A Technology to Synthesize 360-Degree Video Based on Regular Dodecahedron in Virtual Environment Systems*
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A New Calculable Orbital-Model of the Atomic Nucleus Based on a Platonic-Solid Framework
A new calculable Orbital-Model of the Atomic Nucleus based on a Platonic-Solid framework and based on constant Phi by Dipl. Ing. (FH) Harry Harry K. K.Hahn Hahn / Germany ------------------------------ 12. December 2020 Abstract : Crystallography indicates that the structure of the atomic nucleus must follow a crystal -like order. Quasicrystals and Atomic Clusters with a precise Icosahedral - and Dodecahedral structure indi cate that the five Platonic Solids are the theoretical framework behind the design of the atomic nucleus. With my study I advance the hypothesis that the reference for the shell -structure of the atomic nucleus are the Platonic Solids. In my new model of the atomic nucleus I consider the central space diagonals of the Platonic Solids as the long axes of Proton - or Neutron Orbitals, which are similar to electron orbitals. Ten such Proton- or Neutron Orbitals form a complete dodecahedral orbital-stru cture (shell), which is the shell -type with the maximum number of protons or neutrons. An atomic nucleus therefore mainly consists of dodecahedral shaped shells. But stable Icosahedral- and Hexagonal-(cubic) shells also appear in certain elements. Consta nt PhI which directly appears in the geometry of the Dodecahedron and Icosahedron seems to be the fundamental constant that defines the structure of the atomic nucleus and the structure of the wave systems (orbitals) which form the atomic nucelus. Albert Einstein wrote in a letter that the true constants of an Universal Theory must be mathematical constants like Pi (π) or e. My mathematical discovery described in chapter 5 shows that all irrational square roots of the natural numbers and even constant Pi (π) can be expressed with algebraic terms that only contain constant Phi (ϕ) and 1 Therefore it is logical to assume that constant Phi, which also defines the structure of the Platonic Solids must be the fundamental constant that defines the structure of the atomic nucleus. -
The Roundest Polyhedra with Symmetry Constraints
Article The Roundest Polyhedra with Symmetry Constraints András Lengyel *,†, Zsolt Gáspár † and Tibor Tarnai † Department of Structural Mechanics, Budapest University of Technology and Economics, H-1111 Budapest, Hungary; [email protected] (Z.G.); [email protected] (T.T.) * Correspondence: [email protected]; Tel.: +36-1-463-4044 † These authors contributed equally to this work. Academic Editor: Egon Schulte Received: 5 December 2016; Accepted: 8 March 2017; Published: 15 March 2017 Abstract: Amongst the convex polyhedra with n faces circumscribed about the unit sphere, which has the minimum surface area? This is the isoperimetric problem in discrete geometry which is addressed in this study. The solution of this problem represents the closest approximation of the sphere, i.e., the roundest polyhedra. A new numerical optimization method developed previously by the authors has been applied to optimize polyhedra to best approximate a sphere if tetrahedral, octahedral, or icosahedral symmetry constraints are applied. In addition to evidence provided for various cases of face numbers, potentially optimal polyhedra are also shown for n up to 132. Keywords: polyhedra; isoperimetric problem; point group symmetry 1. Introduction The so-called isoperimetric problem in mathematics is concerned with the determination of the shape of spatial (or planar) objects which have the largest possible volume (or area) enclosed with given surface area (or circumference). The isoperimetric problem for polyhedra can be reflected in a question as follows: What polyhedron maximizes the volume if the surface area and the number of faces n are given? The problem can be quantified by the so-called Steinitz number [1] S = A3/V2, a dimensionless quantity in terms of the surface area A and volume V of the polyhedron, such that solutions of the isoperimetric problem minimize S. -
Of Great Rhombicuboctahedron/Archimedean Solid
Mathematical Analysis of Great Rhombicuboctahedron/Archimedean Solid Mr Harish Chandra Rajpoot M.M.M. University of Technology, Gorakhpur-273010 (UP), India March, 2015 Introduction: A great rhombicuboctahedron is an Archimedean solid which has 12 congruent square faces, 8 congruent regular hexagonal faces & 6 congruent regular octagonal faces each having equal edge length. It has 72 edges & 48 vertices lying on a spherical surface with a certain radius. It is created/generated by expanding a truncated cube having 8 equilateral triangular faces & 6 regular octagonal faces. Thus by the expansion, each of 12 originally truncated edges changes into a square face, each of 8 triangular faces of the original solid changes into a regular hexagonal face & 6 regular octagonal faces of original solid remain unchanged i.e. octagonal faces are shifted radially. Thus a solid with 12 squares, 8 hexagonal & 6 octagonal faces, is obtained which is called great rhombicuboctahedron which is an Archimedean solid. (See figure 1), thus we have Figure 1: A great rhombicuboctahedron having 12 ( ) ( ) congruent square faces, 8 congruent regular ( ) ( ) hexagonal faces & 6 congruent regular octagonal faces each of equal edge length 풂 ( ) ( ) We would apply HCR’s Theory of Polygon to derive a mathematical relationship between radius of the spherical surface passing through all 48 vertices & the edge length of a great rhombicuboctahedron for calculating its important parameters such as normal distance of each face, surface area, volume etc. Derivation of outer (circumscribed) radius ( ) of great rhombicuboctahedron: Let be the radius of the spherical surface passing through all 48 vertices of a great rhombicuboctahedron with edge length & the centre O. -
Cones, Pyramids and Spheres
The Improving Mathematics Education in Schools (TIMES) Project MEASUREMENT AND GEOMETRY Module 12 CONES, PYRAMIDS AND SPHERES A guide for teachers - Years 9–10 June 2011 YEARS 910 Cones, Pyramids and Spheres (Measurement and Geometry : Module 12) For teachers of Primary and Secondary Mathematics 510 Cover design, Layout design and Typesetting by Claire Ho The Improving Mathematics Education in Schools (TIMES) Project 2009‑2011 was funded by the Australian Government Department of Education, Employment and Workplace Relations. The views expressed here are those of the author and do not necessarily represent the views of the Australian Government Department of Education, Employment and Workplace Relations. © The University of Melbourne on behalf of the International Centre of Excellence for Education in Mathematics (ICE‑EM), the education division of the Australian Mathematical Sciences Institute (AMSI), 2010 (except where otherwise indicated). This work is licensed under the Creative Commons Attribution‑NonCommercial‑NoDerivs 3.0 Unported License. 2011. http://creativecommons.org/licenses/by‑nc‑nd/3.0/ The Improving Mathematics Education in Schools (TIMES) Project MEASUREMENT AND GEOMETRY Module 12 CONES, PYRAMIDS AND SPHERES A guide for teachers - Years 9–10 June 2011 Peter Brown Michael Evans David Hunt Janine McIntosh Bill Pender Jacqui Ramagge YEARS 910 {4} A guide for teachers CONES, PYRAMIDS AND SPHERES ASSUMED KNOWLEDGE • Familiarity with calculating the areas of the standard plane figures including circles. • Familiarity with calculating the volume of a prism and a cylinder. • Familiarity with calculating the surface area of a prism. • Facility with visualizing and sketching simple three‑dimensional shapes. • Facility with using Pythagoras’ theorem. • Facility with rounding numbers to a given number of decimal places or significant figures. -
Using History of Mathematics to Teach Volume Formula of Frustum Pyramids: Dissection Method
Universal Journal of Educational Research 3(12): 1034-1048, 2015 http://www.hrpub.org DOI: 10.13189/ujer.2015.031213 Using History of Mathematics to Teach Volume Formula of Frustum Pyramids: Dissection Method Suphi Onder Butuner Department of Elementary Mathematics Education, Bozok University, Turkey Copyright © 2015 by authors, all rights reserved. Authors agree that this article remains permanently open access under the terms of the Creative Commons Attribution License 4.0 International License Abstract Within recent years, history of mathematics dynamic structure of mathematics [1, 2, 3, 4, 5, 6, 7]. It is (HoM) has become an increasingly popular topic. Studies stressed that history of mathematics will enrich the repertoire have shown that student reactions to it depend on the ways of teachers and develop their pedagogical content knowledge they use history of mathematics. The present action research [7, 8]. Jankvist [5] (2009) explains the use of history of study aimed to make students deduce volume rules of mathematics both as a tool and as a goal. History-as-a-tool frustum pyramids using the dissection method. Participants arguments are mainly concerned with learning of the inner were 24 grade eight students from Trabzon. Observations, issues of mathematics (mathematical concepts, theories, informal interviews and feedback forms were used as data methods, formulas), whereas history-as-a-goal arguments collection tools. Worksheets were distributed to students and are concerned with the use of history as a self-contained goal. the research was conducted in 3 class hours. Student views From the history-as-a-goal point of view, knowing about the on the activities were obtained through a written feedback history of mathematics is not a primary tool for learning form consisting of 4 questions. -
Uniform Panoploid Tetracombs
Uniform Panoploid Tetracombs George Olshevsky TETRACOMB is a four-dimensional tessellation. In any tessellation, the honeycells, which are the n-dimensional polytopes that tessellate the space, Amust by definition adjoin precisely along their facets, that is, their ( n!1)- dimensional elements, so that each facet belongs to exactly two honeycells. In the case of tetracombs, the honeycells are four-dimensional polytopes, or polychora, and their facets are polyhedra. For a tessellation to be uniform, the honeycells must all be uniform polytopes, and the vertices must be transitive on the symmetry group of the tessellation. Loosely speaking, therefore, the vertices must be “surrounded all alike” by the honeycells that meet there. If a tessellation is such that every point of its space not on a boundary between honeycells lies in the interior of exactly one honeycell, then it is panoploid. If one or more points of the space not on a boundary between honeycells lie inside more than one honeycell, the tessellation is polyploid. Tessellations may also be constructed that have “holes,” that is, regions that lie inside none of the honeycells; such tessellations are called holeycombs. It is possible for a polyploid tessellation to also be a holeycomb, but not for a panoploid tessellation, which must fill the entire space exactly once. Polyploid tessellations are also called starcombs or star-tessellations. Holeycombs usually arise when (n!1)-dimensional tessellations are themselves permitted to be honeycells; these take up the otherwise free facets that bound the “holes,” so that all the facets continue to belong to two honeycells. In this essay, as per its title, we are concerned with just the uniform panoploid tetracombs. -
About This Booklet on Surface Areas and Volumes
About This Booklet on Surface1 Areas and Volumes About This Booklet on Surface Areas and Volumes This Particular Booklet has been designed for the students of Math Class 10 (CBSE Board). However, it will also help those who have these chapters in their curriculum or want to gain the knowledge and explore the concepts. This Booklet explains: 1. Cube, Cuboid and Cylinder 2. Cone and Frustum 3. Sphere and Hemisphere 4. Combination of solids This Booklet also covers: 1. MCQs 2. Questions with Solutions 3. Questions for practice and 4. QR Codes to scan and watch videos on Surface Areas and Volumes QR codes when scanned with mobile scanner take you to our YouTube channel Let’sTute (www.youtube.com/letstute) where you can watch our free videos (need internet connection) on the topic. For Surface Areas and Volumes, in total, we have 8 videos which are accessible on several other platforms as described on the back cover of this Booklet. However, if there is any query, feel free to connect with us on the details given on the last page. Some other documents are also available: About Let’s Tute Let’sTute (Universal Learning Aid) is an E-learning company based in Mumbai, India. (www.letstute.com) We create content for Mathematics, Biology, Physics, Environmental Science, Book-Keeping & Accountancy and also a series on value education known as V2lead 2 13 .1 Cube, Cuboid and Cylinder Scan to watch the video on INTRODUCTION Surface area and Volume Surface Area: It is the sum of total exposed area of a three dimensional solid object. -
A Method for Predicting Multivariate Random Loads and a Discrete Approximation of the Multidimensional Design Load Envelope
International Forum on Aeroelasticity and Structural Dynamics IFASD 2017 25-28 June 2017 Como, Italy A METHOD FOR PREDICTING MULTIVARIATE RANDOM LOADS AND A DISCRETE APPROXIMATION OF THE MULTIDIMENSIONAL DESIGN LOAD ENVELOPE Carlo Aquilini1 and Daniele Parisse1 1Airbus Defence and Space GmbH Rechliner Str., 85077 Manching, Germany [email protected] Keywords: aeroelasticity, buffeting, combined random loads, multidimensional design load envelope, IFASD-2017 Abstract: Random loads are of greatest concern during the design phase of new aircraft. They can either result from a stationary Gaussian process, such as continuous turbulence, or from a random process, such as buffet. Buffet phenomena are especially relevant for fighters flying in the transonic regime at high angles of attack or when the turbulent, separated air flow induces fluctuating pressures on structures like wing surfaces, horizontal tail planes, vertical tail planes, airbrakes, flaps or landing gear doors. In this paper a method is presented for predicting n-dimensional combined loads in the presence of massively separated flows. This method can be used both early in the design process, when only numerical data are available, and later, when test data measurements have been performed. Moreover, the two-dimensional load envelope for combined load cases and its discretization, which are well documented in the literature, are generalized to n dimensions, n ≥ 3. 1 INTRODUCTION The main objectives of this paper are: 1. To derive a method for predicting multivariate loads (but also displacements, velocities and accelerations in terms of auto- and cross-power spectra, [1, pp. 319-320]) for aircraft, or parts of them, subjected to a random excitation. -
Volume of Prisms, Cones, Pyramids & Spheres
Volume of Prisms, Cones, Pyramids & Spheres (H) A collection of 9-1 Maths GCSE Sample and Specimen questions from AQA, OCR, Pearson-Edexcel and WJEC Eduqas. Name: Total Marks: 1. A cylinder is made of bendable plastic. A dog’s toy is made by bending the cylinder to form a ring. The inner radius of the dog’s toy is 8 cm. The outer radius of the dog’s toy is 9 cm. Calculate an approximate value for the volume of the dog’s toy. State and justify what assumptions you have made in your calculations and the impact they have had on your results. [7] www.justmaths.co.uk Volume of Prisms, Cones, Pyramids & Spheres (H) - Version 2 January 2016 2. In this question all dimensions are in centimetres. A solid has uniform cross section. The cross section is a rectangle and a semicircle joined together. Work out an expression, in cm3, for the total volume of the solid. 1 Write your expression in the form ��3 + ��3 where � and � are integers. � [4] 3. A circular table top has radius 70 cm. (a) Calculate the area of the table top in cm2, giving your answer as a multiple of �. (a) ....................... cm2 [2] (b) The volume of the table top is 17 150� cm3. Calculate the thickness of the table top. (b) ........................ cm [2] www.justmaths.co.uk Volume of Prisms, Cones, Pyramids & Spheres (H) - Version 2 January 2016 4. The volume of Earth is 1.08 × 1012 km3. The volume of Jupiter is 1.43 × 1015 km3. How many times larger is the radius of Jupiter than the radius of Earth? Assume that Jupiter and Earth are both spheres. -
Bridges Conference Proceedings Guidelines
Proceedings of Bridges 2013: Mathematics, Music, Art, Architecture, Culture Exploring the Vertices of a Triacontahedron Robert Weadon Rollings 883 Brimorton Drive, Scarborough, Ontario, M1G 2T8 E-mail: [email protected] Abstract The rhombic triacontahedron can be used as a framework for locating the vertices of the five platonic solids. The five models presented here, which are made of babinga wood and brass rods illustrate this relationship. Introduction My initial interest in the platonic solids began with the work of Cox [1]. My initial explorations of the platonic solids lead to the series of models Polyhedra through the Beauty of Wood [2]. I have continued this exploration by using a rhombic triacontahedron at the core of my models and illustrating its relationship to all five platonic solids. Rhombic Triacontahedron The rhombic triacontahedron has 30 rhombic faces where the ratio of the diagonals is the golden ratio. The models shown in Figures 1, 2, 4, and 5 illustrate that the vertices of an icosahedron, dodecahedron, hexahedron and tetrahedron all lie on the circumsphere of the rhombic triacontahedron. In addition, Figure 3 shows that the vertices of the octahedron lie on the inscribed sphere of the rhombic triacontahedron. Creating the Models Each of the five rhombic triacontahedrons are made of 1/4 inch thick babinga wood. The edges of the rhombi were cut at 18 degrees on a band saw. After the assembly of the triacontahedron 1/8 inch brass rods were inserted a specific vertices and then fitted with 1/2 inch cocabola wood spheres. Different vertices (or faces in the case of the octahedron) were chosen for each platonic solid. -
Polytopes and Nuclear Structure by Roger Ellman Abstract
Polytopes and Nuclear Structure by Roger Ellman Abstract While the parameters Z and A indicate a general structural pattern for the atomic nuclei, the exact nuclear masses in their fine differences appear to vary somewhat randomly, seem not to exhibit the orderly kind of logical system that nature must exhibit. It is shown that separation energy [the mass of the nucleus before decay less the mass of a decay’s products], not mass defect [the sum of the nuclear protons and neutrons masses less the nuclear mass], is the “touchstone” of nuclear stability. When not part of an atomic nucleus the neutron decays into a proton and an electron indicating that it can be deemed a combination of those two. Considering that, the nucleus can be analyzed as an assembly of A protons and N = A - Z electrons, where N of the protons form neutrons with the N electrons. Resulting analysis discloses a comprehensive orderly structure among the actual nuclear masses of all the nuclear types and isotopes. The analysis examines in detail the conditions for nuclear stability / instability. An interesting secondary component of that analysis and the resulting logical order is the family of geometric forms called polytopes, in particular the regular polyhedrons. Roger Ellman, The-Origin Foundation, Inc. http://www.The-Origin.org 320 Gemma Circle, Santa Rosa, CA 95404, USA [email protected] 1 Polytopes and Nuclear Structure Roger Ellman While the parameters, Z and A, of atomic nuclei indicate a general structural pattern for the nuclei, the exact nuclear masses in their various differences seem not to exhibit the orderly kind of logical system that nature must exhibit. -
A Mathematical Space Odyssey
Contents Preface ix 1 Introduction 1 1.1Tenexamples......................... 1 1.2 Inhabitants of space . ..................... 9 1.3 Challenges .......................... 22 2 Enumeration 27 2.1Hexnumbers......................... 27 2.2Countingcalissons...................... 28 2.3 Using cubes to sum integers . ................ 29 2.4 Counting cannonballs ..................... 35 2.5 Partitioning space with planes ................ 37 2.6 Challenges .......................... 40 3 Representation 45 3.1 Numeric cubes as geometric cubes . ........... 45 3.2 The inclusion principle and the AM-GM inequality for threenumbers......................... 49 3.3Applicationstooptimizationproblems............ 52 3.4 Inequalities for rectangular boxes . ........... 55 3.5 Means for three numbers . ................ 59 3.6 Challenges .......................... 60 4 Dissection 65 4.1 Parallelepipeds, prisms, and pyramids . ........... 65 4.2 The regular tetrahedron and octahedron ........... 67 4.3 The regular dodecahedron . ................ 71 4.4Thefrustumofapyramid................... 72 4.5 The rhombic dodecahedron . ................ 74 4.6 The isosceles tetrahedron . ................ 76 4.7TheHadwigerproblem.................... 77 4.8 Challenges .......................... 79 xi xii Contents 5 Plane sections 83 5.1 The hexagonal section of a cube ............... 83 5.2Prismatoidsandtheprismoidalformula........... 85 5.3 Cavalieri’s principle and its consequences . ....... 89 5.4 The right tetrahedron and de Gua’s theorem . ....... 93 5.5 Inequalities