Genetically Modified Pest-Protected Plants Science and Regulation

Total Page:16

File Type:pdf, Size:1020Kb

Genetically Modified Pest-Protected Plants Science and Regulation Copyright © National Academy of Sciences. All rights reserved. GENETICALLY MODIFIED PEST-PROTECTED PLANTS SCIENCE AND REGULATION Committee on Genetically Modified Pest-Protected Plants Board on Agriculture and Natural Resources National Research Council NATIONAL ACADEMY PRESS Washington, D.C. Copyright © National Academy of Sciences. All rights reserved. NATIONAL ACADEMY PRESS • 2101 Constitution Avenue, NW • Washington, DC 20418 NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for appropriate balance. Library of Congress Cataloging-in-Publication Data Genetically modified pest-protected plants : science and regulation / Committee on Genetically Modified Pest-Protected Plants, Board on Agriculture and Natural Resources, National Research Council. p. cm. Includes bibliographical references and index. ISBN 0-309-06930-0 (casebound) 1. Transgenic plants—Risk assessment. 2. Plants—Disease and pest resistance—Genetic aspects. I. National Research Council (U.S.). Committee on Genetically Modified Pest-Protected Plants. SB123.57 .G48 2000 631.5’233—dc21 00-009457 Genetically Modified Pest-Protected Plants: Science and Regulation is available from National Academy Press, 2101 Constitution Avenue, NW, Lockbox 285, Washington, DC 20055; (800) 624-6242 or (202) 334-3313 (in the Washington metropolitan area); Internet, http://www.nap.edu Copyright 2000 by the National Academy of Sciences. All rights reserved. Printed in the United States of America Copyright © National Academy of Sciences. All rights reserved. National Academy of Sciences National Academy of Engineering Institute of Medicine National Research Council The National Academy of Sciences is a private, nonprofit, self-perpetuating soci- ety of distinguished scholars engaged in scientific and engineering research, dedi- cated to the furtherance of science and technology and to their use for the general welfare. Upon the authority of the charter granted to it by the Congress in 1863, the Academy has a mandate that requires it to advise the federal government on scientific and technical matters. Dr. Bruce M. Alberts is president of the National Academy of Sciences. The National Academy of Engineering was established in 1964, under the charter of the National Academy of Sciences, as a parallel organization of outstanding engineers. It is autonomous in its administration and in the selection of its mem- bers, sharing with the National Academy of Sciences the responsibility for advis- ing the federal government. The National Academy of Engineering also sponsors engineering programs aimed at meeting national needs, encourages education and research, and recognizes the superior achievements of engineers. Dr. William A. Wulf is president of the National Academy of Engineering. The Institute of Medicine was established in 1970 by the National Academy of Sciences to secure the services of eminent members of appropriate professions in the examination of policy matters pertaining to the health of the public. The Institute acts under the responsibility given to the National Academy of Sciences by its congressional charter to be an adviser to the federal government and, upon its own initiative, to identify issues of medical care, research, and education. Dr. Kenneth I. Shine is president of the Institute of Medicine. The National Research Council was organized by the National Academy of Sci- ences in 1916 to associate the broad community of science and technology with the Academy’s purposes of furthering knowledge and advising the federal gov- ernment. Functioning in accordance with general policies determined by the Academy, the Council has become the principal operating agency of both the National Academy of Sciences and the National Academy of Engineering in pro- viding services to the government, the public, and the scientific and engineering communities. The Council is administered jointly by both Academies and the Institute of Medicine. Dr. Bruce M. Alberts and Dr. William A. Wulf are chairman and vice chairman, respectively, of the National Research Council. Copyright © National Academy of Sciences. All rights reserved. Copyright © National Academy of Sciences. All rights reserved. COMMITTEE ON GENETICALLY MODIFIED PEST-PROTECTED PLANTS PERRY ADKISSON, Chair, Texas A&M University, College Station STANLEY ABRAMSON, Arent, Fox, Kintner, Plotkin & Kahn, Washington, D.C. STEPHEN BAENZIGER, University of Nebraska, Lincoln FRED BETZ, Jellinek, Schwartz & Connolly, Arlington, Virginia JAMES C. CARRINGTON, Washington State University, Pullman REBECCA J. GOLDBURG, Environmental Defense, New York, NY FRED GOULD, North Carolina State University, Raleigh ERNEST HODGSON, North Carolina State University, Raleigh TOBI JONES, California Department of Pesticide Regulation, Sacramento MORRIS LEVIN, University of Maryland, Baltimore ERIK LICHTENBERG, University of Maryland, College Park ALLISON SNOW, Ohio State University, Columbus Staff JENNIFER KUZMA, Study Director MICHAEL J. PHILLIPS, Study Director (through July 1999)* JAMIE YOUNG, Research Associate KAREN L. IMHOF, Project Assistant DEREK SWEATT, Project Assistant NORMAN GROSSBLATT, Editor *Michael Phillips was involved with this study until 7/13/99 and is currently employed with the Biotechnology Industry Organization. v Copyright © National Academy of Sciences. All rights reserved. BOARD ON AGRICULTURE AND NATURAL RESOURCES T. KENT KIRK, Chair, University of Wisconsin, Madison DAVID BAKER, University of Illinois SANDRA S. BATIE, Michigan State University MAY R. BERENBAUM, University of Illinois ANTHONY S. EARL, Quarles & Brady Law Firm, Madison, Wisconsin ESSEX E. FINNEY, JR., U.S. Department of Agriculture (retired), Mitchellville, Maryland CORNELIA FLORA, Iowa State University ROBERT T. FRALEY, Monsanto Company GEORGE R. HALLBERG, The Cadmus Group, Boston, Massachusetts RICHARD R. HARWOOD, Michigan State University GILBERT A. LEVEILLE, McNeil Consumer Healthcare, Fort Washington, Pennsylvania HARLEY W. MOON, Iowa State University WILLIAM L. OGREN, University of Illinois G. EDWARD SCHUH, University of Minnesota JOHN W. SUTTIE, University of Wisconsin THOMAS N. URBAN, Pioneer Hi-Bred International, Inc. ROBERT T. WILSON, Mississippi State University JAMES J. ZUICHES, Washington State University Staff WARREN R. MUIR, Executive Director MYRON F. UMAN, Acting Executive Director (through June 1999) DAVID L. MEEKER, Director (since March 2000) CHARLOTTE KIRK BAER, Associate Director vi Copyright © National Academy of Sciences. All rights reserved. Foreword THE CONTEXT OF THIS REPORT A revolution has been taking place in the life sciences, sparked by striking advances in our fundamental understanding of living systems. These advances have led to the development of powerful molecular tech- niques, which can help society to conquer human disease, improve food production, and better protect the environment. As with all new scien- tific developments, however, potential risks need to be carefully evalu- ated and dealt with appropriately. The National Academies are commit- ted to bringing together experts to discuss and comment on the scientific issues surrounding the application of biotechnology to important mod- ern-day problems. In 1987 the National Academy of Sciences issued a white paper on the “Introduction of Recombinant DNA-Engineered Organisms into the En- vironment,” which dealt with general principles concerning potential eco- logical risks in field testing. In his preface, my predecessor, Frank Press, stated that the paper “applies the relevant scientific principles” to key issues, but was not intended to “resolve questions pertaining to the estab- lishment of specific regulations or guidelines governing release proce- dures.” In 1989, the National Research Council issued the report, “Field Testing Genetically Modified Organisms: Framework for Decisions,” which addressed the ecological risks of small-scale field testing of engi- neered organisms. Neither potential human health risks, nor issues raised vii Copyright © National Academy of Sciences. All rights reserved. viii FOREWORD by large-scale commercial planting, were addressed in that study which considered scientific issues primarily, not regulatory policy. These two reports reflected the best judgment of two highly expert groups of scien- tists, and they were based on the scientific evidence available to them at the time. The full text of these and all other reports from the National Academies are available on the Worldwide Web at www.nap.edu. Utilizing information gained over the past decade, the National Re- search Council is releasing this important report on genetically modified pest-protected plants. Prepared by another expert committee, it provides timely advice to researchers, developers, and regulatory agencies involved in reviewing the science surrounding the regulation of genetically modi- fied pest-protected crops. The report addresses only one aspect of the ongoing revolution in the life sciences and agriculture, and it is careful to point out where more research and scientific information is needed to answer remaining questions. The National Research Council intends for it to be only the first of several reports to be produced over the next
Recommended publications
  • Corn Allergy
    CORN ALLERGY Corn has been said to be the finest of all vegetables and certainly the staff of life in many areas of the world. Sensitivity to corn is one of the most common causes of food allergy and can be very difficult to avoid. MODE OF EXPOSURE: Corn may be a cause of allergic symptoms as the result of ingestion, inhalation or direct contact. The most common inhalant sources are the fumes of popcorn and the steam of cooking corn. Direct contact exposures include body DIET HAND powders, bath powders and starch used when ironing clothes. Occasionally corn is a cause of trouble as an inhalant when all other sources of corn are tolerated. In general, the ingestion of corn and corn containing products represents by far the greatest corn exposure. Rarely the degree of sensitivity is so great that even the small amounts found in many medicinal tablets (zein coatings or corn starch) or capsules becomes a factor. FORMS OF CORN: Quite often there is a difference in the effect caused by various forms of corn. Thus, one might be able to eat certain forms of corn without having any symptoms, but will react if using other forms of corn or corn products that are more processed, such as sugar, starch, or corn oil. Popcorn may be a cause of trouble when all other kinds of corn products are agreeable. A. Processed forms of Corn Corn flakes Corn flour Corn meal Corn oil Cornstarch Corn chips Tortilla chips Corn syrups Corn sugars Cerelose Dextrose Grits Hominy Parched corn Popped corn Puffed corn flakes CONTACTS WITH CORN: Corn is mixed with more foods than any other single food.
    [Show full text]
  • Allergy FREE Ultimate Meal Assembly Guide
    Ready. Set. Go. AAlllleerrggyy FFRREEEE UUllttiimmaattee MMeeaall AAsssseemmbbllyy GGuuiiddee Free of Gluten, Soy, Dairy, Peanuts, Corn, Eggs, Sugar and Artificial Sweeteners! JJ Virgin, CNS, CHFS Disclaimer: This information has not been evaluated by the FDA and is not intended to treat, diagnose, cure or prevent any disease. This information is not intended as a substitute for the advice or medical care of a qualified health care professional and you should seek the advice of your health care professional before undertaking any dietary or lifestyle changes. The material provided herein is for educational purposes only ©2011 JJ Virgin & Associates, Inc. www.jjvirgin.com Page 1 All rights reserved. This material may not be reproduced, transmitted, distributed or otherwise used, except with the prior written permission of JJ Virgin & Associates, Inc. Why Can’t I Eat Eggs, Gluten, Dairy, Corn, Soy, Sugar, Artificial Sugars or Peanuts? The removal of offending foods from the diet can deliver a number of health benefits: weight loss, better energy, improvements in sleep, clear complexion, and much more. To make this happen, the primary organs of detoxification (the GI system, skin, and liver) need to function at full capacity. Over the years, we have discovered with our private clients that certain foods can be problematic and interfere with efficient detoxification and, ultimately, weight loss and health gains. As such they have been removed from the program. Here’s more detail on those that trigger the most questions from our program participants. EGGS What They Do Eggs are a fairly common food sensitivity item; most of our clients who discover this issue through our functional lab testing aren’t even aware they have the problem.
    [Show full text]
  • Scogs-50 Evaluation of the Health Aspects of Corn
    SCOGS-50 EVALUATION OF THE HEALTH ASPECTS OF CORN SUGAR (DEXTROSE), CORN SYRUP, AND INVERT SUGAR AS FOOD INGREDIENTS 1976 Prepared for Bureau of Foods Food and Drug Administration Department of Health, Education, and Welfare Washington, D. C. Contract No. FDA 223-75-2004 LIFE SCIENCES RESEARCH OFFICE FEDERATION OF AMERICAN SOCIETIES FOR EXPERIMENT AL BIOLOGY 9650 Rockville Pike Bethesda, Maryland 20014 SCOGS-50 EVALUATION OF THE HEALTH ASPECTS OF CORN SUGAR (DEXTROSE), • CORN SYRUP, AND INVERT SUGAR AS FOOD INGREDIENTS ,., 1976 Prepared for Bureau of Foods Food and Drug Administration Department of Health. Education, and Welfare Washington, D. C. Contract No. FDA 223-75-2004 Life Sciences Research Office Federation of American Societies for Experimental Biology 9650 Rockville Pike Bethesda, Maryland 20014 64 NOTICE This report is one of a series concerning the health aspects of using the Generally Recognized as Safe (GRAS) or prior sanctioned food substances as food ingredients, being made by the Federation of American Societies for Experimental Biology (FASEB) under contract no. 223-75-2004 with the Food and Drug Administration (FDA), U.S. Department of Health, Education, and Welfare. The Federation recognizes that the safety of GRAS substances is of national significance, and that its resources are particularly suited to marshalling the opinions of knowledgeable scientists to assist in these evaluations. The Life Sciences Research Office (LSRO), established by II F ASEB in 1962 to make scientific assessments in the biomedical sciences, is conducting these studies. Qualified scientists were selected as consultants to review and evaluate the a vailable information on ea ch of the GRAS substances.
    [Show full text]
  • Why Can't I Eat Gluten, Dairy, Corn, Soy, Peanuts Or
    WHY CAN’T I EAT GLUTEN, DAIRY, CORN, SOY, PEANUTS OR SUGARS ARTIFICIAL SWEETENERS? The removal of offending foods from the diet can deliver a number of health benefits: weight loss, better energy, improvements in sleep, clear complexion, and much more. To make this happen, the primary organs of detoxification (the GI system, skin, and liver) need to function at full capacity. Over the years, we have discovered with our private clients that certain foods can be prob - lematic and interfere with efficient detoxification and, ultimately, weight loss and health gains. As such they have been removed from the program. Here’s more detail on those that trigger the most questions from our program participants. EGGS WHAT THEY DO Eggs are a fairly common food sensitivity item; most of our clients who discover this issue through our functional lab testing aren’t even aware they have the problem. People who have this issue often notice gas, bloating and heartburn up to 2 days after eating eggs or egg-containing foods. They also have been linked with eczema and psoriasis. WHERE THEY HIDE Obviously, in omelets and quiches and other breakfast dishes. But, remember that eggs are ubiquitous in baked goods, pancakes, breads, and salads (like tuna and potato), and are often hidden in meatloaves, crab cakes, soups (think egg drop and matzo ball), crepes, zucchini fritters, stuffings, noodles, and meatballs. Avoid all these foods. • Always read ingredient lists on food labels. You’d be surprised how many foods contain egg. • Be aware that most egg replacers do not equal the nutrient quality of real eggs.
    [Show full text]
  • Global Event for Biotechnology Returns to Chicago
    WINTER/SPRING 2010 Special BIO International Convention Edition Global Event for Biotechnology Returns to Chicago Essays from BIO, ADM, Abbott and Baxter Updates on Nanotechnology Overviews of Astellas and Lilly Highlights from Illinois Technology Parks and Midwest Research Universities Network Guidance on Patents and Payers James Greenwood President and CEO Biotechnology Industry Organization WINTER/SPRING 2010 Contents BioLogical Quarterly SM Responding to Challenges, Capitalizing on Opportunities Editorial Advisory Committee 4 Kris Lutt, iBIO Chairman of the Board Steven E. Ducommun Partner 6 Meeting Agriculture’s Challenges, Sustainably K & L Gates LLP Dr. Robert Fraley, Chief Technology Officer, Monsanto Company William Fitzsimmons Senior VP 12 Global Expertise at the Nanoscale Research & Development Jed Weiner, Editor, BioLogical Quarterly Astellas Pharma US, Inc. Dr. Alicia Löffler 20 Patient-Focused Medical Innovation Executive Director & Bart Peterson, Senior Vice President, Eli Lilly and Company Associate VP for Commercialization Northwestern University 26 Astellas, Moving Forward Kris Lutt Seigo Kashii, President & CEO, Astellas Pharma US, Inc. Advisor, Office of the Chairman Archer Daniels Midland Company 30 Research Institutions in the Midwest: Powerful & Diverse Allen J. Dines and Marc Oettinger, Midwest Research University Network Terrence J. Noetzel Global Lead Client Service Partner Deloitte Consulting LLP 36 Leading the Charge for Education Reform David Miller, iBIO Institute President & CEO Dr. Norbert Riedel Corporate
    [Show full text]
  • Corn Allergy
    Corn Allergy Controversy exists about whether or not “corn allergy” even exists. Many experts believe that it is actually a “corn intolerance.” In fact, this is the official stance of the Food Allergy and Anaphylaxis Network (FAAN). The US Food and Drug Administration also does not consider corn as an allergen. Most allergists state that they have never had any interaction with a patient suffering from a corn allergy. However, others believe that it is an allergen in rare instances, because corn is a protein. To diagnose a food allergy, a skin or radioallergosorbent test (RAST) is followed by a food challenge or an elimination diet. Foods containing corn or corn products Corn/corn products are found in many foods. It is important to carefully and consistently review labels to look for products that contain corn. These foods must likely contain corn: • Alcohol, including bourbon, blended scotch, and some beers • Cereals • Chocolate milk • Baked goods • Candies • Canned fruits • Confectioners’ sugar • Ice cream • Jams and jellies • Pickles • Tartar sauce • Deli meats • Processed meats, including hot dogs • Egg substitutes • Peanut butter • Sodas and other bottled beverages • Fruit drinks and sweetened fruit juices • Taco shells • Packaged potatoes • Pasta products • Polenta • Frozen pancakes • Frozen waffles • Frozen breads • Canned or dried soups • Margarines • Salad dressings • Caramel and vanilla extracts • Spaghetti sauce • Ketchup • Powdered coffee creamers • Teas • Yeast • Snack foods • Syrups • Flavored yogurt • Processed fried foods, such as fish sticks, potato puffs, French fries, etc • Some produce (some produce is coated with a corn-based wax) Ingredients to avoid The following ingredients do not definitely contain corn, but are likely to.
    [Show full text]
  • County of Santa Cruz
    County of Santa Cruz HEALTH SERVICES AGENCY POST OFFICE BOX 962, 1080 EMELINE AVENUE SANTA CRUZ, CA 95061-0962 (831) 454-4000 FAX: (831) 454-4488 TDD: (831) 454-4123 PUBLIC HEALTH DIVISION Genetic Engineering (GE) A Report from the GE Subcommittee of The Public Health Commission May, 2006 Contributing Members Laurie Howard 1st District * Richard Nutter 4th District Katherine 1st District * Arty Mangan 5th District Sweet Ken Kimes 2nd District * Wesley Van Camp 5th District Steve 2nd District * David Moeller Agricultural Bontadelli Commissioner Phil Howard 3rd District * Matt Farrell Public Health Commission Lisa Bunin 3rd District * Poki Namkung Health Service Agency Thomas Rider 4th District * Laura Tourte Ex-Officio (non-voting) UC Cooperative Extension 1 EXECUTIVE SUMMARY The intent of the Genetic Engineering (GE) Subcommittee of the Public Health Commission is to provide information and recommendations to the Board of Supervisors regarding the issues of growing Genetically Engineered or Genetically Modified (GE or GM) crops in Santa Cruz County. Although “genetic modification” and “genetic engineering” are sometimes used interchangeably, this task force strictly limited its research and recommendations to genetically engineered (GE) food crops. Genetic engineering refers to only recombinant deoxyribonucleaic acid (rDNA) methods that allow a gene from one species to be inserted, and subsequently expressed, in a food crop or other food product. Recombinant DNA technology combines genes from different organisms in ways that would not otherwise occur in nature, or through traditional plant breeding. An example of a GE crop currently on the market is a corn variety which contains the pesticide Bacillus thurengiensis (Bt). Because the Bt toxin is contained in every cell of the plant, pests die when they eat the plant.
    [Show full text]
  • Livingston Tomato Report 2016 NM Livingston THESIS PRINT MASTER
    The Livingston Tomato Report 2016: The philosophical environmentalist’s guide to Justice in the Global Food System “A Major Paper submitted to the Faculty of Environmental Studies in partial fulfillment of the requirements for the degree of Master in Environmental Studies, York University, North York, Ontario, Canada.” Author: Supervisor: _______________________ ______________________ Neil M. Livingston Martin J. Bunch Date: 30 November 2015 Date: 30 November 2015 © 2016 Neil Marcellus Livingston The Livingston Tomato Report 2016: The philosophical environmentalist’s guide to Justice in the Global Food System “Everyone should have a fresh tomato to eat: A critical assessment of this proposition in the Costa Rican and Canadian cases.” Abstract This research paper sets the groundwork for an explanation of the global food system using complexity science as the theoretical framework to recount the story of the tomato (Solanum lycopersicum), its origin (Solanum pimpinellifolium), its role in popular culture how the tomato enters and exits the global food system and our digestive systems. By arguing in defense of the right of every person to eat a healthy tomato this study focuses upon the benefits and risks of herbicides, specifically N-(phosphonomethyl) glycine. I approach solutions from an environmental justice standpoint. I focus on the role of access to information as a leverage point. Methodologically, a detailed media survey led to the creation of a database that produced a timeline. Critical analysis of this timeline, actors and institutions allowed for focus on specific touchstones by which to ground my account. A review of the literature including environmental novels frames this timeline starting in the mid-to late 1800’s, through the age of industrialization incorporating the aftermath of Breton-Woods to 1971, Nixon, the Club of Rome, the year of my birth and Neil Armstrong walking on the moon.
    [Show full text]
  • Field-Testing Engineered Organisms: Genetic and Ecological Issues
    New Developments in Biotechnology: Field-Testing Engineered Organisms: Genetic and Ecological Issues May 1988 NTIS order #PB88-214101 Recommended Citation: U.S. Congress, Office of Technology Assessment, New Developments in Biotechnology- Field-Testing Engineered Organisms: Genetic and Ecological Issues, OTA-BA-350 (Wash- ington, DC: U.S. Government Printing Office, May 1988). Library of Congress Catalog Card Number 88-600522 For sale by the Superintendent of Documents U.S. Government Printing Office, Washington, DC 20402-9325 (order form can be found in the back of this report) Foreword Since the discovery of recombinant DNA technology in the early 1970s much atten- tion has focused on the potential benefits and risks presented by the new abilities of researchers to manipulate DNA. The importance of ecological issues was heightened in 1982 with the proposal by researchers to field test bacteria engineered to reduce crop losses due to frost damage. Additional pressures have come to bear as a result of developments in the economics of American agriculture and with foreign trade im- balances. In this special report OTA analyzes some of the scientific and public opinion issues surrounding the planned introduction of genetically engineered organisms into the environment. The assessment of New Developments in Biotechnology was requested by the House Committee on Energy and Commerce and the House Committee on Science, Space, and Technology. The first publication in the series was Ownership of Human Tissues and Cells, and the second was Public Perceptions of Biotechnology. Subsequent studies will examine U.S. investment in biotechnology and issues relevant to the patenting of plants, animals, and microorganisms.
    [Show full text]
  • The Practitioner's Guide to Delayed Food Sensitivities
    The Practitioner’s Guide to Delayed Food Sensitivities Brent L. Dorval, Ph.D. and Marissa Mirenda, M.S. Version: 1.4-04APR17 About the Authors Dr. Dorval has over 25 years of experience in strategic management of research, manufacturing and regulatory affairs in the area of medical devices and diagnostics. Previously, Dr. Dorval held a number of management positions and served as an advisor to the World Health Organization committee on vaccines and diagnostics. Dr. Dorval has several patents covering rapid assays, novel biomarkers and a novel Polio Virus vaccine. Dr. Dorval holds a Ph.D. in Medical Microbiology and Immunology from the College of Medicine, The Ohio State University and performed postdoctoral studies and was a Visiting Scholar in the Department of Chemistry at the Massachusetts Institute of Technology. Marissa Mirenda, M.S. performed her undergraduate studies in Biology and Psychology at Rutgers University and her graduate studies in BioMedical Forensics at Boston University School of Medicine. She currently works at KBMO Diagnostics in Hopedale, Massachusetts performing clinical lab work using the FIT test to study food sensitivities in patients from all over the world. 2 Table of Contents Section Page Introduction to Food Sensitivities 4 Differentiation of Food Allergies, Food Sensitivities and Food Intolerance 4 Comparison of Food Sensitivity, Food Allergies and Food Intolerance (Table) 4 Food Allergies: Type I, Immediate Hypersensitivity 4-5 Food Sensitivities: Types II & III, Delayed Hypersensitivity 5 Food Sensitivities: Food Intolerance 6 The Food Inflammation Test (FIT Test) Format 6 Comparison of the FIT Test with other available Tests 6-7 Interpretation of the FIT Test Results 7 Implementation of the FIT Test Results and Report 7 Elimination, Rotation and Challenge Diets based on the FIT Test Results 7-8 Food Sensitivity Testing of the Eight most common Food Groups using The FIT Test 8 I.
    [Show full text]
  • Chondrial Ca2+ Overload. Eur J Ph
    誌 上 発 表 ( 原 著 論 文 ) 185 誌 上 発 表 (原著論文) Summaries of Papers Published in Other Journals (Original Papers) Namekata, I.*, Shimada, H.*, Kawanishi, T., Tanaka, H.* were in good agreement with those previously reported in and Shigenobu, K*: Reduction by SEA0400 of myo- voltage clamped cardiomyocytes. cardial ischemia-induced cytoplasmic and mito- Keywords: Na+-Ca2+ exchange, cardiomyocyte, fl uorescence chondrial Ca2+ overload. microscopy ( ) *1 Eur J Pharmacol ., 543, 108-115 2006 東邦大学薬学部 + The cardioprotective effects of SEA0400, a novel Na - *2 大妻大学家政学部 Ca2+ exchanger inhibitor, were examined in isolated guinea pig myocardial tissue and ventricular myocytes. In a coro- Tanaka, H.*1, Shimada, H.*1, Namekata, I.*1, Kawanishi, T., nary-perfused right ventricular tissue preparation, SEA0400 Iida-Tanaka, N.*2, Shigenobu, K.*1: Involvement of the had no cardiosuppressive effect during normoxia and exper- Na+/Ca2+ exchanger in ouabain-induced inotropy imental ischemia, but enhanced the recovery of contractile and arrhythmogenesis in guinea-pig myocardium force during reperfusion. SEA0400 had no effect on tissue as revealed by SEA0400. ATP content during normoxia, but attenuated its decrease J Pharmacol Sci. , 103, 241-246( 2007) during ischemia. Treatment of ventricular myocytes with Involvement of the Na+/Ca2+ exchanger in ouabain- an ischemia mimetic solution( high K+, glucose free, pH induced inotropy and arrhythmogenesis was examined with 6.0, gassed with N2) resulted in the depolarization of the a specific inhibitor, SEA0400. In right ventricular papil- mitochondrial membrane potential and an increase in cyto- lary muscle isolated from guinea-pig ventricle, 1 microM plasmic and mitochondrial Ca2+ concentration, which had a SEA0400, which specifi cally inhibits the Na+/Ca2+ exchang- similar time course.
    [Show full text]
  • Can Gmos Help Feed a Hot and Hungry World? Not If Activists Succeed in Making the Genetic Modification of Food Politically Unsustainable
    July 22/29, 2014 The Nation. 23 Can GMOs Help Feed a Hot and Hungry World? Not if activists succeed in making the genetic modification of food politically unsustainable. by MADELINE OSTRANDER ILLUSTRATION BY TIM ROBINSON PHOTO CREDIT TK 24 The Nation. September 1/8, 2014 and so he and his researchers are scouring the world for varieties of fruits, vegetables and some basic staples— rice, millet, wheat, maize—that grow well without much water. Then, using a device called a “gene gun,” which duardo blumwald’s ge- inserts DNA on microscopic gold particles, or a soil netically modifi ed plantsE don’t look much like “Franken- bacterium capable of changing plant genes, they alter food.” Filling four modest greenhouses in a concrete lot or silence parts of the plant’s genome, adjusting how behind Blumwald’s laboratory at the University of Cali- and when the plant makes the hormones that let it know fornia, Davis, the tiny seedlings, spiky grasses, alfalfa, when to grow and when to wither. The researchers say and peanut and rice plants in plastic terracotta-colored the methods are more precise and much faster than de- pots look exactly like the ordinary varieties from which veloping new plant varieties by conventional breeding, he and his fellow researchers created them. Blumwald’s which can take decades. lab lies just ten miles from Monsanto’s 90,000-square- Because When I tour the rows of rice and peanuts with one foot vegetable seed building, a glassy edifi ce larger than of your of Blumwald’s assistants, a postdoctoral researcher from the hangar for a 747.
    [Show full text]