Balticasiberia Connection Challenges Traditional Tectonics Notions

Total Page:16

File Type:pdf, Size:1020Kb

Balticasiberia Connection Challenges Traditional Tectonics Notions Eos, Vol. 75, No. 40, October 4, 1994 At the same time, drilling can contribute its increasing vulnerability to natural haz­ curred in an ocean-continent transition zone to a number of problems related to obtaining ards, and in finding solutions to problems that was marginal to Baltica but faced north­ a better understanding of the structure, evolu­ associated with remediation of existing envi­ ern Siberia rather than Laurentia. tion, and dynamics of the lithosphere. These ronmental damage and prevention of include problems related to petrochemical additional environmental degradation. At An Alternate View of Early and structural evolution of Earth's crust in­ the same time, Earth scientists are motivated Landmass Positions cluding lithospheric rheology and strength, by an inexorable need to better understand and the distribution of plate driving forces; planet Earth. This report contains the scien­ A reconciliation of the paleomagnetic, pa­ and heat and mass transfer through the litho­ tific rationale for establishment of an leoclimatic, and biogeographic data (Figure sphere and thermal structure of the crust and International Continental Drilling Program to 1) indicates that Avalonia and the European upper mantle. enable the international geoscientific com­ Massifs (Armorica) were located close to Gondwana in high southerly latitudes during There is a broad consensus that any ICDP munity to meet the challenges they face by Early Ordovician times. Laurentia was posi­ to be established should carry out fundamen­ complementing ongoing field, laboratory tioned in equatorial latitudes during most of tal science covering as broad a spectrum of and theoretical studies with critical observa­ the Ordovician. Conversely, Baltica was first Earth science research as possible. The pro­ tions. Without such observations substantive situated at intermediate southerly latitudes gram should be proposal-driven and address scientific progress on many problems of and drifted northward while undergoing rota­ key questions at optimal geological sites great importance will be essentially impossi­ tions [Torsviketal 1992], approximately 90° from around the world and should involve ble." counterclockwise from Early Ordovician to drilling and coring at a variety of depths. That Copies of this report can be obtained Middle Silurian times. Avalonia had rifted is, the program should not be restricted to from J. Lauterjung, GeoForschungsZentrum, away from Gondwana by Llanvirn time, only deep or shallow drilling, but drilling Telegrafenberg A17, D-14473 Potsdam, Ger­ while Armorica remained in high latitudes should be used as required to address the many; fax: 331-288-1002; e-mail along with Gondwana throughout the Ordovi­ specific problem of interest. [email protected].—Mark D. Zoback, Stan­ cian (Figure lb). TheTornquist Sea, Following the Potsdam meeting, scientific ford University, Stanford, Calif; and Rolf separating Avalonia and Baltica, narrowed managers from many of the participating Emmermann, GeoForschungZentrum, gradually during the Ordovician, as indi­ countries traveled to Windischeschenbach, Potsdam, Germany cated by the increasing faunal similarity, the site of the ongoing German deep drilling whereas faunal bonds between Avalonia and project (KTB), to consider the establishment Gondwana declined. of an International Program of Continental By the end of the Ordovician, the Torn­ Scientific Drilling. The communique issued quist Sea between Avalonia and Baltica had at this meeting contained the following Baltica-Siberia closed sufficiently to form Balonia (Figure points: Connection Challenges lc). Finally, by Early-Middle Silurian times • There is an essential role for continental scien­ (-425 Ma), Balonia collided with Laurentia, tific drilling in the solid Earth sciences. Scientific causing the early stages of the Scandian Oro­ drilling should be an integral part of modern Traditional Tectonics Earth sciences to obtain critical data and test hy­ geny (Figure Id) and closing the intervening potheses in a broad spectrum of scientific disci­ Notions part of the Iapetus Ocean. plines. PAGES 461, 462 New View Counters Long-Held Ideas • Full realization of that role requires a compre­ Despite the large amount of paleomag- hensive international program. Problems to be netic, paleoclimatic, biogeographic, and The overturned paleo-orientation of Bal­ addressed are global in nature and in impor­ tance to society. The international geoscientific tectonic data available, uncertainty still sur­ tica during Early Ordovician time (Figures la community needs to use drilling to deal with rounds the paleotectonic evolution of Siberia and lb) casts doubt on the traditional con­ problems that span the full range of solid Earth and its proximity to other continents during cept of orthogonal relationships of Baltica science disciplines throughout the world. Such the Ordovician to Silurian periods. Much of and Laurentia across a single Iapetus Ocean problems could best be addressed by estab­ lishing an international continental drilling this uncertainty arises from the fact that pa- throughout the entire period of Caledonide program. leomagnetic data cannot be adequately evolution. The Scandinavian Caledonides assessed. are essentially complexes that formed in loca­ • It is time to embark on an international conti­ nental drilling program. The time is right be­ However, recent Ordovician-Early Silu­ tions other than where they were found cause of the outstanding scientific and technical rian paleomagnetic poles from the southern [Roberts and Gee, 1985]. Their current con­ achievements of the KTB project, widespread rec­ Siberian Platform (Lena River) show that Si­ figuration is the result of Mid-Late Silurian ognition of the importance of scientific drilling beria was geographically inverted at low collisional orogeny (Scandian) and sub­ in Earth science, and the recent endorsement of coordinated international scientific drilling activi­ southerly latitudes during the Early Ordovi­ sequent extensional events. ties by the Organization of Economic Coopera­ cian (Figure la). The Siberian plate then The lower nappes—sheetlike bodies of tion and Development. Also, political changes drifted slowly northward and across the equa­ solid rock that have moved long distances at in Eastern Europe offer many new opportunities tor at an average paleolatitudinal velocity of low angles over the the underlying rocks— for scientific collaboration, and developing coun­ 1 tries around the world need assistance in Earth -5-8 cm yr" . During Late Ordovician-Early Si­ consist of rock types indigenous to Baltica science training. lurian time, its velocity increased northward. and its miogeoclinal margin. The middle, or A final meeting report, "Scientific Ration­ In view of the paleomagnetic data from Si­ Seve Nappe Complex, contains essentially ale for Establishment of an International beria, coupled with recent paleomagnetic miogeoclinal rocks, but at high metamorphic Program of Continental Scientific Drilling," data and geological evidence from Baltica grade it includes Late Cambrian/Early Ordovi­ was drafted by the leaders of the thematic [Torsvik etai, 1992], we propose that Siberia cian eclogites [MorketaL, 1988]. Eclogiteis groups. The following is a quote from the re­ and Baltica formed conjugate margins dur­ granular metamorphic rock composed essen­ port: "We live in a geologically complex ing Latest Cambrian to Early-Middle tially of garnet and pyroxene, but with the world which presents the international geos­ Ordovician time (Figures la and lb). In this bulk of its composition very similar to that of cientific community with tremendous reconstruction, subduction-related changes basalt. The higher nappes are marked by challenges. Earth scientists must play a key to mineral assemblages of basaltic composi­ ophiolites—mafic and ultramafic igneous role in satisfying society's ever-increasing de­ tion in Latest Cambrian/Early Ordovician rocks—and island arc sequences of essentially pendence on natural resources, in reducing time in the Scandinavian Caledonides oc­ Ordovician age [Sturt and Roberts, 1991]. This page may be freely copied. Eos, Vol. 75, No. 40, October 4, 1994 Early Caledonian eclogitization, in Tre- madoc time, correlates with westward subduction of Baltic continental crust. This a) »=i®@[Mte b) ^Bf^WMk subduction event, with inferred arc develop­ ment locally, was closely followed by uplift and retrogression of the eclogites and plate accretion of Early Ordovician ophiolites [Sturt and Roberts, 1991]. At the highest tec- tonostratigraphic level, the heterogenous Uppermost Allochthon has been considered to be of probably Laurentian affinity. Evidence of a Paleo-Ocean Between Baltica and Siberia The paleo-orientations and the latitudinal drift-histories for Siberia and Baltica suggest the presence of a paleo-ocean between Bal­ tica and Siberia. This contrasts with earlier models that postulate Latest Cambrian to Early Ordovician subduction and Early Ordo­ vician plate accretion between Laurentia and Baltica (Iapetus Ocean). From Mid-Ordovician to Silurian times, Baltica (Balonia) gradually rotated counter­ clockwise. Such a rotation likely gave rise to a deep-seated, strike-slip fault regime in the narrowing oceanic tract between Baltica and Siberia (Figure lc), and especially between the obliquely converging plates of rotating Baltica and a southward-drifting Laurentia. This developing fault system may have influ­ enced and possibly controlled the generation
Recommended publications
  • From the Early Paleozoic Platforms of Baltica and Laurentia to the Caledonide Orogen of Scandinavia and Greenland
    44 by David G. Gee1, Haakon Fossen2, Niels Henriksen3, and Anthony K. Higgins3 From the Early Paleozoic Platforms of Baltica and Laurentia to the Caledonide Orogen of Scandinavia and Greenland 1 Department of Earth Sciences, Uppsala University, Villavagen Villavägen 16, Uppsala, SE-752 36, Sweden. E-mail: [email protected] 2 Department of Earth Science, University of Bergen, Allégaten 41, N-5007, Bergen, Norway. E-mail: [email protected] 3 The Geological Survey of Denmark and Greenland, Øster Voldgade 10, Dk 1350 Copenhagen, Denmark. E-mail: [email protected], [email protected] The Caledonide Orogen in the Nordic countries is exposed in Norway, western Sweden, westernmost Fin- Introduction land, on Svalbard and in northeast Greenland. In the The Caledonide Orogen is preserved on both sides of the North mountains of western Scandinavia, the structure is dom- Atlantic Ocean, in the mountains of western Scandinavia and north- inated by E-vergent thrusts with allochthons derived eastern Greenland; it continues northwards from northern Norway, across the Barents Shelf and Svalbard to the edge of the Eurasian from the Baltoscandian platform and margin, from out- Basin (Figure 1). The orogen is notable for its thrust systems, board oceanic (Iapetus) terranes and with the highest E-vergent in Scandinavia and W-vergent in Greenland. The width of the orogen, prior to Cenozoic opening of the North Atlantic, was in thrust sheets having Laurentian affinities. The other the order of at least 700–800 km, the deformation fronts on both side of this bivergent orogen is well exposed in north- sides of the orogen being defined by thrusts that, in the Devonian, eastern Greenland, where W-vergent thrust sheets probably reached substantially further onto the foreland platforms than they do today.
    [Show full text]
  • The Terrane Concept and the Scandinavian Caledonides: a Synthesis
    The terrane concept and the Scandinavian Caledonides: a synthesis DAVID ROBERTS Roberts , D. 1988: The terrane concept and the Scandinavian Caledonides: a synthesis. Nor. geol . unders . Bull. 413. 93-99. A revised terrane map is presented for the Scandinavian Caledcnldes. and an outline is given of the principal suspect and exot ic terranes and terrane-complexe s identified outboa rd from the Baltoscand ian miogeocline. The outermost part of the Baltoscandian continental margin is itself suspect , in the terrane sense. since the true palaeogeographical location s of rocks now represented in the Seve and serey-seuano Nappes, while inferred, are not known. The orogen -internal exotic terranes embrace the oceanic/eugeoclinal elements of the Caledonides, represented by the mag­ matosed imentary assemblages of the Koli Nappes, including ophiolite fragments and island arc products. Even more exot ic terranes occur in the highest parts of the tectonostratigraphy, inclu­ ding units which are thought possibly to derive from the Laurentian side of lapetus . D. Roberts. Norges geologiske uruierseketse, Postboks 3006. Lade, N-7002 Trondbeim , Norway . Introduction Project 233 has been to prepare a preliminary Earlier in this decade much of the research terrane map' at 1:5 M scale (Roberts et al. effort in the Caledonides of Scandinavia was 1986) for a larger, circum-Atlantic compilation. channelled through the highly successfu l IGCP This map, much simplified, is really one of Project 27 The Caledonide Orogen ' (Gee & palaeo-environments (marginal basins, vol­ Sturt 1985). An important aspect of the collabo­ canic arc comp lexes, overstep sequences , rative work in this project was that of map etc.), and not of terranes in the true sense.
    [Show full text]
  • Tectonic Regimes in the Baltic Shield During the Last 1200 Ma • a Review
    Tectonic regimes in the Baltic Shield during the last 1200 Ma • A review Sven Åke Larsson ' ', Bva-L^na Tuliborq- 1 Department of Geology Chalmers University of Technology/Göteborij U^vjrsivy 2 Terralogica AB November 1993 TECTONIC REGIMES IN THE BALTIC SHIELD DURING THE LAST 1200 Ma - A REVIEW Sven Åke Larsson12, Eva-Lena Tullborg2 1 Department of Geology, Chalmers University of Technology/Göteborg University 2 Terralogica AB November 1993 This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the author(s) and do not necessarily coincide with those of the client. Information on SKB technical reports from 1977-1978 (TR 121), 1979 (TR 79-28), 1980 (TR 80-26), 1981 (TR 81-17), 1982 (TR 82-28), 1983 (TR 83-77), 1984 (TR 85-01), 1985 (TR 85-20), 1986 (TR 86-31), 1987 (TR 87-33), 1988 (TR 88-32),. 1989 (TR 89-40), 1990 (TR 90-46), 1991 (TR 91-64) and 1992 (TR 92-46) is available through SKB. ) TECTONIC REGIMES IN THE BALTIC SHIELD DURING THE LAST 1200 Ma - A REVIEW by Sven Åke Larson and Eva-Lena Tullborg Department of Geology, Chalmers University of Technology / Göteborg University & Terralogica AB Gråbo, November, 1993 Keywords: Baltic shield, Tectonicregimes. Upper Protero/.oic, Phanerozoic, Mag- matism. Sedimentation. Erosion. Metamorphism, Continental drift. Stress regimes. , ABSTRACT 1 his report is a review about tectonic regimes in the Baltic (Fennoscandian) Shield from the Sveeonorwegian (1.2 Ga ago) to the present. It also covers what is known about palaeostress during this period, which was chosen to include both orogenic and anorogenic events.
    [Show full text]
  • Caledonian Anatexis of Grenvillian Crust: a U/Pb Study of Albert I Land, NW Svalbard
    NORWEGIAN JOURNAL OF GEOLOGY Caledonian anatexis of Grenvillian crust 173 Caledonian anatexis of Grenvillian crust: a U/Pb study of Albert I Land, NW Svalbard Per Inge Myhre, Fernando Corfu & Arild Andresen Myhre, P.I., Corfu, F. & Andresen, A.: Caledonian anatexis of Grenvillian crust: a U/Pb study of Albert I Land, NW Svalbard. Norwegian Journal of Geology, Vol. 89, pp. 173-191. Trondheim 2008. ISSN 029-196X. Dating by U-Pb ID-TIMS of zircon, titanite and monazite has been carried out on orthogneiss, granite and migmatite from Albert I Land Terrane, Northwest Svalbard, to investigate the origin of this terrane and its role within the North Atlantic Caledonides. Detrital zircons in a migmatized metasedimentary rock of the Smeerenburgfjorden Complex indicate deposition after about 1070 Ma. Zircon and titanite from orthogneiss within the same complex yield an upper intercept age of 967.9 ± 4.7 Ma interpreted to date crystallization of the igneous protolith. Monazite ages of 419.7 ± 0.5 Ma from the orthogneiss are interpreted to date Caledonian reworking. Other migmatite and granite samples of the Smeerenburgfjorden Com- plex record monazite growth during a 6–8 My long period commencing at c. 430 Ma. This period concluded with the intrusion of granitoids with ages of 421.7 ± 0.6 Ma and 418.8 ± 0.7 Ma. The latter is coeval with the Hornemantoppen Batholith emplaced at 418.4 ± 0.8 Ma. The identification of late Grenvillian (Rigolet) magmatic and Caledonian (Scandian) magmatic and metamorphic events, combined with other stratigraphic analogies, supports a link with Svalbard’s Nordaustlandet Terrane as well as with Laurentian terranes in NE Greenland and the Scandinavian Caledonides.
    [Show full text]
  • Lund, Sweden, January 8–10 2014
    31st Nordic Geological Winter Meeting. Lund, Sweden. January 8-10, 2014 31st Nordic Sponsors Hosted by the Geological Society of Sweden Lund, Sweden, January 8–10 2014 Abiskojokk canyon, Abisko Sweden Photo: Mark Johnson, 2012 Main sponsors Table of Contents Welcome ______________________________________________________ 2 Organizing committee __________________________________________ 3 Scientific program committee ___________________________________ 3 Program Overview _____________________________________________ 4 Social Program ________________________________________________ 5 Scientific Program______________________________________________ 6 - Oral presentations __________________________________________ 7 - Posters ___________________________________________________ 22 Abstracts1 ________________________________________________ 34 - Plenary talks ________________________________________________ 35 - HYD-ENV Hydrogeology/Environmental Geology _______________ 37 - ENG-GEO Engineering Geology ______________________________ 46 - ECON-OIL Economic and Petroleum Geology __________________ 50 - LUNDPAL Lundadagarna i Historisk Geologi och Paleontologi ____________________________________________ 64 - PET Petrology ______________________________________________ 77 - STR-TEC Structural Geology/Tectonics ________________________ 104 - MOR-GLA Geomorphology and Glacial Geology ______________ 126 - QUAT Quaternary Geology _________________________________ 148 - GEOBIO Geobiology and Astrobiology _______________________ 156 - GEOP Geophysics
    [Show full text]
  • Geochronology and Geochemistry of Zircon from the Northern Western Gneiss Region: Insights Into the Caledonian Tectonic History of Western Norway
    Lithos 246–247 (2016) 134–148 Contents lists available at ScienceDirect Lithos journal homepage: www.elsevier.com/locate/lithos Geochronology and geochemistry of zircon from the northern Western Gneiss Region: Insights into the Caledonian tectonic history of western Norway Stacia M. Gordon a,⁎, Donna L. Whitney b, Christian Teyssier b, Haakon Fossen c, Andrew Kylander-Clark d a Department of Geological Sciences, University of Nevada, Reno, NV 89557, USA b Department of Earth Sciences, University of Minnesota, Minneapolis, MN 55455, USA c Department of Earth Science and Museum of Natural History, University of Bergen, N-5020 Bergen, Norway d Department of Earth Science, University of California, Santa Barbara, CA 93106, USA article info abstract Article history: The Western Gneiss Region (WGR) of Norway is divided by the Møre-Trøndelag shear zone (MTSZ) into a south- Received 6 September 2015 ern region that contains domains of Caledonian ultrahigh-pressure (UHP) metamorphic rocks (N2.5 GPa) and a Accepted 25 November 2015 northern area of similar Caledonian-aged rocks that record a maximum pressure reported thus far of ~1.5 GPa. Available online 17 December 2015 Although both regions contain similar lithologies (primarily migmatitic quartzofeldspathic gneiss containing mafic lenses) and structural relationship of basement rocks to infolded nappes, this difference in maximum pres- Keywords: sure implies a difference in tectonic history (continental subduction south of the shear zone, none to the north) Western Gneiss Region Zircon and raises questions about the role of the MTSZ in the metamorphic history (including exhumation) of the WGR. Split-stream Previous geochronology results indicated a difference in timing of peak metamorphism (older in north, younger LA-ICPMS in south).
    [Show full text]
  • Early Caledonian Tectonothermal Evolution in Outboard Terranes, Central Scandinavian Caledonides: New Constraints from U-Pb Zircon Dates
    Journal of the Geological Society, London, Vol. 150, 1993, pp. 51-56, 4 figs, 1 table. Printed in Northern Ireland Early Caledonian tectonothermal evolution in outboard terranes, central Scandinavian Caledonides: new constraints from U-Pb zircon dates M. B. STEPHENS l,K. KULLERUD 2'3&S.CLAESSON 2 ~Geological Survey of Sweden, Box 670, S-751 28 Uppsala, Sweden 2Museum of Natural History, Laboratory of Isotope Geology, Box 50007, S-104 05 Stockholm, Sweden 3present address: Department of Geology, University of Oslo, Box 1047, N-0316 Oslo 3, Norway Abstract: Early Caledonian deformation in an outboard terrane (Stort]fillet) in the central Scandinavian Caledonides is constrained to the time-period Arenig to Caradoc on the basis of U-Pb zircon age determin- ations. A trondhjemite clast in a conglomerate belonging to a supracrustal sequence that was affected by the early deformational event yields an age of 489_+10 5 Ma. A granite intruded after this event defines an age of 44 J-6~ + 24 Ma. The clast is similar in age to a trondhjemite intrusion in a contiguous terrane (Gjersvik) dated at 483+~Ma and the granite age is in agreement with a Rb-Sr whole-rock isochron of 438 5= 6 Ma determined in a previous study. The three new ages provide further evidence for the separation of igneous events in outboard terranes in the Scandinavian Caledonides into older (Tremadoc to Arenig) and younger (Late Ordovician to Early Silurian) episodes. More critically, they argue against simple correlation of early Caledonian deformational events in outboard terranes with the Late Cambrian to Early Ordovician tectonometamorphic history along the margin of the continent Baltica (the so-called Finnmarkian orogenic phase).
    [Show full text]
  • Devonian Tectonic Deformation in the Norwegian Caledonides and Its Regional Perspectives
    Devonian Tectonic Deformation in the Norwegian Caledonides and Its Regional Perspectives DAVID ROBERTS Roberts, D. 1983: Devonian tectonic deformation in the Norwegian Caledonides and its regional perspectives. Norges geol. Unders. 380, 85-96. Late-Caledonian megascopic folds deforming the Old Red Sandstone sequences of southern Norway are mostly synclines of E-W to NE-SW trend and E to NE plunge. Thrusts along the eastern and southern margins of several ORS areas, and stretching lineations, denote approximate southeastward translations of the sequences from their basinal sites. This contractile movement occurred principally along rejuve nated, syn-depositional, planar or listric-style extension faults. Development of the basins took place during the imposition of a fundamental NW-SE to NNW-SSE crustal extension following the major Scandian, Silurian orogenic phase. This was also influenced by an orogen-parallel sinistral mega-shear from Svalbard through northern Britain to the Appalachians which assisted in producing a transtensional regime in southern Norway. Thus, during ORS basin development and sedimentation a subordinate dextral strike-slip component has acted in combination with the basic extensile field. During late Devonian, probably Frasnian time, this transtensional regime was replaced by a SE-directed compres sion, and partly transpression, so producing the macrofolds, late ductile thrusts and other structures which are traceable far outside the confines of the ORS districts. D. Roberts, Norges geologiske undersokelse, Postboks 3006, N-7001 Trondheim, Norway Introduction The Old Red Sandstone (ORS) basins of southern Norway have received much attention in recent years with emphasis placed on establishing detailed stratigraphies and facies sequences, and interpreting these in terms of palaeo graphy within a framework of syn-depositional tectonism (Bryhni 1964, 1975,1978, Nilsen 1968, Steel 1976, Steel & Gloppen 1980).
    [Show full text]
  • The Scandinavian Caledonides—Scientific Drilling at Mid-Crustal Level in a Palaeozoic Major Collisional Orogen
    Workshop Reports The Scandinavian Caledonides—Scientific Drilling at Mid-Crustal Level in a Palaeozoic Major Collisional Orogen by Henning Lorenz, David Gee, and Christopher Juhlin doi:10.2204/iodp.sd.11.10.2011 Introduction emplacement of allochthons have been demonstrated, E-directed in the Scandes and W-directed in Greenland. The Caledonides of western Scandinavia and eastern Greenland have long been recognized to have been part of a In Scandinavia, major allochthons (Fig. 1) were derived collisional orogen of Alpine-Himalayan dimensions, essen- from Baltica’s outer shelf, dyke-intruded continent-ocean tially the result of the closure of the Iapetus Ocean during transition zone (COT), Iapetus oceanic domains and (upper- the Ordovician, with development of island-arc systems, and most) from the Laurentian margin. On the western side of subsequent underthrusting of continent Laurentia by Baltica the North Atlantic, exposed along the eastern edge of the in the Silurian and Early Devonian during Scandian colli- Greenland ice cap, there are major thrust sheets, all derived sional orogeny. Several hundreds of kilometers of thrust from the Laurentian continental margin and transported at least two hundred kilometers westwards onto the platform. In the Scandinavian and Greenland Caledonides, the major allochthons that were derived from the outer parts of the con- tinent margins have been subject to high-grade metamor- phism and apparently were emplaced hot onto the adjacent platforms. The International Continental Scientific Drilling Program (ICDP) workshop in Sweden provided an opportunity to examine the evidence for Caledonian collisional orogeny in Scandinavia and to discuss its relevance for understanding other orogens, particularly Himalaya-Tibet, and also the sub- duction systems along the margin of the western Pacific.
    [Show full text]
  • Thermal Evidence of Caledonide Foreland, Molasse Sedimentation In
    TECHNICAL REPORT Thermal evidence of Caledonide foreland, molasse sedimentation in Fennoscandia Eva-Lena Tullborg1, Sven Åke Larson1, Lennart Björklund1, Lennart Samuelsson2, Jimmy Stigh1 1 Department of Geology, Earth Sciences Centre, Göteborg University, Göteborg, Sweden 2 Geological Survey of Sweden, Earth Sciences Centre, Göteborg, Sweden November 1995 SVENSK KÄRNBRÄNSLEHANTERING AB SWEDISH NUCLEAR FUEL AND WASTE MANAGEMENT CO P.O.BOX 5864 S-102 40 STOCKHOLM SWEDEN PHONE + 46 8 665 28 00 TELEX 13108 SKB FAX+46 8 661 57 19 . $? i Li THERMAL EVIDENCE OF CALEDONIDE FORELAND, MOLASSE SEDIMENTATION IN FENNOSCANDIA Eva-Lena Tullborg1, Sven Åke Larson1, Lennart Björklund1, Lennart Samuelsson2, Jimmy Stigh1 1 Department of Geology, Earth Sciences Centre, Göteborg University, Göteborg, Sweden 2 Geological Survey of Sweden, Earth Sciences Centre, Göteborg, Sweden November 1995 This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the author(s) and do not necessarily coincide with those of the client. Information on SKB technical reports from 1977-197 8 (TR 121), 1979 (TR 79-28), 1980 (TR 80-26), 1981 (TR 81-17), 1982 (TR 82-28), 1983 (TR 83-77), 1984 (TR 85-01), 1985 (TR 85-20), 1986 (TR 86-31), 1987 (TR 87-33), 1988 (TR 88-32), 1989 (TR 89-40), 1990 (TR 90-46), 1991 (TR 91-64), 1992 (TR 92-46), 1993 (TR 93-34) and 1994 (TR 94-33) is available through SKB. THERMAL EVIDENCE OF CALEDONIDE FORELAND, MOLASSE SEDIMENTATION IN FENNOSCANDIA. Eva-Lena Tullborg, Sven Ake Larson, Lennart Björklund, Lennart Samuelsson1 and Jimmy Stigh.
    [Show full text]
  • Viewers Deta Gasser and Fer- Ing Sinistral Shear, the Collision May Have Become Nando Corfu Provided Insightful Comments and Construc- More Orthogonal (Soper Et Al
    Downloaded from http://sp.lyellcollection.org/ by guest on September 24, 2021 Late Neoproterozoic–Silurian tectonic evolution of the Rödingsfjället Nappe Complex, orogen-scale correlations and implications for the Scandian suture Trond Slagstad1*, Kerstin Saalmann1, Chris L. Kirkland2, Anne B. Høyen3, Bergliot K. Storruste4, Nolwenn Coint1, Christian Pin5, Mogens Marker1, Terje Bjerkgård1, Allan Krill4, Arne Solli1, Rognvald Boyd1, Tine Larsen Angvik1 and Rune B. Larsen4 1Geological Survey of Norway, Trondheim, Norway 2Centre for Exploration Targeting Curtin Node, School of Earth and Planetary Sciences, Curtin University, Perth, Australia 3Department of Geology and Mineral Resources Engineering, Norwegian University of Science and Technology, Trondheim, Norway 4Department of Geosciences and Petroleum, Norwegian University of Science and Technology, Trondheim, Norway 5Département de Géologie, C.N.R.S. & Université Blaise Pascal, 5 rue Kessler, 63038 Clermont-Ferrand, France TS, 0000-0002-8059-2426; CLK, 0000-0003-3367-8961; NC, 0000-0003-0058-722X; AK, 0000-0002-5431-3972; RBL, 0000-0001-9856-3845 Present addresses: ABH, The Norwegian Directorate of Mining, Trondheim, Norway; BKS, Brønnøy Kalk, Velfjord, Norway *Correspondence: [email protected] Abstract: The Scandinavian Caledonides consist of disparate nappes of Baltican and exotic heritage, thrust southeastwards onto Baltica during the Mid-Silurian Scandian continent–continent collision, with structurally higher nappes inferred to have originated at increasingly distal positions to Baltica. New U–Pb zircon geochro- nological and whole-rock geochemical and Sm–Nd isotopic data from the Rödingsfjället Nappe Complex reveal 623 Ma high-grade metamorphism followed by continental rifting and emplacement of the Umbukta gabbro at 578 Ma, followed by intermittent magmatic activity at 541, 510, 501, 484 and 465 Ma.
    [Show full text]
  • Metallic Mineral Deposits in the Nordic Countries
    125 by Pär Weihed1, Pasi Eilu2, Rune B. Larsen3, Henrik Stendal4, and Mikko Tontti2 Metallic mineral deposits in the Nordic countries 1 Division of Ore Geology and Applied Geophysics, Luleå University of Technology, SE-971 87 Luleå, Sweden. E-mail: [email protected] 2 Geological Survey of Finland, PO Box 96, FI-02151 Espoo, Finland. 3 NTNU, NO-7491 Trondheim, Norway. 4 Geological Survey of Denmark and Greenland, Ø. Voldgade 10, DK-1350 Cph., Denmark. The Nordic countries, including Green- land, have a long tradition in mining. Doc- umented mining dates back to the 8th cen- tury AD. Today this region is the most important metallic mining district of the European Union. Metals are produced from active mines in all countries except Iceland and related industries are thriving in all countries. Important ore deposit types include: volcanogenic massive sulphide deposits (Cu, Zn, Pb, Au, Ag), orogenic gold deposits (Au), layered intrusions (Ni, PGE, Ti±V), intrusive hosted Cu-Au, apatite-Fe deposits, Cr- and anorthosite hosted Ti deposits. Besides these well- documented deposits, new kinds of deposits are being explored, e.g., iron oxide-copper-gold (IOCG), shale-hosted Ni-Zn-Cu and different types of uranium deposits. Introduction The Fennoscandian Shield, which forms a large part of the Nordic countries (see descriptions else- where in this volume), has historically been one of the most active mining areas in Europe. For exam- ple, archaeological evidence shows that copper was produced from the Falun mine in the Bergslagen province, Sweden, early in the 8th century AD (Eriksson and Qvarfort, 1996).
    [Show full text]