9Th Biennial Conference, “Focus on the Future – the Heat Is On!”
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Transline Infrastructure Corridor Vegetation and Flora Survey
TROPICANA GOLD PROJECT Tropicana – Transline Infrastructure Corridor Vegetation and Flora Survey 025 Wellington Street WEST PERTH WA 6005 phone: 9322 1944 fax: 9322 1599 ACN 088 821 425 ABN 63 088 821 425 www.ecologia.com.au Tropicana Gold Project Tropicana Joint Venture Tropicana-Transline Infrastructure Corridor: Vegetation and Flora Survey July 2009 Tropicana Gold Project Tropicana-Transline Infrastructure Corridor Flora and Vegetation Survey © ecologia Environment (2009). Reproduction of this report in whole or in part by electronic, mechanical or chemical means, including photocopying, recording or by any information storage and retrieval system, in any language, is strictly prohibited without the express approval of ecologia Environment and/or AngloGold Ashanti Australia. Restrictions on Use This report has been prepared specifically for AngloGold Ashanti Australia. Neither the report nor its contents may be referred to or quoted in any statement, study, report, application, prospectus, loan, or other agreement document, without the express approval of ecologia Environment and/or AngloGold Ashanti Australia. ecologia Environment 1025 Wellington St West Perth WA 6005 Ph: 08 9322 1944 Fax: 08 9322 1599 Email: [email protected] i Tropicana Gold Project Tropicana-Transline Infrastructure Corridor Flora and Vegetation Survey Executive Summary The Tropicana JV (TJV) is currently undertaking pre-feasibility studies on the viability of establishing the Tropicana Gold Project (TGP), which is centred on the Tropicana and Havana gold prospects. The proposed TGP is located approximately 330 km east north-east of Kalgoorlie, and 15 km west of the Plumridge Lakes Nature Reserve, on the western edge of the Great Victoria Desert (GVD) biogeographic region of Western Australia. -
Cunninghamia : a Journal of Plant Ecology for Eastern Australia
Westbrooke et al., Vegetation of Peery Lake area, western NSW 111 The vegetation of Peery Lake area, Paroo-Darling National Park, western New South Wales M. Westbrooke, J. Leversha, M. Gibson, M. O’Keefe, R. Milne, S. Gowans, C. Harding and K. Callister Centre for Environmental Management, University of Ballarat, PO Box 663 Ballarat, Victoria 3353, AUSTRALIA Abstract: The vegetation of Peery Lake area, Paroo-Darling National Park (32°18’–32°40’S, 142°10’–142°25’E) in north western New South Wales was assessed using intensive quadrat sampling and mapped using extensive ground truthing and interpretation of aerial photograph and Landsat Thematic Mapper satellite images. 378 species of vascular plants were recorded from this survey from 66 families. Species recorded from previous studies but not noted in the present study have been added to give a total of 424 vascular plant species for the Park including 55 (13%) exotic species. Twenty vegetation communities were identified and mapped, the most widespread being Acacia aneura tall shrubland/tall open-shrubland, Eremophila/Dodonaea/Acacia open shrubland and Maireana pyramidata low open shrubland. One hundred and fifty years of pastoral use has impacted on many of these communities. Cunninghamia (2003) 8(1): 111–128 Introduction Elder and Waite held the Momba pastoral lease from early 1870 (Heathcote 1965). In 1889 it was reported that Momba Peery Lake area of Paroo–Darling National Park (32°18’– was overrun by kangaroos (Heathcote 1965). About this time 32°40’S, 142°10’–142°25’E) is located in north western New a party of shooters found opal in the sandstone hills and by South Wales (NSW) 110 km north east of Broken Hill the 1890s White Cliffs township was established (Hardy (Figure 1). -
WOOD ANATOMY of CHENOPODIACEAE (AMARANTHACEAE S
IAWA Journal, Vol. 33 (2), 2012: 205–232 WOOD ANATOMY OF CHENOPODIACEAE (AMARANTHACEAE s. l.) Heike Heklau1, Peter Gasson2, Fritz Schweingruber3 and Pieter Baas4 SUMMARY The wood anatomy of the Chenopodiaceae is distinctive and fairly uni- form. The secondary xylem is characterised by relatively narrow vessels (<100 µm) with mostly minute pits (<4 µm), and extremely narrow ves- sels (<10 µm intergrading with vascular tracheids in addition to “normal” vessels), short vessel elements (<270 µm), successive cambia, included phloem, thick-walled or very thick-walled fibres, which are short (<470 µm), and abundant calcium oxalate crystals. Rays are mainly observed in the tribes Atripliceae, Beteae, Camphorosmeae, Chenopodieae, Hab- litzieae and Salsoleae, while many Chenopodiaceae are rayless. The Chenopodiaceae differ from the more tropical and subtropical Amaran- thaceae s.str. especially in their shorter libriform fibres and narrower vessels. Contrary to the accepted view that the subfamily Polycnemoideae lacks anomalous thickening, we found irregular successive cambia and included phloem. They are limited to long-lived roots and stem borne roots of perennials (Nitrophila mohavensis) and to a hemicryptophyte (Polycnemum fontanesii). The Chenopodiaceae often grow in extreme habitats, and this is reflected by their wood anatomy. Among the annual species, halophytes have narrower vessels than xeric species of steppes and prairies, and than species of nitrophile ruderal sites. Key words: Chenopodiaceae, Amaranthaceae s.l., included phloem, suc- cessive cambia, anomalous secondary thickening, vessel diameter, vessel element length, ecological adaptations, xerophytes, halophytes. INTRODUCTION The Chenopodiaceae in the order Caryophyllales include annual or perennial herbs, sub- shrubs, shrubs, small trees (Haloxylon ammodendron, Suaeda monoica) and climbers (Hablitzia, Holmbergia). -
Native Species
Birdlife Australia Gluepot Reserve PLANT SPECIES LIST These are species recorded by various observers. Species in bold have been vouchered. The list is being continually updated NATIVE SPECIES Species name Common name Acacia acanthoclada Harrow Wattle Acacia aneura Mulga Acacia brachybotrya Grey Mulga Acacia colletioides Wait a While Acacia hakeoides Hakea leaved Wattle Acacia halliana Hall’s Wattle Acacia ligulata Sandhill Wattle Acacia nyssophylla Prickly Wattle Acacia oswaldii Boomerang Bush Acacia rigens Needle Wattle Acacia sclerophylla var. sclerophylla Hard Leaved Wattle Acacia wilhelmiana Wilhelm’s Wattle Actinobole uliginosum Flannel Cudweed Alectryon oleifolius ssp. canescens Bullock Bush Amphipogon caricinus Long Grey Beard Grass Amyema miquelii Box Mistletoe Amyema miraculosa ssp. boormanii Fleshy Mistletoe Amyema preissii Wire Leaved Acacia Mistletoe Angianthus tomentosus Hairy Cup Flower Atriplex acutibractea Pointed Salt Bush Atriplex rhagodioides Spade Leaved Salt Bush Atriplex stipitata Bitter Salt Bush Atriplex vesicaria Bladder Salt Bush Austrodanthonia caespitosa Wallaby Grass Austrodanthonia pilosa Wallaby Grass Austrostipa elegantissima Elegant Spear Grass Austrostipa hemipogon Half Beard Spear grass Austrostipa nitida Balcarra Spear grass Austrostipa scabra ssp. falcata Rough Spear Grass Austrostipa scabra ssp. scabra Rough Spear Grass Austrostipa tuckeri Tucker’s Spear grass Baeckea crassifolia Desert Baeckea Baeckea ericaea Mat baeckea Bertya tasmanica ssp vestita Mitchell’s Bertya Beyeria lechenaultii Mallefowl -
A Grazier's Guide to the Saltbush-Bluebush Downs Country
A GRAZIERS' GUIDE TO THESALTBUSH-BLUEBUSH DOWNS COUNTRY OF WESTERN NEW SOUTH WALES The saltbush and bluebush pastures of the downs country are valued by the pastoral industry for the production of high quality wool. However, because of the replacement of valuable perennial plants by less desirable species and the impact of soil erosion, many areas of the downs country are not producing to their optimum potential. This has several implications for you as land managers. Firstly, it reduces your financial return, secondly, itreduces your management options and, thirdly, it means that future owners of your land will have a much harder time making a living from it. The aim of this booklet is to help you better understand and manage your downs country. The westcm rangelands are vital both to the economy and to the mvirommmt of N~w South Wales. Their utilisation in a sustaitmble and respo11sib/e manner requires a fullunderstatlding of the management needs of these diverse and sometimes easily damaged semi-arid la11ds. These guidelines have been prepared wilh .financial support from the National Soil Conservation Program as part of a series covering the western rangelnnds. The management praclices covered provide for the optimum use ofspecies, tlze regeneration ofdegraded areas nud recognition rr11d preservation ofhabitat values. The NSW Government is cot11mitted to nchieving the balm1ce between t'esource uti/isnHmr and sustainable production. I most strongly commend these guidelines and the others 111 tlte series to alllandusers. ~ Ian Armstrong Minister for AgricuJture and Rural Affain. The extent of the downs country in New South Wales. -
Rangelands, Western Australia
Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations. -
Biodiversity Summary: Wimmera, Victoria
Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations. -
List of Vascular Plants Recorded from the Murchison Catchment Survey Area 1985-1988
Y,jrqta1 (q. 3n -34'l (r9o) 3n List of vascular plants recorded from the Murchison Catchment Survey area 1985-1988 R.J. Cranfield Weslem Aultralian He6arium, Department of Conser|ation and I-and Managernent, P.O Bor 104. Ccmo. Wesrem Australia 6152 Abstract Cranfiel4 RJ. 0990). List of 823 valcular plsrts rccorded frorn tlle Murdison Carclrnent Survey area 1985-1983. Kingia I (4): W-347 (1990.). A coinprehe$ive list of lhe vasorlar dains ard a panial list of dle nqFvascular plarns of the Muctrison otdment area ar€ Pre'senred.An a.aohrof rc floristic cornpositicn of tle vegetation ofthis region is given. Bdefnoles on the ar€a's majorphysical feaDres and its climai€ arc also Fovided. Introduction This paperpresents a comprehensivelist of thevascular plants and a panial list ofthe non-vascular plantsof the Muchison carchmentarea resulting from the author's participation in an inventory and condition survey of the area carried out by officers of the Westem Australian Department of Agriculture and Depafinent ofland Administrationduring 1985-1988. The survey covered an arca of 85,000 km2 in which 2,000 sites were establishedand the vegetationofeach recorded. The areawas traversedextensively from April to Novembereach year resulting in 823collections and many observations. Due to thelimited accessand t1'pe of commercial activities carriedout in this region, along with the limited availability of water,there are several areas in nearpristine condition. This limited accesshas also restrictedcollections and altho[gh a species listinghas been produced it is in no waycomplete. The vegetationof the catchmentlands of the Murchison River (seeFigure l) presentsa broad spectrumof plantcommunities. -
Flora and Vegetation
FLORA AND VEGETATION OF BARRAMBIE SURVEY AREA, BORE FIELDS AND WATER PIPELINE CORRIDOR Prepared for: Aquaterra and Reed Resources Ltd Prepared by: Mattiske Consulting Pty Ltd October 2009 MATTISKE CONSULTING PTY LTD RRL0902/093/09 MATTISKE CONSULTING PTY LTD TABLE OF CONTENTS Page 1. SUMMARY ................................................................................................................................................ 1 2. INTRODUCTION ...................................................................................................................................... 2 2.1 Location ................................................................................................................................................. 2 2.2 Flora and Vegetation ............................................................................................................................. 2 2.3 Groundwater Dependant Ecosystems .................................................................................................... 2 2.4 Climate .................................................................................................................................................. 4 2.5 Clearing of Native Vegetation ............................................................................................................... 4 2.6 Rare and Priority Flora ......................................................................................................................... 4 2.7 Threatened Ecological Communities .................................................................................................... -
A Test of Landscape Function Theory in the Semi-Arid Shrublands of Western Australia
Department of Environment and Agriculture (School of Science) A test of landscape function theory in the semi-arid shrublands of Western Australia Mark David Alchin This thesis is submitted for the degree of Doctor of Philosophy of Curtin University of Technology July 2011 ii STATEMENT OF ORIGINALITY This thesis contains no material that has been accepted for the award of any other degree or diploma at any university. To the best of my knowledge and belief this thesis contains no material previously published by any other person except where due acknowledgement has been made. Signed: ___________________________ Mark David Alchin Date: ___________________________ iii SYNOPSIS Australia‟s rangelands encompass approximately 80% of the continent and generate significant wealth through a range of industries. The rangelands comprise four major ecosystem types, these are: grasslands, shrublands, woodlands and savanna. The ecological legacy of early pastoral development in most of Australia‟s semi-arid shrublands is largely one of degradation and desertification (Wilcox and McKinnon, 1974; Curry et al. 1994; McKeon et al. 2004; Mabbutt et al. 1963; Pringle and Tinley, 2001). Since the 1980‟s, there has been a slow and general shift by the pastoral industry towards sustainable stocking rates (Watson et al. 2007; Pringle and Tinley, 2001). To implement grazing systems that better align stocking rates with carrying capacity in the semi-arid shrublands, pastoralists require a much more advanced understanding of patch patterning and ecological processes at a paddock scale. This understanding of theory could improve the management decisions made by pastoralists and other land managers (e.g. mining environmental officers, carbon offset developers, conservation park rangers, Indigenous communities) and assist them in their immediate challenge of cost-effective rehabilitation of degraded areas. -
Flora of South Australia 5Th Edition | Edited by Jürgen Kellermann
Flora of South Australia 5th Edition | Edited by Jürgen Kellermann CHENOPODIACEAE1 P.G. Wilson2 (up-dated by R.J. Chinnock3) Herbs or shrubs, glabrous or pubescent, sometimes glandular; leaves usually alternate, simple, often succulent, exstipulate, in the Salicornieae (samphires) opposite and reduced to small lobes at the apex of jointed internodes. Inflorescence of compact or open cymes or panicles, or reduced to solitary axillary flowers; flowers small, bisexual or unisexual; perianth of 1 whorl, 5-lobed, or reduced to 4–1 lobes; in fruit sometimes succulent or woody, often enlarged and developing wings, spines or tubercles; stamens opposite and equal in number to the perianth lobes or fewer, hypogynous or attached to the wall of the perianth; anthers bilocular, dehiscing by longitudinal slits; ovary superior (semi-inferior in Beta), unilocular; stigmas usually 2 or 3; ovule solitary, basal, campylotropous to amphitropous. Fruit with a membranous crustaceous or succulent pericarp; seed often lenticular; testa membranous to crustaceous; embryo straight, curved, horseshoe-shaped, annular or spiral; albumen (perisperm) absent to abundant. Chenopods. Cosmopolitan with over 100 genera and 1,500 species; frequently found in saline environments. Mabberley (2008) placed Chenopodiaceae in synonomy under Amaranthaceae. He stated that he broadly followed The families and genera of vascular plants published from 1991 onwards by Kubitzki et. al., but modified this classification by taking into account more recent findings resulting from molecular systematics published by the Angiosperm Phylogeny Group (1998, 2003) and P.F. Stevens’ Angiosperm Phylogeny Website (2001–). Shepherd (2008) has drawn attention to the fact that the Angiosperm Phylogeny Group did not include all the data from relevant studies at the time and that the findings were in most cases based on relatively small numbers of genera and species using few gene regions, predominantly cpDNA. -
Maireana Pyramidata) Collections: 2019 Progress Report B
Seed Storage Longevity of Black Bluebush (Maireana pyramidata) collections: 2019 Progress Report B A.L. Quarmby 4th February 2020 Report Title: Seed Storage Longevity of Black Bluebush (Maireana pyramidata) collections: 2019 Progress Report B Report Reference: Swainsona Seed Services Report 041 Client: Tronox Mining Australia Swainsona Seed Services 14 Belmont Crescent, Mount Barker, S.A. 5251 Mobile: 0438 453 119 Email: [email protected] Version Prepared By Issue Date 1.0 Alice Quarmby 4 February 2020 © 2020 This document may be cited for the purposes of scientific research or other fair use, but it may not be reproduced or distributed to any third party by any physical or electronic means without the permission of Swainsona Seed Services. This report has been designed for double-sided printing Executive Summary Tronox Mining Australia Ltd. (Tronox, previously Cristal Mining Australia Ltd.) currently conducts broad-scale rehabilitation at Ginkgo and Snapper mines, located in western New South Wales. To date rehabilitation has been achieved by (a) storing and returning stockpiled subsoil and topsoil, (b) mechanically broadcasting seed and (c) planting tubestock for selected species. Prior to broadcasting, all seeds are stored within controlled conditions (two air-conditioned shipping containers held at ~20°C and ambient humidity). However, it has been reported that the seeds of chenopod species (e.g. Bluebush) have a short longevity (only remain viable for 1-2 years), even when stored in controlled conditions. As such, a trial began in 2015 to determine how long the seed of important chenopod species could be stored within the Ginkgo seed stores before significant loss of viability.