coronal species and to have seeds with orwithout a coma. A new species S. is described, oblongus Rintz. S. peregrinus is reduced to S. globosus subsp. pereginus nov. stat. Sarcolobus R. Brown Sarcolobus R. Br., Mem. Wern. Soc. 1 (1809) 34; Wall., As. Res. 12(1818) 566, t. 4 & 5; Roem. & Sch.. Syst. Veg. 6 (1820) 58; Wight, Contr. (1834) 47; Schltr., Bot. Jahrb. 50 (1914) 159. Twining lianas 2 —5 m long, glabrescent; stems and branches terete, hollow, at bark. Leaves Petiole the matrurity forming a papery opposite. grooved, groove often linedwith short hairs; both in the axil and digitiform glands at the apex of the petiole. Blade coriaceous, ovate, elliptical or oblong, occasionally linear-lanceolate in S. base carinatus:; cuneate to obtuse-cordate; apex acute to retuse, apiculate to short-acuminate; margins entire; secondary veins arching or parallel. Inflorescence a pedunculate spirally-elongating raceme; the peduncle simple or with 1 or 2 short branches near the apex; each pedicel subtended by a pair of ovate bracts. Sepals ovate, the margins ciliate, each axil with 1 — 5 oblong flattened glands. Corolla subrotate or shallowly campanulate, the lobes ovate with ciliate margins, imbricate to the right; corolline corona of 5 truncate ridges in the throat alternate with the lobes and separated from the staminal corona by a narrow cleft, or none. -
Acanthaceae), An
bioRxiv preprint doi: https://doi.org/10.1101/2020.11.08.373605; this version posted November 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 2 Molecular phylogenetics and character evolution in Haplanthodes (Acanthaceae), an 3 endemic genus from peninsular India. 4 5 Siddharthan Surveswaran1, Neha Tiwari2,3, Praveen K. Karanth2, Pradip V. Deshmukh4 and 6 Manoj M. Lekhak4 7 8 1 Department of Life Science, CHRIST (Deemed to be University), Hosur Road, Bangalore 9 560029, Karnataka, India 10 2 Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560012, Karnataka, 11 India 12 3 Suri Sehgal Centre for Biodiversity and Conservation, Ashoka Trust for Research in 13 Ecology and the Environment, Royal Enclave, Shrirampura, Jakkur, Bangalore 560064, 14 Karnataka, India 15 4 Angiosperm Taxonomy Laboratory, Department of Botany, Shivaji University, Kolhapur 16 416004, Maharashtra, India 17 18 19 Correspondence: Siddharthan Surveswaran, [email protected]; Manoj M. 20 Lekhak, [email protected] 21 22 23 Keywords: Acanthaceae, Andrographis, Haplanthodes, endemic genus, cladode 24 bioRxiv preprint doi: https://doi.org/10.1101/2020.11.08.373605; this version posted November 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 25 26 Abstract 27 Haplanthodes (Acanthaceae) is an Indian endemic genus with four species. It is closely 28 related to Andrographis which is also mainly distributed in India. Haplanthodes differs 29 from Andrographis by the presence of cladodes in the inflorescences, sub actinomorphic 30 flowers, stamens included within the corolla tube, pouched stamens and oblate pollen 31 grains. -
A Study on Promotion/Branding of Mahua (Madhuka Longifolia) in Chhattisgarh State
KITE/NCISRDC/IJARIIT/2018/KSBM/103 IJARIIT (ISSN: 2454-132X) A STUDY ON PROMOTION/BRANDING OF MAHUA (MADHUKA LONGIFOLIA) IN CHHATTISGARH STATE Abhinav Shrivastava1 1Asst.Professor, Kruti School of Business Management, Raipur (C.G) ABSTRACT Mahua is a tree which is found in dense forests of bastar region and is of great importance to tribal people because of its various useful outcomes. The tree is also of great commercial importance. The flower of the mahua tree is used by the people to make liquor. The liquor produced is famous for consumption among local people. It has been observed that various regions of the country has its own variety of liquor. for eg- goa is famous for its variety ‘feni’. Similarly in order to market the rural product of Chhattisgarh i.e ‘Mahua’ the government needs to promote the product by creating a Brand. This will help in its commercialization and also will create employment for rural people. Although the government of India and various states have put a ban on liquor looking it as a social evil,which is deteriorating the culture of society. But as far as the economic view is concerned the liquor market contributes to a large share of the revenue though selling mahua is ban but it is sold through unorganized channel, So for development of rural economy the government should take some measures to promote this heritage liquor of the state. Keywords- Mahua Plant, Promotion, Branding, Forest Product, Mahua flower uses 1.Introduction Whenever people talk about development of India we refer rural areas, we think about empowerment of rural population by providing livelihood to the people. -
Medicinal Plants Used by Ethnic People of Adilabad District, Andhra Pradesh, India
Research Article ISSN 2277-3657 Available online at www.ijpras.com International Journal of Pharmaceutical Research & Volume 3, issue 2 (2014),51-59 Allied Sciences Medicinal Plants Used By Ethnic People of Adilabad District, Andhra Pradesh, India Dr. N. Ramakrishna 1, Ch. Saidulu 2 1. Lecturer in Botany, Department of Botany, SAP College Vikarabad, Ranga Reddy Dist, Andhra Pradesh, India. 2. Research scholar, Department of Botany, Osmania University, Hyderabad, Andhra Pradesh, India . [email protected] , [email protected] Subject: Biology Abstract Ethno botanical information of Tribal’s has been collected from Adilabad district of Andhra Pradesh, India during 2008 - 2011. A total of 42 plant species belonging to 37 genera and 30 families were used in traditional medicine to heal different diseases. The present work is an attempt to identify and conserve the medicinal plants in Adilabad district. The study shows a high degree of Ethno botanical novelty and the use of plants among the Tribals of the revival of interest in traditional folk culture. Key words : Ethno medicine, Tribals, Adilabad, Andhra Pradesh, India. Introduction Approximately two thirds of the biological diversity tribes of Andhra Pradesh, Kolams, Naikpods, of the world is found in tropical zones. India has the Pardhans, Gonds, Thotis, Chenchus and Mathuras of second largest tribal population in the world after Adilabad district. Of several natural forest Africa (Jagtap et al. , 2006). With enormously ecosystems in the district Tiryani, Adilabad, Nirmal, diversified living ethnic groups and rich biological Mancherial, Bellampalli, Kagaznagar and Jannaram resources, India represents one of the great emporia are known for their medicinal flora. -
Introduction to NMR Spectroscopy of Proteins
A brief introduction to NMR spectroscopy of proteins By Flemming M. Poulsen 2002 1 Introduction Nuclear magnetic resonance, NMR, and X-ray crystallography are the only two methods that can be applied to the study of three-dimensional molecular structures of proteins at atomic resolution. NMR spectroscopy is the only method that allows the determination of three-dimensional structures of proteins molecules in the solution phase. In addition NMR spectroscopy is a very useful method for the study of kinetic reactions and properties of proteins at the atomic level. In contrast to most other methods NMR spectroscopy studies chemical properties by studying individual nuclei. This is the power of the methods but sometimes also the weakness. NMR spectroscopy can be applied to structure determination by routine NMR techniques for proteins in the size range between 5 and 25 kDa. For many proteins in this size range structure determination is relatively easy, however there are many examples of structure determinations of proteins, which have failed due to problems of aggregation and dynamics and reduced solubility. It is the purpose of these notes to introduce the reader to descriptions and applications of the methods of NMR spectroscopy most commonly applied in scientific studies of biological macromolecules, in particular proteins. The figures 1,2 and 11 are copied from “Multidímensional NMR in Liquids” by F.J.M de Ven (1995)Wiley-VCH The Figure13 and Table 1 have been copied from “NMR of Proteins and Nucleic acis” K. Wüthrich (1986) Wiley Interscience The Figures 20, 21 and 22 have been copied from J.