Radiocarbon and Geologic Evidence Reveal Ilopango Volcano As Source of the Colossal ‘Mystery’ Eruption of 539/40 CE
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Morphological and Geochemical Features of Crater Lakes in Costa Rica: an Overview
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/307656088 Morphological and geochemical features of crater lakes in Costa Rica: an overview Article in Journal of limnology · August 2009 DOI: 10.4081/jlimnol.2009.193 CITATIONS READS 13 45 7 authors, including: Antonio Delgado Huertas Maria Martinez Cruz CSIC-UGR Instituto Andaluz de Ciencias de la Tierra (IACT) National University of Costa Rica 354 PUBLICATIONS 6,671 CITATIONS 102 PUBLICATIONS 496 CITATIONS SEE PROFILE SEE PROFILE Emelia Duarte Orlando Vaselli Stephen F. Austin State University University of Florence 20 PUBLICATIONS 230 CITATIONS 572 PUBLICATIONS 6,516 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Geochemical study of the fluids of the Copahue and Planchón-Peteroa volcanic-hydrothermal systems (Southern Volcanic Zone of the Andes) View project Reconocimiento del sistema kárstico de Venado de San Carlos y sus implicaciones espeleológicas, hidrogeológicas, geológicas y geo-turísticas View project All content following this page was uploaded by Franco Tassi on 29 June 2017. The user has requested enhancement of the downloaded file. J. Limnol., 68(2): 193-205, 2009 DOI: 10.3274/JL09-68-2-04 Morphological and geochemical features of crater lakes in Costa Rica: an overview Franco TASSI*, Orlando VASELLI, Erik FERNANDEZ1), Eliecer DUARTE1), Maria MARTINEZ1), Antonio DELGADO HUERTAS2) and Francesco BERGAMASCHI Department of Earth Sciences, Via G. La Pira 4, 50121, University of Florence (Italy) 1)Volcanological and Seismological Observatory, Nacional University, Heredia (Costa Rica) 2)Estacion Experimental de Zaidin (CSIC), Prof. Albareda 1, 18008, Granada (Spain) *e-mail corresponding author: [email protected] ABSTRACT This paper describes the compositional and morphological features of the crater lakes found in the volcanoes of Rincón de La Vieja, Poás, Irazú, Congo and Tenorio volcanoes (Costa Rica). -
Phreatomagmatic Eruptions of 2014 and 2015 in Kuchinoerabujima Volcano Triggered by a Shallow Intrusion of Magma
Journal of Natural Disaster Science, Volume 37,Number 2,2016,pp67-78 Phreatomagmatic eruptions of 2014 and 2015 in Kuchinoerabujima Volcano triggered by a shallow intrusion of magma Nobuo Geshi1, Masato Iguchi2, and Hiroshi Shinohara1 1 Geological Survey of Japan, AIST 2 Disaster Prevention Research Institute, Kyoto University, (Received:Sep 2, 2016 Accepted:Oct.28, 2016) Abstract The 2014 and 2015 eruptions of Kuchinoerabujima Volcano followed a ~15-year precursory activation of the hydrothermal system induced by a magma intrusion event. Continuous heat transfer from the degassing magma body heated the hydrothermal system and the increase of the fluid pressure in the hydrothermal system caused fracturing of the unstable edifice, inducing a phreatic explosion. The 2014 eruption occurred from two fissures that traced the eruption fissures formed in the 1931 eruption. The explosive eruption detonated the hydrothermally-altered materials and part of the intruding magma. The rise of fumarolic activities before the past two activities in 1931-35 and 1966-1980 also suggest activation of the hydrothermal system by magmatic intrusions prior to the eruption. The long-lasting precursory activities in Kuchinoerabujima suggest complex processes of the heat transfer from the magma to the hydrothermal system. Keywords: Kuchinoerabujima Volcano, phreatomagmatic eruption, hydrothermal system, magma intrusion 1. Introduction Phreatic eruptions are generally caused by the rapid extrusion of geothermal fluid from a hydrothermal system within a volcanic edifice (Barberi et al., 1992). Hydrothermal activities and phreatic eruptions are related to magmatic activities directly or indirectly, as the hydrothermal activities of a volcano are basically driven by heat from magma (Grapes et al., 1974). -
Una Teorãła Sobre El Origen De Los Peces De Xiloã€
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Investigations of the Ichthyofauna of Nicaraguan Lakes Papers in the Biological Sciences 1976 Una teoría sobre el origen de los peces de Xiloà Jaime Villa Cornell University Follow this and additional works at: https://digitalcommons.unl.edu/ichthynicar Part of the Aquaculture and Fisheries Commons Villa, Jaime, "Una teoría sobre el origen de los peces de Xiloà" (1976). Investigations of the Ichthyofauna of Nicaraguan Lakes. 12. https://digitalcommons.unl.edu/ichthynicar/12 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Investigations of the Ichthyofauna of Nicaraguan Lakes by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in INVESTIGATIONS OF THE ICHTHYOFAUNA OF NICARAGUAN LAKES, ed. Thomas B. Thorson (University of Nebraska-Lincoln, 1976). Copyright © 1976 School of Life Sciences, University of Nebraska-Lincoln. Reprinted from ENCUENTRO: REv. UNIV. CENTROAMERICANA 1(4):202-214, July-Aug., 1968. J.lme VIII. Una leoria sobre el orlgen• de los peces de Xiloa 1.- INTRODUCCION A finales de 1965 v en conexion con estudios en curso sobre la herpetolo g(a nicaragiiense colec te una pequena serie de peces de la Laguna de Xiloa que revela- ron aspectos interesantes y me indujeron a realizar colecciones extensivas en toda la laguna; estas colecciones se realizaron durante 1966-68 y cons tan de varios cien tos de ejemplares, depositados en la Universidad de Costa Rica y en mi coleccion particular. El material acumulado durante estos anos y las notas tomadas durante todo el tiempo en que se realizaron han sido suficientes para permitir una serie de conclusiones en diversos aspectos, algunas de las cuales han sido ya publicadas 0 se encuentran en preparacion. -
Review of Local and Global Impacts of Volcanic Eruptions and Disaster Management Practices: the Indonesian Example
geosciences Review Review of Local and Global Impacts of Volcanic Eruptions and Disaster Management Practices: The Indonesian Example Mukhamad N. Malawani 1,2, Franck Lavigne 1,3,* , Christopher Gomez 2,4 , Bachtiar W. Mutaqin 2 and Danang S. Hadmoko 2 1 Laboratoire de Géographie Physique, Université Paris 1 Panthéon-Sorbonne, UMR 8591, 92195 Meudon, France; [email protected] 2 Disaster and Risk Management Research Group, Faculty of Geography, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; [email protected] (C.G.); [email protected] (B.W.M.); [email protected] (D.S.H.) 3 Institut Universitaire de France, 75005 Paris, France 4 Laboratory of Sediment Hazards and Disaster Risk, Kobe University, Kobe City 658-0022, Japan * Correspondence: [email protected] Abstract: This paper discusses the relations between the impacts of volcanic eruptions at multiple- scales and the related-issues of disaster-risk reduction (DRR). The review is structured around local and global impacts of volcanic eruptions, which have not been widely discussed in the literature, in terms of DRR issues. We classify the impacts at local scale on four different geographical features: impacts on the drainage system, on the structural morphology, on the water bodies, and the impact Citation: Malawani, M.N.; on societies and the environment. It has been demonstrated that information on local impacts can Lavigne, F.; Gomez, C.; be integrated into four phases of the DRR, i.e., monitoring, mapping, emergency, and recovery. In Mutaqin, B.W.; Hadmoko, D.S. contrast, information on the global impacts (e.g., global disruption on climate and air traffic) only fits Review of Local and Global Impacts the first DRR phase. -
The Independent Volcanic Eruption Source Parameter Archive
Journal of Volcanology and Geothermal Research 417 (2021) 107295 Contents lists available at ScienceDirect Journal of Volcanology and Geothermal Research journal homepage: www.elsevier.com/locate/jvolgeores Invited Research Article The Independent Volcanic Eruption Source Parameter Archive (IVESPA, version 1.0): A new observational database to support explosive eruptive column model validation and development Thomas J. Aubry a,b,⁎,SamanthaEngwellc, Costanza Bonadonna d, Guillaume Carazzo e,SimonaScollof, Alexa R. Van Eaton g,IsabelleA.Taylorh,DavidJessope,i,j, Julia Eychenne j,MathieuGouhierj, Larry G. Mastin g, Kristi L. Wallace k, Sébastien Biass l, Marcus Bursik m, Roy G. Grainger h,A.MarkJellinekn, Anja Schmidt a,o a Department of Geography, University of Cambridge, Cambridge, UK b Sidney Sussex College, Cambridge, UK c British Geological Survey, The Lyell Centre, Edinburgh, UK d Department of Earth Sciences, University of Geneva, Geneva, Switzerland e Université de Paris, Institut de Physique du Globe de Paris, CNRS, F-75005 Paris, France f Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo, Catania, Italy g U.S. Geological Survey, Cascades Volcano Observatory, Vancouver, Washington, USA h COMET, Atmospheric, Oceanic and Planetary Physics, University of Oxford, Oxford OX1 3PU, UK i Observatoire Volcanologique et Sismologique de Guadeloupe, Institut de Physique du Globe de Paris, F- 97113 Gourbeyre, France j Université Clermont Auvergne, CNRS, IRD, OPGC Laboratoire Magmas et Volcans, F-63000 Clermont-Ferrand, France -
Controls on Rhyolite Lava Dome Eruptions in the Taupo Volcanic Zone
Controls on rhyolite lava dome eruptions in the Taupo Volcanic Zone Paul Allan Ashwell A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Geological Sciences at the University of Canterbury October 2013 P a g e | II Dedicated to Eva Ashwell P a g e | III View from Ruawahia, across the 1886AD fissure and Wahanga dome towards the Bay of Plenty and White Island (extreme distance, centre left) P a g e | IV Abstract he evolution of rhyolitic lava from effusion to cessation of activity is poorly understood. T Recent lava dome eruptions at Unzen, Colima, Chaiten and Soufrière Hills have vastly increased our knowledge on the changes in behaviour of active domes. However, in ancient domes, little knowledge of the evolution of individual extrusion events exists. Instead, internal structures and facies variations can be used to assess the mechanisms of eruption. Rhyolitic magma rising in a conduit vesiculates and undergoes shear, such that lava erupting at the surface will be a mix of glass and sheared vesicles that form a permeable network, and with or without phenocryst or microlites. This foam will undergo compression from overburden in the shallow conduit and lava dome, forcing the vesicles to close and affecting the permeable network. High temperature, uniaxial compression experiments on crystal-rich and crystal-poor lavas have quantified the evolution of porosity and permeability in such environments. The deformation mechanisms involved in uniaxial deformation are viscous deformation and cracking. Crack production is controlled by strain rate and crystallinity, as strain is localised in crystals in crystal rich lavas. -
Amenaza Volcánica Del Área De Managua Y Sus Alrededores (Nicaragua)”
Parte II.3: Amenaza volcánica 127 Parte II.3 Guía técnica de la elaboración del mapa de “Amenaza volcánica del área de Managua y sus alrededores (Nicaragua)” 128 Parte II.3: Amenaza volcánica Índice 1 Resumen.......................................................................................................................130 2 Lista de figuras y tablas...............................................................................................131 3 Introducción.................................................................................................................132 4 Objetivos.......................................................................................................................132 5 Metodología.................................................................................................................133 5.1 Recopilación de los datos y análisis de los peligros volcánicos existentes............133 5.1.1 Complejo Masaya.............................................................................................133 5.1.1.1 Flujos de lava..............................................................................................134 5.1.1.2 Caída de tefra..............................................................................................134 5.1.1.3 Flujos piroclásticos y Oleadas piroclásticas...............................................135 5.1.1.4 Flujos de lodo y detritos (lahares)..............................................................135 5.1.1.5 Emanaciones de gas....................................................................................136 -
Geohazard Supersites and Natural Laboratories Initiative
Versión 1.0, 14 de octubre de 2015 www.earthobservations.org/gsnl.php Geohazard Supersites and Natural Laboratories Initiative A.1 Proposal Title: Volcano-tectonic Geohazard Interaction within the Nicaraguan Depression Volcanoes: Cosiguina, San Cristóbal, Telica, Cerro Negro, Momotombo, Península de Chiltepe, Masaya and Concepción A.2 Supersite Coordinator Email (Organization only) [email protected] Name: Iris Valeria Surname: Cruz Martínez Position: Director General of Geology and Geophysics Personal website: <In case a personal web page does not exist, please provide a CV below this table> Institución: Instituto Nicaragüense de Estudios Territoriales-INETER- Nicaragua Type of institution Government (Government, Education, other): The institution's web address: https://www.ineter.gob.ni/ Address: Front of Solidarity Hospital City: Managua Postal Code/Postal Code: 2110 Managua, Nicaragua Country: Nicaragua Province, Territory, State or Managua County: Phone number: Tel. +505-22492761 Fax +505-22491082 1 Versión 1.0, 14 de octubre de 2015 A.3 Core Supersite Team Email (Organization only) [email protected] Name: Federico Vladimir Surname: Gutiérrez Corea Position: Director of the Nicaraguan Institute of Territorial Studies-INETER- Nicaragua Personal website: http://www.vlado.es/ http://uni.academia.edu/FedericoVLADIMIRGutierrez/Curriculu mVitae Institution: Nicaraguan Institute of Territorial Studies-INETER-Nicaragua Type of institution Government (Government, Education, others): Institution's web address: https://www.ineter.gob.ni/ -
Late Pleistocene to Holocene Temporal Succession and Magnitudes of Highly-Explosive Volcanic Eruptions in West-Central Nicaragua ⁎ S
Journal of Volcanology and Geothermal Research 163 (2007) 55–82 www.elsevier.com/locate/jvolgeores Late Pleistocene to Holocene temporal succession and magnitudes of highly-explosive volcanic eruptions in west-central Nicaragua ⁎ S. Kutterolf a, , A. Freundt a,b, W. Pérez a, H. Wehrmann a, H.-U. Schmincke a,b a SFB 574 at Kiel university/ IFM-GEOMAR, Wischhofstr. 1-3, Gebäude 8A/213, 24148 Kiel, Germany b IFM-GEOMAR/ Research Division 4/Dynamics of the Ocean Floor, Wischhofstr. 1-3, Gebäude 8E/208, 24148 Kiel, Germany Received 2 June 2006; received in revised form 20 February 2007; accepted 23 February 2007 Available online 21 March 2007 Abstract The stratigraphic succession of widespread tephra layers in west-central Nicaragua was emplaced by highly explosive eruptions from mainly three volcanoes: the Chiltepe volcanic complex and the Masaya and Apoyo calderas. Stratigraphic correlations are based on distinct compositions of tephras. The total tephras combine to a total on-shore volume of about 37 km3 produced during the last ∼60 ka. The total erupted magma mass, including also distal volumes, of 184 Gt (DRE) distributes to 84% into 9 dacitic to rhyolitic eruptions and to 16% into 4 basaltic to basaltic–andesitic eruptions. The widely dispersed tephra sheets have up to five times the mass of their parental volcanic edifices and thus represent a significant albeit less obvious component of the arc volcanism. Eruption magnitudes (M=log10(m)−7 with m the mass in kg), range from M=4.1 to M=6.3. Most of the eruptions were dominantly plinian, with eruption columns reaching variably high into the stratosphere, but minor phreatomagmatic phases were also involved. -
The El Salvador Earthquakes of January and February 2001: Context, Characteristics and Implications for Seismic Risk
Soil Dynamics and Earthquake Engineering 22 (2002) 389–418 www.elsevier.com/locate/soildyn The El Salvador earthquakes of January and February 2001: context, characteristics and implications for seismic risk J.J. Bommera,*, M.B. Benitob, M. Ciudad-Realc, A. Lemoined, M.A. Lo´pez-Menjı´vare, R. Madariagad, J. Mankelowf,P.Me´ndez de Hasbung, W. Murphyh, M. Nieto-Lovoe, C.E. Rodrı´guez-Pinedai, H. Rosaj aDepartment of Civil Engineering, Imperial College, London SW7 2BU, UK bUniversidad Polite´cnica de Madrid, Madrid, Spain cKinemetrics, 222 Vista Avenue, Pasadena, CA 91107, USA dEcole Normale Supe´rieure, Paris, France eEscuela de Ingenierı´a Civil, Universidad de El Salvador, San Salvador, El Salvador fBritish Geological Survey, Keyworth, UK gDpto. Meca´nica Estructural, Universidad Centroamericana “Jose´ Simeo´n Can˜as”, San Salvador, El Salvador hSchool of Earth Sciences, University of Leeds, Leeds LS2 9JT, UK iFacultad de Ingenierı´a, Universidad Nacional de Colombia, Santafe´ de Bogota´, Colombia jFundacio´n PRISMA, San Salvador, El Salvador Accepted 16 March 2002 Abstract The small Central American republic of El Salvador has experienced, on average, one destructive earthquake per decade during the last hundred years. The latest events occurred on 13 January and 13 February 2001, with magnitudes Mw 7.7 and 6.6, respectively. The two events, which were of different tectonic origin, follow the patterns of the seismicity of the region although neither event has a known precedent in the earthquake catalogue in terms of size and location. The earthquakes caused damage to thousands of traditionally built houses and triggered hundreds of landslides, which were the main causes of fatalities. -
50 Archaeological Salvage at El Chiquirín, Gulf Of
50 ARCHAEOLOGICAL SALVAGE AT EL CHIQUIRÍN, GULF OF FONSECA, LA UNIÓN, EL SALVADOR Marlon Escamilla Shione Shibata Keywords: Maya archaeology, El Salvador, Gulf of Fonseca, shell gatherers, Salvage archaeology, Pacific Coast, burials The salvage archaeological investigation at the site of El Chiquirín in the department of La Unión was carried out as a consequence of an accidental finding made by local fishermen in November, 2002. An enthusiast fisherman from La Unión –José Odilio Benítez- decided, like many other fellow countrymen, to illegally migrate to the United States in the search of a better future for him and his large family. His major goal was to work and save money to build a decent house. Thus, in September 2002, just upon his arrival in El Salvador, he initiated the construction of his home in the village of El Chiquirín, canton Agua Caliente, department of La Unión, in the banks of the Gulf of Fonseca. By the end of November of the same year, while excavating for the construction of a septic tank, different archaeological materials came to light, including malacologic, ceramic and bone remains. The finding was much surprising for the community of fishermen, the Mayor of La Unión and the media, who gave the finding a wide cover. It was through the written press that the Archaeology Unit of the National Council for Culture and Art (CONCULTURA) heard about the discovery. Therefore, the Archaeology Unit conducted an archaeological inspection at that residential place, to ascertain that the finding was in fact a prehispanic shell deposit found in the house patio, approximately 150 m away from the beach. -
Earthquake-Induced Landslides in Central America
Engineering Geology 63 (2002) 189–220 www.elsevier.com/locate/enggeo Earthquake-induced landslides in Central America Julian J. Bommer a,*, Carlos E. Rodrı´guez b,1 aDepartment of Civil and Environmental Engineering, Imperial College of Science, Technology and Medicine, Imperial College Road, London SW7 2BU, UK bFacultad de Ingenierı´a, Universidad Nacional de Colombia, Santafe´ de Bogota´, Colombia Received 30 August 2000; accepted 18 June 2001 Abstract Central America is a region of high seismic activity and the impact of destructive earthquakes is often aggravated by the triggering of landslides. Data are presented for earthquake-triggered landslides in the region and their characteristics are compared with global relationships between the area of landsliding and earthquake magnitude. We find that the areas affected by landslides are similar to other parts of the world but in certain parts of Central America, the numbers of slides are disproportionate for the size of the earthquakes. We also find that there are important differences between the characteristics of landslides in different parts of the Central American isthmus, soil falls and slides in steep slopes in volcanic soils predominate in Guatemala and El Salvador, whereas extensive translational slides in lateritic soils on large slopes are the principal hazard in Costa Rica and Panama. Methods for assessing landslide hazards, considering both rainfall and earthquakes as triggering mechanisms, developed in Costa Rica appear not to be suitable for direct application in the northern countries of the isthmus, for which modified approaches are required. D 2002 Elsevier Science B.V. All rights reserved. Keywords: Landslides; Earthquakes; Central America; Landslide hazard assessment; Volcanic soils 1.