Booklet Peter Gruss.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
DARIA SIEKHAUS, Ph.D
DARIA SIEKHAUS, Ph.D. Address: Institute of Science and Technology (IST) Austria Am Campus 1 Bertalanffy Building 3400 Klosterneuburg Austria Telephone: 0043 664 886 876 96 E-mail: [email protected] Birthplace: Berkeley, California, United States Nationality: USA EDUCATION: Stanford University, Department of Biochemistry, Stanford, CA, Ph.D. 1998 Harvard and Radcliffe Colleges, Cambridge, MA, B.A. in Biology, magna cum laude, 1987 RESEARCH EXPERIENCE: Assistant Professor ‐ IST Austria. Jan 2012‐ present Research Scientist – New York University Medical Center, Skirball Institute, Dept. of Developmental Genetics Advisor: Ruth Lehmann, Ph.D. Understanding the mechanism of invasive migration in Drosophila immune cells. 2003‐2011 Post‐doctoral Fellow – University of California Berkeley, Dept. of Molecular Cell Biology Advisor: David Drubin, Ph.D. Understanding the interpretation of chemotropic gradients in S. cerevisiae through cell biological and genetic analyses. 1999‐2003 Graduate Student – Stanford University, Dept. of Biochemistry Advisors: Robert S. Fuller, Ph.D., Mark A. Krasnow, M.D. Ph.D. Identification, and genetic and functional characterization of the neuropeptide and prohormone processing proteases in Drosophila involved in hatching behavior at the end of embryogenesis. 1989-1998 Deutscher Akademischer Austauschdienst Fellow – Max Planck Institute for Biophysical Chemistry, Göttingen, Germany Advisor: Peter Gruss, Ph.D. Expression, purification and biochemical characterization of the murine neuron specific zinc finger gene, -
Ringberg Meeting “Bounding the Aerosol Effective Radiative Forcing”
Ringberg meeting “Bounding the aerosol effective radiative forcing” 26 February – 2 March 2018, Schloss Ringberg, Kreuth, Germany Goal: The aim1 is to exclude unlikely strong and weak aerosol forcings (e.g. provide arguments why the aerosol forcing cannot be more negative than -1.5 Wm-2, or why it cannot be positive). We aim for likelihood rather than certainty. Each participant is invited to submit a 1-page list of theses about likely/unlikely aerosol to the group ([email protected]) before the workshop. Concept: One presenter per session - prepares a limited number of theses that quantify or constrain forcings/mechanisms - all participants are invited to submit theses to the presentations - theses can (should) be corroborated briefly by explanations/graphics/references - presenters distribute the theses until late January so participants can prepare for the discussions At the meeting, one rapporteur per session - moderates the plenum discussions and - takes notes for the wrap-up discussions on Friday A large part of the discussions will be in breakout groups: - three breakout groups with 10-12 participants each; - distribution will be randomly selected and change each time, and - a rapporteur per breakout group per session will also be randomly appointed Location: Ringberg Castle (www.schloss-ringberg.de). Participants are expected to cover their own expenses (travel to Munich + 2 hr train from airport / 1 hr from railway station plus 126 € / night including all meals) and be in residence for the duration of the workshop. If financial restrictions might prevent you from coming please let us know and we will look for ways to help offset some or all of the costs. -
Manfred Eigen: the Realization of His Vision of Biophysical Chemistry
CORE Metadata, citation and similar papers at core.ac.uk Provided by OIST Institutional Repository Manfred Eigen: the realization of his vision of Biophysical Chemistry Author Herbert Jackle, Carmen Rotte, Peter Gruss journal or European Biophysics Journal publication title volume 47 number 4 page range 319-323 year 2017-12-11 Publisher Springer International Publishing Rights (C) 2017 The Author(s). Author's flag publisher URL http://id.nii.ac.jp/1394/00000696/ doi: info:doi/10.1007/s00249-017-1266-y Creative Commons Attribution 4.0 International (http://creativecommons.org/licenses/by/4.0/) European Biophysics Journal (2018) 47:319–323 https://doi.org/10.1007/s00249-017-1266-y REVIEW Manfred Eigen: the realization of his vision of Biophysical Chemistry Herbert Jäckle1 · Carmen Rotte1 · Peter Gruss1,2 Received: 27 August 2017 / Accepted: 11 November 2017 / Published online: 11 December 2017 © The Author(s) 2017. This article is an open access publication Abstract Manfred Eigen turned 90 on May 9th, 2017. He celebrated with a small group of colleagues and friends on behalf of the many inspired by him over his lifetime—whether scientists, artists, or philosophers. A small group of friends, because many—who by their breakthroughs have changed the face of science in diferent research areas—have already died. But it was a special day, devoted to the many genius facets of Manfred Eigen’s oeuvre, and a day to highlight the way in which he continues to exude a great, vital and unbroken passion for science as well as an insatiable curiosity beyond his own scientifc interests. -
Trustees' Annual Report and Financial Statements 31 March 2016
THE FRANCIS CRICK INSTITUTE LIMITED A COMPANY LIMITED BY SHARES TRUSTEES’ ANNUAL REPORT AND FINANCIAL STATEMENTS 31 MARCH 2016 Charity registration number: 1140062 Company registration number: 6885462 The Francis Crick Institute Accounts 2016 CONTENTS INSIDE THIS REPORT Trustees’ report (incorporating the Strategic report and Directors’ report) 1 Independent auditor’s report 12 Consolidated statement of financial activities 13 Balance sheets 14 Cash flow statements 15 Notes to the financial statements 16 1 TRUSTEES’ REPORT (INCORPORATING THE STRATEGIC REPORT AND DIRECTORS’ REPORT) The trustees present their annual directors’ report together with the consolidated financial statements for the charity and its subsidiary (together, ‘the Group’) for the year ended 31 March 2016, which are prepared to meet the requirements for a directors’ report and financial statements for Companies Act purposes. The financial statements comply with the Charities Act 2011, the Companies Act 2006, and the Statement of Recommended Practice applicable to charities preparing their accounts in accordance with the Financial Reporting Standard applicable in the UK (FRS102) effective 1 January 2015 (Charity SORP). The trustees’ report includes the additional content required of larger charities. REFERENCE AND ADMINISTRATIVE DETAILS The Francis Crick Institute Limited (‘the charity’, ‘the Institute’ or ‘the Crick) is registered with the Charity Commission, charity number 1140062. The charity has operated and continues to operate under the name of the Francis Crick -
Joshua Telser Curriculum Vitae
JOSHUA TELSER CURRICULUM VITAE Department of Biological, Physical, and Health Sciences voice: 1 312 341 3687 Roosevelt University fax: 1 312 341 4358 430 S. Michigan Ave. E-mail: [email protected] Chicago, IL 60605-1394 USA Website: http://blogs.roosevelt.edu/jtelser/ EDUCATION: Northwestern University, Evanston, IL; USPHS/NIH Postdoctoral Fellow, September 1984 – September 1986. Postdoctoral advisor: Prof. Brian M. Hoffman. University of Florida, Gainesville, FL; Ph.D. in Inorganic Chemistry, December 1984. University of Illinois, Urbana, IL; graduate student in Inorganic Chemistry, 1980 – 1983. Thesis advisor: Prof. Russell S. Drago (deceased). Cornell University, Ithaca, NY; A.B. in Chemistry (with distinction), May 1980. WORK EXPERIENCE: 9/95 – present: Associate Professor of Chemistry, Roosevelt University, Chicago/Schaumburg, IL; Chemistry Program Coordinator, 1998 – 2000. Assistant Chair, Department of Biological, Chemical and Physical Sciences, 2005 – 2012; 2016 – 2018; Assistant Chair, Department of Biological, Physical, and Health Sciences, 2018 – present. 9/90 – 9/95: Assistant Professor of Chemistry. Taught General Chemistry I and II (CHEM 201, 202), Organic Chemistry Survey (CHEM 210), Inorganic Chemistry (CHEM 341/441), Organometallic Chemistry (CHEM 319/419), Bioinorganic Chemistry (BCHM/CHEM 344/444), and Analytical, Organic, Inorganic, and Physical Chemistry Laboratory courses (CHEM 203, 210, 347, 325), Chemistry Seminar (CHEM 393/493). Research in paramagnetic resonance and magnetic properties of inorganic and biological systems. 9/89 – 9/90: Research Associate, Department of Biochemistry, University of Chicago, Chicago, IL. Research on enzyme catalysis using nitroxide spin-labeled substrates and vanadyl-nucleotide complexes. 4/88 – 9/89: Research Investigator, Contrast Media Department, Squibb Institute for Medical Research, New Brunswick, NJ. -
20 Jahre Helmholtz-Gemeinschaft
2 3 INHALT 49 Im Gespräch – Vorsitzende und Präsidenten von 1995–2015 50 Joachim Treusch 5 54 Detlev Ganten 58 Walter Kröll 7 Vorwort 62 Jürgen Mlynek 9 Die Helmholtz-Gemeinschaft in historischer Perspektive 121 Die Gemeinschaft und ihre 18 Forschungs zentren 66 Die Helmholtz-Gemeinschaft 122 Alfred-Wegener-Institut, Helmholtz-Zentrum im Porträt für Polar- und Meeresforschung 124 Deutsches Elektronen-Synchrotron DESY 70 Forschungsbereiche auf einen Blick 126 Deutsches Krebsforschungszentrum 72 Energie 128 Deutsches Zentrum für Luft- und Raumfahrt 80 Erde und Umwelt 130 Deutsches Zentrum für Neurodegenerative 88 Gesundheit Erkrankungen (DZNE) 96 Luftfahrt, Raumfahrt und Verkehr 132 Forschungszentrum Jülich 104 Materie 134 GEOMAR Helmholtz-Zentrum 112 Schlüsseltechnologien für Ozeanforschung Kiel 136 GSI Helmholtzzentrum für Schwerionenforschung 138 Helmholtz-Zentrum Berlin für Materialien und Energie 140 Helmholtz-Zentrum Dresden-Rossendorf 142 Helmholtz-Zentrum für Infektionsforschung 144 Helmholtz-Zentrum für Umweltforschung – UFZ 146 Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung 148 Helmholtz Zentrum München – Deutsches Forschungszentrum für Gesundheit und Umwelt 150 Helmholtz-Zentrum Potsdam – Deutsches GeoForschungsZentrum GFZ 152 Karlsruher Institut für Technologie 154 Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch 156 Max-Planck-Institut für Plasmaphysik 159 Impressum 6 Liebe Leserinnen und Leser, 7 die Geschichte der Helmholtz-Gemeinschaft ist auch eine Geschichte der Forschung in der Bundesrepublik -
Cv Pascalfries.Pdf
Prof. Dr. Pascal Fries Tel: (+49) (0)69 96 769 500 Director Fax: (+49) (0)69 96 769 555 Ernst Strüngmann Institute (ESI) for Neuroscience in [email protected] Cooperation with Max Planck Society http://www.esi-frankfurt.de http://www.esi- Deutschordenstraße 46 frankfurt.de/research/fries-lab 60528 Frankfurt am Main CV Prof. Dr. Pascal Fries 10 June 2021 Citations Date of birth 28 January 1972 Education 2000 Ph.D. from Johann Wolfgang Goethe-University, Frankfurt, Medical School. Supervisor: Prof. Wolf Singer, Max Planck Institute for Brain Research, Frankfurt, Germany. 1998 M.D. from Johann Wolfgang Goethe-University, Frankfurt, Medical School, Frankfurt, Germany. Professional Since 2009 Director of the Ernst Strüngmann Institute (ESI) for experience Neuroscience in Cooperation with Max Planck Society, Frankfurt, Germany. Since 2008 Scientific Member of the Max Planck Society. Since 2008 Professor of Systems Neuroscience, Radboud University Nijmegen, Nijmegen, The Netherlands. 2001 - 2009 Principal Investigator, F.C. Donders Centre for Cognitive Neuroimaging, Radboud University Nijmegen, Nijmegen, The Netherlands. 1999 - 2001 Postdoctoral Research Fellow with Dr. Robert Desimone, Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, Maryland. 1998 - 1999 Postdoctoral Research Fellow with Prof. Wolf Singer, Max Curriculum Vitae | Prof. Dr. Pascal Fries 1 Planck Institute for Brain Research, Department of Neurophysiology, Frankfurt, Germany. 1998 - 1999 Residency at the Johann Wolfgang Goethe-University, Frankfurt, Medical School, Department of Psychiatry, Frankfurt, Germany. Awards and Honors 2020 2020 Web of Science Highly Cited Researcher (formerly known as “ISI highly Cited of Thomson Reuters). 2019 2019 Web of Science Highly Cited Researcher 2018 2018 Web of Science Highly Cited Researcher 2017 2017 Web of Science Highly Cited Researcher 2016 2016 Web of Science Highly Cited Researcher 2008 Boehringer Ingelheim FENS (Federation of European Neuroscience Societies) Research Award. -
Curriculum Vitae
CURRICULUMVITAE Ralf S. Klessen Ruprecht-Karls-Universität Heidelberg Universitätsprofessor Zentrum für Astronomie (ZAH) Dr. rer. nat. Institut für Theoretische Astrophysik (ITA) Albert-Ueberle-Str. 2, 69120 Heidelberg Germany Tel: +49-6221/54-8978 Fax: +49-6221/54-4221 E-Mail: [email protected] Homepage: http://www.ita.uni-heidelberg.de/∼ralf Personal Data: German, born 18th February 1968, married, four children Wilhelm-Blum-Straße 12–14, 69120 Heidelberg Education and Working Experience: 9/14 — 6/15 Sabbatical Stay at UC Santa Cruz and Stanford University 9/12 — 8/14 Dean of Study, Faculty for Physics and Astronomy 11/11 — Member of the Interdisciplinary Center for Scientific Computing (IWR) 1/10 — 8/10 Sabbatical Stay at Stanford University and UC Santa Cruz 11/07 — 10/12 Managing Director of the Institute for Theoretical Astrophysics 8/08 — 12/13 Deputy Director of the Center of Astronomy at Heidelberg University 4/06 — Professor (W3) of Theoretical Astrophysics at Heidelberg University 4/04 Appointment as Privatdozent at Potsdam University 3/03 — 1/04 Habilitation at Potsdam University 1/02 — 3/06 Head of the Emmy Noether Research Group in “Theory of Star Forma- tion” at the Astrophysical Institute Potsdam 10/00 — 12/01 Otto Hahn Fellow at Lick Observatory, Santa Cruz, sponsored by the Max Planck Society 9/98 — 8/00 Postdoctoral position at Leiden Observatory, The Netherlands 11/94 — 6/98 Dissertation at the University of Heidelberg. Thesis research at the Max Planck Institute for Astronomy, Heidelberg. Title of thesis: “Fragmenta- tion of Molecular Clouds: The Initial Phases of a Stellar Cluster”. -
Gene Center Munich Report 2004-2008 Contents
GENE CENTER MUNICH RESEARCH AND EDUCATION FOR THE LIFE SCIENCES GENE CENTER MUNICH REPORT 2004-2008 CONTENTS Publisher: Gene Center Munich Ludwig-Maximilians-Universität (LMU) Munich Feodor-Lynen-Strasse 25 81377 Munich Germany Phone: +49 89 2180 - 769 65 Fax: +49 89 2180 - 769 99 Email: [email protected] Internet: www.lmb.uni-muenchen.de INTRODUCTION BY PAST GROUP LEADERS Planning, co-ordination, graphics, and editing: Manuela Niessing, Gene Center Munich THE PRESIDENT OF LMU MUNICH Page 03 Ralf-Peter Jansen Page 42 Claudia Petritsch Page 44 Co-ordination LMU Munich: THE DIRECTOR’S REPORT Page 04 Stefan Weiss Page 46 Communications & Media Relations, LMU Munich Contributions: CURRENT GROUP LEADERS FACILITIES AND SERVICES Responsible for the contents are Patrick Cramer and the Roland Beckmann Page 14 LAFUGA Page 48 other group leaders of the Gene Center Munich. Karl-Klaus Conzelmann Page 16 New research facilities Page 50 Layout and design: Patrick Cramer Page 18 Administration and service personnel Page 54 Christine Meyer Design, Munich Klaus Förstemann Page 20 Translations: Ulrike Gaul Page 22 APPENDICES Alison Moffat, Translation Services, Munich Karl-Peter Hopfner Page 24 Publications and invited lectures Page 56 Ulrich Koszinowski Page 26 Service and patents Page 72 Print: Peschke Druck GmbH, Munich Dierk Niessing Page 28 Seminars Page 74 Johannes Söding Page 30 Gene Center in the media Page 78 Photography: Katja Strässer Page 32 Campus Grosshadern-Martinsried Page 84 Gene Center Munich Communications & Media Relations, LMU Munich Achim Tresch Page 34 Jan Greune Petra Wendler Page 36 Thorsten Naeser Daniel N. Wilson Page 38 Sebastian Vollmert Tobias Koschubs Eckhard Wolf Page 40 Otto Berninghausen Elmar Czeko Anselm Kusser Heidi Feldmann Manfred Schülein All copy rights of the scientific figures are owned by the respective group leaders. -
Max-Planck-Institut F¸R Biophysikalische Chemie Gˆttingen
Max Planck Institute for Biophysical Chemistry Dr. Carmen Rotte Press and Public Relations Am Faßberg 11, 37077 Göttingen, Germany Phone: +49 551 201-1304 Email: [email protected] Press Release January 13, 2014 Prestigious Chinese award for Herbert Jäckle The People's Republic of China has given its 2013 International Science and Technology Cooperation Award to the Göttingen Max Planck researcher Herbert Jäckle. This, the highest prize for foreign individuals or organizations in the field of science and technology honors the significant contributions the awardee has made to China’s social and economic development. The prize was awarded in a solemn ceremony held on January 10 in the Great Hall of the People in Beijing in the presence of Chinese Government representatives. In addition to Herbert Jäckle seven scientists and engineers from all over the world received the prestigious prize. Awardee Herbert Jäckle has strongly promoted cooperation between the Max Planck Society and the Chinese Academy of Sciences. Jäckle, who was appointed Vice President of the Max Planck Society in 2002, has provided creative ideas which have altered both the Chinese and the German scientific landscape and strengthened international cooperation. The Partner Institute for Computational Biology in Shanghai (China) – jointly supported by the Max Planck Society and the Chinese Academy of Sciences – was established in 2005 on his initiative. Jäckle has further developed a new and very Photo: Böttcher-Gajewski / Max Planck Institute for successful concept for promotion of junior Biophysical Chemistry scientists within the Max Planck Society. This concept was also implemented at the Partner Institute in Shanghai to support talented young researchers early in their scientific careers. -
Nanomagnetism
Message from the Director 6 The Very Best of nanoGUNE 8 1 Researchers in Action 10 Nanomagnetism 12 Nanooptics 14 Self-Assembly 16 Nanodevices 18 Electron Microscopy 20 Theory 22 Nanomaterials 24 Nanoimaging 26 2 State-of-the-art Infrastructure 28 3 Scientific Outputs 32 Highlighted publications 34 Conferences, workshops, and schools 56 Invited Talks 58 Seminars 63 ISI Publications 66 Cooperation agreements 72 4 Industry Overview 74 5 Connecting with Society 78 6 Organization and Funding 82 nanoPeople 90 Message from the Director Advances in nanoscience and nanotechnology are nowadays at the heart of the technological development of our soci- ety. Our current ability to observe and control matter at the atomic and molecular scale (the nanoscale) will allow, in the next few decades, the design of new objects and the devel- opment of more efficient and less expensive manufacturing processes in a great variety of industry sectors. At CIC nanoGUNE Consolider, it is our mission to carry out world-class nanoscience research, thus contributing to the creation of the necessary conditions for the Basque Country (and the humanity, in general) to benefit from a wide range of nanotechnologies: confronting new scientific challenges through cooperation with other research and technological agents in the Basque Country and worldwide, building bridges that fill the gap between basic science and technology, as well as promoting high-level training and out- reach activities. In the launching period 2007-2010, we were successful in putting together a state-of-the-art -
Max Planck Institute for Intelligent Systems
Max Planck Institute for Intelligent Systems Stuttgart Center for Electron Microscopy – StEM Heisenbergstrasse 3, D-70569, Stuttgart, Germany www.is.mpg.de/StEM StEM Workshop at Ringberg Castle, Lake Tegernsee, Germany July 11th – July 13th, 2012 Programme Wednesday, July 11th, 2012 12.30 Lunch 14.30 – 14.40 Opening and Welcome Peter A. van Aken Chair: Wilfried Sigle 14:40 – 15:20 Fritz Phillipp, StEM The long way to the Cs-Corrector in Electron Microscopy 15:20 – 15:40 Nahid Talebi, StEM Outlooks and progresses in EELS of Plasmonic modes 15:40 – 16:00 Burcu Ögüt, StEM Tomorrow of plasmonics with aberration corrected transmission electron microscopy 16:00 Coffee break 16:30 – 16:50 Eric Detemple, StEM The benefit of Cs-corrected STEM for the study of nickelate superlattices 16:50 – 17:10 Dmitry Tyutyunnikov, StEM Data acquisition for 3D strain mapping 17:10 – 17:30 Cigdem Özsoy, StEM What could be the benefits of Cs correction for electron holography? 18:00 Dinner Thursday, July 12th, 2012 Chair: Fritz Phillipp 09:00 – 09:40 Masashi Watanabe, Betlehem, USA Atomic resolution chemical analysis towards quantification 09:40 – 10:20 Vesna Srot, StEM Electron tomography and analytical STEM for characterization of composite materials 10:20 – 10:40 Dan Zhou, StEM Delithiation Process Study of LiFePO4 with Transmission Electron Microscopy 10:40 Coffee break 11:00 – 11:40 Wilfried Sigle, StEM Annular bright-field imaging 11:40 – 12:20 Behnaz Rahmati, StEM Implementation of Vortex Aperture into JEM-ARM 200 F Microscope for performing EMCD Experiments