Editor European Editor Senior Editors Consulting Editor Managing

Total Page:16

File Type:pdf, Size:1020Kb

Editor European Editor Senior Editors Consulting Editor Managing CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Cell Editor Associate Editors Benjamin Lewin Richard Axel Philippa Marrack Rosa Beddington Chris Marshall European Editor Pierre Chambon Diane Mathis Peter W. J. Rigby Joanne Chory Ira Mellman Julian Downward Don Metcalf Senior Editors David Friedman Elliot Meyerowitz Amy Axelrod Phillip Gallimore Tim Mitchison Vivian Siegel John Gerhart Paul Nurse Stephen Goff William Paul Joe Goldstein Hugh Pelham Consulting Editor Peter Goodfellow Roger Perlmutter Gregory Gasic Peter Gruss Klaus Rajewsky Martin Hemier Danny Reinberg Managing Editor Ira Herskowitz James Roberts Rebecca Kennison Chris Higgins Elliott Ross Robert Horvitz Gerald Rubin Editorial Staff Tim Hunt Joshua Sanes Alexander Barnett Tony Hunter Jeff Schell Edward J. Dionne Richard Hynes Matthew Scott Jennifer MacMillan David Ish-Horowitz David Sherratt Martha Sullivan Thomas Jesse11 Jim Smith Peter Kim Frank Solomon Judith Kimble Davor Solter Advertising Roger Kornberg George Sprague Lynn Reznick Parisi - Director John Kuriyan Charles Stevens Jennifer Oneglia - Classifieds Ron Laskey Robert Tjian Christa A. Matukaitis Michael Levine Richard Treisman Richard Losick Mike Waterfield Circulation Vivek Malhotra Alan Weiner Marie Arsenault - Manager Tom Maniatis Owen Witte Heather L. McCormick Telephone Numbers Principal Office European Office Cell Division of Eukaryotic Editorial: 617-661-7057 1050 Massachusetts Avenue Molecular Genetics Advertising: 617-661-7059 Cambridge, Massachusetts 02138 NIMR USA The Ridgeway, Mill Hill Subscriptions: 617-661-7060 Fax: 617-661-7061 London NW7 1 AA, England E-mail: [email protected] Telephone: (0)181-906-3897 Fax: (0)181-913-8527 E-mail: [email protected] Cell (ISSN 0092-8674) is published biweekly by Cell Press, 1050 Massachusetts Avenue, Cambridge, Massachusetts 02138. The institutional subscription rate for 1995 is $375 (US), $525 (Europe and Israel), or $460 (elsewhere). The individual subscription rate is $105 (US), $225 (Europe and Israel), or $170 (elsewhere). The individual copy price is $30. There is no page charge except for intergovernmental organizations ($20 per page). Copyright 0 1995 by Cell Press. Second class postage paid at Boston, Massachusetts, and additional mailing offices. Postmaster: send address changes to Cell, 1050 Massachusetts Avenue, Cambridge, Massachusetts 02138. .
Recommended publications
  • New Editor on Journal of Cell Science Michael Way (Editor-In-Chief)
    © 2019. Published by The Company of Biologists Ltd | Journal of Cell Science (2019) 132, jcs229740. doi:10.1242/jcs.229740 EDITORIAL New Editor on Journal of Cell Science Michael Way (Editor-in-Chief) As someone who has worked on things related to the actin cytoskeleton my whole research career, the nucleus was not something I paid much attention to. Yes, there were scattered historical reports of actin in the nucleus long before I started my PhD, but no one believed actin was really there of course – it was all an artefact of fixation, you know. Nuclear actin was taboo and no one talked about it at the meetings I went to as a student and postdoc. How wrong we were – today nuclear actin is alive and kicking, although there are definitely more questions than answers concerning what it is actually doing there. We now appreciate that the nucleus contains a wide assortment of proteins associated with the cytoplasmic actin cytoskeleton including myosin motors and actin nucleators such as the Arp2/3 complex. In addition, it should not be forgotten that many chromatin-associated complexes including SWI/SNF and INO80/ SWR also contain multiple actin-related proteins, as well as actin itself. It strikes me that maybe we should all be paying more attention to the nucleus and not just because it contains my favourite proteins! Maybe that’s why, in recent years, we’ve been seeing more submissions to JCS that are focused on different aspects of the nucleus and that traditionally appeared in journals with ‘molecular’ in their titles.
    [Show full text]
  • Transcriptional Regulation by Extracellular Signals 209
    Cell, Vol. 80, 199-211, January 27, 1995, Copyright © 1995 by Cell Press Transcriptional Regulation Review by Extracellular Signals: Mechanisms and Specificity Caroline S. Hill and Richard Treisman Nuclear Translocation Transcription Laboratory In principle, regulated nuclear localization of transcription Imperial Cancer Research Fund factors can involve regulated activity of either nuclear lo- Lincoln's Inn Fields calization signals (NLSs) or cytoplasmic retention signals, London WC2A 3PX although no well-characterized case of the latter has yet England been reported. N LS activity, which is generally dependent on short regions of basic amino acids, can be regulated either by masking mechanisms or by phosphorylations Changes in cell behavior induced by extracellular signal- within the NLS itself (Hunter and Karin, 1992). For exam- ing molecules such as growth factors and cytokines re- ple, association with an inhibitory subunit masks the NLS quire execution of a complex program of transcriptional of NF-KB and its relatives (Figure 1; for review see Beg events. While the route followed by the intracellular signal and Baldwin, 1993), while an intramolecular mechanism from the cell membrane to its transcription factor targets may mask NLS activity in the heat shock regulatory factor can be traced in an increasing number of cases, how the HSF2 (Sheldon and Kingston, 1993). When transcription specificity of the transcriptional response of the cell to factor localization is dependent on regulated NLS activity, different stimuli is determined is much less clear. How- linkage to a constitutively acting NLS may be sufficient to ever, it is possible to understand at least in principle how render nuclear localization independent of signaling (Beg different stimuli can activate the same signal pathway yet et al., 1992).
    [Show full text]
  • NCI RAS Initiative Update
    Ras Initiative Update Frank McCormick and Levi Garraway DEPARTMENT OF HEALTH AND HUMAN SERVICES • National Institutes of Health • National Cancer Institute The Frederick National Laboratory is a Federally Funded Research and Development Center operated by Leidos Biomedical Research, Inc., for the National Cancer Institute RAS Initiative Accomplishments: Evaluating Ras dependency 2 SiREN assay for Ras dependency SiREN assay for Ras dependency 70% KD siEGFP 0-10% KD 50% KD 100% KD SiREN assay for Ras dependency RAS Initiative Accomplishments: Biophysical and structural analysis 7 Ras proteins 1 -166 167-185,6 Raf, PI 3’ kinase RalGDS, GAPs Raf, PI 3’ kinase RalGDS, GAPs Raf, PI 3’ kinase RalGDS, GAPs Raf, PI 3’ kinase RalGDS, GAPs Palmitoyl Farnesyl Fully processed KRAS4b A. Gorfe, U-Texas Houston Engineering baculovirus for improved production of processed KRAS • recombineering used to insert FNTA/FNTB genes into the baculovirus genome • eliminated issues with coinfection of multiple viruses • maltose-binding protein (MBP) fusion for greater yield and solubility • Trichoplusia ni (Hi5) insect cells for increased yield Carissa Grose, Dom Esposito, Bill Gillette Processed KRAS4b characterization • Extensive protein characterization – Purified to homogeneity; yield >7mg/L – Intact mass – Predominantly monomeric – Secondary structure equivalent to non-processed KRAS4b KRAS4b- FME – Lower thermal stability Intact mass analysis Analytical ultracentrifugation Secondary structure by CD 2.14 S 25.7 kDa 10 Bill Gillette, Zhaojing Meng, Shelley Perkins,
    [Show full text]
  • Miriam Molina Arcas
    CV Miriam Molina Arcas Miriam Molina Arcas Principal Laboratory Research Scientist The Francis Crick Institute 1 Midland Road, NW1 1AT London +442037963313 [email protected] EDUCATION 1999-2005 PhD in Biomedicine, University of Barcelona, Spain Role of equilibrative nucleoside transporters in the sensitivity to antineoplasic drugs. Supervisors: Prof. Marçal Pastor-Anglada and Dr. F. Javier Casado 1994-1999 BSc Biochemistry, University of Barcelona, Spain RESEARCH AND PROFESSIONAL EXPERIENCE June 2016- present Senior Laboratory Research Scientist, Oncogene Biology Laboratory, The Francis Crick Institute. Prof. Julian Downward. Studied combination approaches that improve the efficacy of KRAS inhibitors and reduce resistance mechanisms. March 2015- May 2016 Postdoctoral Fellow, Lung Cancer Team, Institute of Cancer Research. Prof. Julian Downward. Designed and optimized a whole-genome shRNA screen to identify synthetic lethal interactions with MEK and IGF1R inhibitors. Sep 2008- Feb 2015 Postdoctoral Fellow, Signal Transduction Laboratory, Cancer Research UK- London Research Institute. Prof. Julian Downward Using RNA interfering and drug screens, identified new therapeutic strategies to treat tumours harbouring KRAS mutations 2006- Aug 2008 Postdoctoral Fellow, University of Barcelona, Spain Prof. Marçal Pastor-Anglada Studied the role of membrane transporters in nucleoside-derived drug response in cancer and HIV. TEACHING AND MENTORING EXPERIENCE 2018-2021 Honorary Research Associate in the School of Life & Medical Sciences, University College London, part of the Certificate in Core Teaching Practices. 2007-2008 Part-time lecturer of Biochemistry and Molecular Biology (University of Barcelona). 180h of theory and practical lessons. 2003-2005 Teaching assistant of Biochemistry and Molecular Biology (University of Barcelona). 60h of practical lessons. September 2019 Co-supervisor of MSc Experimental Pharmacology and Therapeutics Research of Pablo Romero Clavijo at the University College London.
    [Show full text]
  • DARIA SIEKHAUS, Ph.D
    DARIA SIEKHAUS, Ph.D. Address: Institute of Science and Technology (IST) Austria Am Campus 1 Bertalanffy Building 3400 Klosterneuburg Austria Telephone: 0043 664 886 876 96 E-mail: [email protected] Birthplace: Berkeley, California, United States Nationality: USA EDUCATION: Stanford University, Department of Biochemistry, Stanford, CA, Ph.D. 1998 Harvard and Radcliffe Colleges, Cambridge, MA, B.A. in Biology, magna cum laude, 1987 RESEARCH EXPERIENCE: Assistant Professor ‐ IST Austria. Jan 2012‐ present Research Scientist – New York University Medical Center, Skirball Institute, Dept. of Developmental Genetics Advisor: Ruth Lehmann, Ph.D. Understanding the mechanism of invasive migration in Drosophila immune cells. 2003‐2011 Post‐doctoral Fellow – University of California Berkeley, Dept. of Molecular Cell Biology Advisor: David Drubin, Ph.D. Understanding the interpretation of chemotropic gradients in S. cerevisiae through cell biological and genetic analyses. 1999‐2003 Graduate Student – Stanford University, Dept. of Biochemistry Advisors: Robert S. Fuller, Ph.D., Mark A. Krasnow, M.D. Ph.D. Identification, and genetic and functional characterization of the neuropeptide and prohormone processing proteases in Drosophila involved in hatching behavior at the end of embryogenesis. 1989-1998 Deutscher Akademischer Austauschdienst Fellow – Max Planck Institute for Biophysical Chemistry, Göttingen, Germany Advisor: Peter Gruss, Ph.D. Expression, purification and biochemical characterization of the murine neuron specific zinc finger gene,
    [Show full text]
  • Unveiling New Disease, Pathway, and Gene Associations Via Multi-Scale Neural Networks
    Unveiling new disease, pathway, and gene associations via multi-scale neural networks Thomas Gaudelet 1, No¨elMalod-Dognin 2, Jon S´anchez-Valle 2, Vera Pancaldi 2,3,4, Alfonso Valencia 2,5,6 and NataˇsaPrˇzulj 2,5,∗ 1 Department of Computer Science, University College London, London, WC1E 6BT 2 Department of Life Sciences, Barcelona Supercomputing Center (BSC), Barcelona, 08034 Spain 3 Centre de Recherches en Canc´erologiede Toulouse (CRCT), UMR1037 Inserm, ERL5294 CNRS, 31037 Toulouse, France 4 University Paul Sabatier III, Toulouse, France 5 ICREA, Pg. Llu´ısCompanys 23, 08010 Barcelona, Spain 6 Coordination Node. Spanish National Bioinformatics Institute, ELIXIR-Spain (INB, ELIXIR-ES), Spain ∗ [email protected]. Abstract Diseases involve complex modifications to the cellular machinery. The gene expression profile of the affected cells contains characteristic patterns linked to a disease. Hence, new biological knowledge about a disease can be extracted from these profiles, improving our ability to diagnose and assess disease risks. This knowledge can be used for drug re-purposing, or by physicians to evaluate a patient's condition and co-morbidity risk. Here, we consider differential gene expressions obtained by microarray technology for patients diagnosed with various diseases. Based on these data and cellular multi-scale organization, we aim at uncovering disease{disease, disease{gene and disease{pathway associations. We propose a neural network with structure based on the multi- scale organization of proteins in a cell into biological pathways. We show that this model is able to correctly predict the diagnosis for the majority of patients. Through the analysis of the trained model, we predict disease{ disease, disease{pathway, and disease{gene associations and validate the predictions by comparisons to known interactions and literature search, proposing putative explanations for the predictions.
    [Show full text]
  • Fellows Opted out of the Mentoring Programme As of 21 July 2020 1 of 3 Professor Chris Abell FRS Fmedsci Professor Philip Jones
    Fellows opted out of the Mentoring programme as of 21 July 2020 Professor Chris Abell FRS FMedSci Professor Philip Jones FMedSci Professor David Adams FMedSci Professor Roger Jones FMedSci Professor Judith Allen FRSE FMedSci Professor Kamlesh Khunti FMedSci Professor Thomas Kirkwood CBE Professor Desmond Archer OBE FMedSci FMedSci Professor Louise Arseneault FMedSci Professor Robb Krumlauf FMedSci Professor Charalambos Kyriacou Professor Michael Arthur FMedSci FMedSci Professor Deborah Ashby OBE FMedSci Sir Peter Lachmann FRS FMedSci Professor Dame Frances Ashcroft DBE Professor Leon Lagnado FMedSci FRS FMedSci Professor Anthony Barrett FRS FMedSci Professor Ajit Lalvani FMedSci Professor Gillian Bates FRS FMedSci Professor Deborah Lawlor CBE FMedSci Professor Facundo Batista FMedSci Professor Joy Lawn FMedSci Professor Stephan Beck FMedSci Professor Susan Lea FMedSci Professor Jill Belch OBE FMedSci Professor Sir Robert Lechler PMedSci Professor Sir John Bell GBE FRS Dr Melanie Lee CBE FMedSci HonFREng FMedSci Professor Wendy Bickmore FRS FRSE Professor Andrew Lees FMedSci FMedSci Professor Sir Adrian Bird CBE FRS FRSE Professor Stafford Lightman FRS FMedSci FMedSci Professor Ewan Birney CBE FRS Professor Janet Lord FMedSci FMedSci Professor Dorothy Bishop FRS FBA Professor Thomas MacDonald FMedSci FMedSci Professor Rona MacKie CBE FRSE Professor Jane Blazeby FMedSci Sir Stephen Bloom FRS FMedSci Professor Giovanna Mallucci FMedSci Sir Tom Blundell FRS FMedSci Dr Fiona Marshall FMedSci Professor Dame Theresa Marteau DBE Professor Peter
    [Show full text]
  • Drugging the Undruggable: Advances on RAS Targeting in Cancer
    G C A T T A C G G C A T genes Review Drugging the Undruggable: Advances on RAS Targeting in Cancer Miriam Molina-Arcas 1,*, Amit Samani 1,2,* and Julian Downward 1,3 1 Oncogene Biology Laboratory, Francis Crick Institute, London NW1 1AT, UK; [email protected] 2 Department of Medical Oncology, Imperial College Healthcare NHS Trust, London W2 1NY, UK 3 Lung Cancer Group, Institute of Cancer Research, London SW3 6JB, UK * Correspondence: [email protected] (M.M.-A.); [email protected] (A.S.) Abstract: Around 20% of all malignancies harbour activating mutations in RAS isoforms. Despite this, there is a deficiency of RAS-targeting agents licensed for therapeutic use. The picomolar affinity of RAS for GTP, and the lack of suitable pockets for high-affinity small-molecule binding, precluded effective therapies despite decades of research. Recently, characterisation of the biochemical properties of KRAS-G12C along with discovery of its ‘switch-II pocket’ have allowed development of effective mutant-specific inhibitors. Currently seven KRAS-G12C inhibitors are in clinical trials and sotorasib has become the first one to be granted FDA approval. Here, we discuss historical efforts to target RAS directly and approaches to target RAS effector signalling, including combinations that overcome limitations of single-agent targeting. We also review pre-clinical and clinical evidence for the efficacy of KRAS-G12C inhibitor monotherapy followed by an illustration of combination therapies designed to overcome primary resistance and extend durability of response. Finally, we briefly discuss novel approaches to targeting non-G12C mutant isoforms.
    [Show full text]
  • The Role of WH2-Containing Proteins in Regulating Actin-MRTF-SRF-Mediated Transcription
    The Role of WH2-containing Proteins in Regulating Actin-MRTF-SRF-mediated Transcription Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) der Naturwissenschaftlichen Fakultät I – Biowissenschaften - der Martin-Luther-Universität Halle-Wittenberg vorgelegt von Frau Julia Weißbach geboren am 24.06.1987 in Querfurt Gutachter: Prof. Guido Posern Prof. Mechthild Hatzfeld Prof. Bernd Knöll Verteidigungsdatum: 15. November 2017 Content I Summary ...................................................................................................................... 3 Zusammenfassung ....................................................................................................... 4 II Introduction ............................................................................................................... 5 II.1 Serum Response Factor - SRF ............................................................................... 5 II.2 Myocardin-related Transcription Factors – MRTF-A/-B ...................................... 6 II.3 Actin and Actin-Binding Proteins .......................................................................... 9 II.4 Nucleation Promoting Factors – NPF .................................................................. 12 II.4.1 Neuronal Wiskott-Aldrich Syndrome Protein – N-WASP ........................... 14 II.4.2 WASP Family Verprolin-homologous Protein 2 - WAVE2 ......................... 15 II.4.3 Junction-mediating and Regulatory Protein - JMY ...................................... 15
    [Show full text]
  • Second RAS Initiative Symposium Sponsored by the National Cancer Institute Advanced Technology Research Facility, Frederick, MD December 6-8, 2017
    The Second RAS Initiative Symposium Sponsored by the National Cancer Institute Advanced Technology Research Facility, Frederick, MD December 6-8, 2017 December 6 8:00 am – 8:15 am Welcome from the NCI Director Norman Sharpless 8:15 am – 9:00 am Keynote Frank McCormick (RAS Initiative, University of California, San Francisco) 9:00 am – 9:30 am Organoids as Model Systems for Tumorigenesis Calvin Kuo (Stanford University) 9:30 am – 9:50 am Break 9:50 am – 12:10 pm Activated RAS and Oncogenesis - Chair: Jeff Settleman Douglas Lowy (National Cancer Institute) Christopher Counter (Duke University) Matthew Vander Heiden (Massachusetts Institute of Technology) Marie Evangelista (Genentech) Aaron Hobbs (Der Lab, University of North Carolina, Chapel Hill) 12:10 pm – 1:10 pm Lunch on your own 1:10 pm – 3:15 pm Poster Session #1 3:15 pm – 4:15 pm RAS Multimers at the Membrane - Chair: John Hancock Yao-Cheng Li (Wahl Lab, Salk Institute) Margie Sutton (Bast Lab, MD Anderson) Chiara Ambrogio (Jänne Lab, Dana Farber Cancer Institute) 4:15 pm – 5:30 pm RAS Membrane Modeling and Dynamics - Chair: Dwight Nissley Roland Winter (Technische Universität Dortmund) Fred Streitz (Lawrence Livermore National Laboratory) Chris Neale (Garcia Lab, Los Alamos National Laboratory) Walkersville Social Hall 79 West Frederick Street, Walkersville 6:15 – 7:00 pm Hors d’oeuvres, cash bar 7:00 pm Dinner December 7 8:00 am – 10:00 am Tumor Dynamics - Chair: Rosalie Sears Dafna Bar-Sagi (New York University) David Tuveson (Cold Spring Harbor Laboratory) Channing Der (University
    [Show full text]
  • TGF-B Uses a Novel Mode of Receptor Activation to Phosphorylate SMAD1
    RESEARCH ARTICLE TGF-b uses a novel mode of receptor activation to phosphorylate SMAD1/5 and induce epithelial-to-mesenchymal transition Anassuya Ramachandran1, Pedro Viza´ n1†, Debipriya Das1‡, Probir Chakravarty2, Janis Vogt3, Katherine W Rogers4, Patrick Mu¨ ller4, Andrew P Hinck5, Gopal P Sapkota3, Caroline S Hill1* 1Developmental Signalling Laboratory, The Francis Crick Institute, London, United Kingdom; 2Bioinformatics and Biostatistics Facility, The Francis Crick Institute, London, United Kingdom; 3Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, United Kingdom; 4Friedrich Miescher Laboratory of the Max Planck Society, Tu¨ bingen, Germany; 5Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States Abstract The best characterized signaling pathway downstream of transforming growth factor b (TGF-b) is through SMAD2 and SMAD3. However, TGF-b also induces phosphorylation of SMAD1 *For correspondence: and SMAD5, but the mechanism of this phosphorylation and its functional relevance is not known. [email protected] Here, we show that TGF-b-induced SMAD1/5 phosphorylation requires members of two classes of type I receptor, TGFBR1 and ACVR1, and establish a new paradigm for receptor activation where Present address: †Center for TGFBR1 phosphorylates and activates ACVR1, which phosphorylates SMAD1/5. We demonstrate Genomic Regulation, Barcelona, ‡ the biological significance of this pathway by showing that approximately a quarter of the TGF-b- Spain; Flow Cytometry, The Francis Crick Institute, London, induced transcriptome depends on SMAD1/5 signaling, with major early transcriptional targets ID United Kingdom being the genes. Finally, we show that TGF-b-induced epithelial-to-mesenchymal transition requires signaling via both the SMAD3 and SMAD1/5 pathways, with SMAD1/5 signaling being Competing interests: The essential to induce ID1.
    [Show full text]
  • Manfred Eigen: the Realization of His Vision of Biophysical Chemistry
    CORE Metadata, citation and similar papers at core.ac.uk Provided by OIST Institutional Repository Manfred Eigen: the realization of his vision of Biophysical Chemistry Author Herbert Jackle, Carmen Rotte, Peter Gruss journal or European Biophysics Journal publication title volume 47 number 4 page range 319-323 year 2017-12-11 Publisher Springer International Publishing Rights (C) 2017 The Author(s). Author's flag publisher URL http://id.nii.ac.jp/1394/00000696/ doi: info:doi/10.1007/s00249-017-1266-y Creative Commons Attribution 4.0 International (http://creativecommons.org/licenses/by/4.0/) European Biophysics Journal (2018) 47:319–323 https://doi.org/10.1007/s00249-017-1266-y REVIEW Manfred Eigen: the realization of his vision of Biophysical Chemistry Herbert Jäckle1 · Carmen Rotte1 · Peter Gruss1,2 Received: 27 August 2017 / Accepted: 11 November 2017 / Published online: 11 December 2017 © The Author(s) 2017. This article is an open access publication Abstract Manfred Eigen turned 90 on May 9th, 2017. He celebrated with a small group of colleagues and friends on behalf of the many inspired by him over his lifetime—whether scientists, artists, or philosophers. A small group of friends, because many—who by their breakthroughs have changed the face of science in diferent research areas—have already died. But it was a special day, devoted to the many genius facets of Manfred Eigen’s oeuvre, and a day to highlight the way in which he continues to exude a great, vital and unbroken passion for science as well as an insatiable curiosity beyond his own scientifc interests.
    [Show full text]